1
|
Alkahtani HM, Zen AA, Obaidullah AJ, Alanazi MM, Almehizia AA, Ansari SA, Aleanizy FS, Alqahtani FY, Aldossari RM, Algamdi RA, Al-Rasheed LS, Abdel-Hamided SG, Abdel-Aziz AAM, El-Azab AS. Synthesis, Cytotoxic Evaluation, and Structure-Activity Relationship of Substituted Quinazolinones as Cyclin-Dependent Kinase 9 Inhibitors. Molecules 2022; 28:120. [PMID: 36615314 PMCID: PMC9822073 DOI: 10.3390/molecules28010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcriptional elongation, through which short-lived antiapoptotic proteins are overexpressed and make cancer cells resistant to apoptosis. Therefore, CDK9 inhibition depletes antiapoptotic proteins, which in turn leads to the reinstatement of apoptosis in cancer cells. Twenty-seven compounds were synthesized, and their CDK9 inhibitory and cytotoxic activities were evaluated. Compounds 7, 9, and 25 were the most potent CDK9 inhibitors, with IC50 values of 0.115, 0.131, and 0.142 μM, respectively. The binding modes of these molecules were studied via molecular docking, which shows that they occupy the adenosine triphosphate binding site of CDK9. Of these three molecules, compound 25 shows good drug-like properties, as it does not violate Lipinski's rule of five. In addition, this molecule shows promising ligand and lipophilic efficiency values and is an ideal candidate for further optimization.
Collapse
Affiliation(s)
- Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Amer Alhaj Zen
- Chemistry & Forensics Department, Clifton Campus, Nottingham Trent University, Nottingham Ng11 8NS, UK
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Fulwah Yahya Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Rana M. Aldossari
- Department of Pharmacology & Toxicology, College of Pharmacy, 11 Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Raghad Abdullah Algamdi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Lamees S. Al-Rasheed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sami G. Abdel-Hamided
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Astolfi A, Milano F, Palazzotti D, Brea J, Pismataro MC, Morlando M, Tabarrini O, Loza MI, Massari S, Martelli MP, Barreca ML. From Serendipity to Rational Identification of the 5,6,7,8-Tetrahydrobenzo[4,5]thieno[2,3- d]pyrimidin-4(3 H)-one Core as a New Chemotype of AKT1 Inhibitors for Acute Myeloid Leukemia. Pharmaceutics 2022; 14:2295. [PMID: 36365115 PMCID: PMC9698716 DOI: 10.3390/pharmaceutics14112295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 07/30/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy whose prognosis is globally poor. In more than 60% of AML patients, the PI3K/AKTs/mTOR signaling pathway is aberrantly activated because of oncogenic driver alterations and further enhanced by chemotherapy as a mechanism of drug resistance. Against this backdrop, very recently we have started a multidisciplinary research project focused on AKT1 as a pharmacological target to identify novel anti-AML agents. Indeed, the serendipitous finding of the in-house compound T187 as an AKT1 inhibitor has paved the way to the rational identification of new active small molecules, among which T126 has emerged as the most interesting compound with IC50 = 1.99 ± 0.11 μM, ligand efficiency of 0.35, and a clear effect at low micromolar concentrations on growth inhibition and induction of apoptosis in AML cells. The collected results together with preliminary SAR data strongly indicate that the 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one derivative T126 is worthy of future biological experiments and medicinal chemistry efforts aimed at developing a novel chemical class of AKT1 inhibitors as anti-AML agents.
Collapse
Affiliation(s)
- Andrea Astolfi
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy
| | - Francesca Milano
- Hematology and Clinical Immunology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Deborah Palazzotti
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy
| | - Jose Brea
- CIMUS Research Center, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Chiara Pismataro
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy
| | - Mariangela Morlando
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy
| | - Maria Isabel Loza
- CIMUS Research Center, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Serena Massari
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy
| | - Maria Paola Martelli
- Hematology and Clinical Immunology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
3
|
Osmanov VK, Chipinsky EV, Khrustalev VN, Novikov AS, Askerov RK, Chizhov AO, Borisova GN, Borisov AV, Grishina MM, Kurasova MN, Kirichuk AA, Peregudov AS, Kritchenkov AS, Tskhovrebov AG. Facile Access to 2-Selenoxo-1,2,3,4-tetrahydro-4-quinazolinone Scaffolds and Corresponding Diselenides via Cyclization between Methyl Anthranilate and Isoselenocyanates: Synthesis and Structural Features. Molecules 2022; 27:molecules27185799. [PMID: 36144534 PMCID: PMC9504104 DOI: 10.3390/molecules27185799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
A practical method for the synthesis of 2-selenoxo-1,2,3,4-tetrahydro-4-quinazolinone was reported. The latter compounds were found to undergo facile oxidation with H2O2 into corresponding diselenides. Novel organoselenium derivatives were characterized by the 1H, 77Se, and 13C NMR spectroscopies, high-resolution electrospray ionization mass spectrometry, IR, elemental analyses (C, H, N), and X-ray diffraction analysis for several of them. Novel heterocycles exhibited multiple remarkable chalcogen bonding (ChB) interactions in the solid state, which were studied theoretically.
Collapse
Affiliation(s)
- Vladimir K. Osmanov
- Department of Chemistry, R.E. Alekseev Nizhny Novgorod State Technical University, Minin St., 24, 603155 Nizhny Novgorod, Russia
| | - Evgeniy V. Chipinsky
- Department of Chemistry, R.E. Alekseev Nizhny Novgorod State Technical University, Minin St., 24, 603155 Nizhny Novgorod, Russia
| | - Victor N. Khrustalev
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, Miklukho-Maklaya St., 6, 117198 Moscow, Russia
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, 119334 Moscow, Russia
| | - Alexander S. Novikov
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, Miklukho-Maklaya St., 6, 117198 Moscow, Russia
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia
| | | | - Alexander O. Chizhov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, 119334 Moscow, Russia
| | - Galina N. Borisova
- Department of Chemistry, R.E. Alekseev Nizhny Novgorod State Technical University, Minin St., 24, 603155 Nizhny Novgorod, Russia
| | - Alexander V. Borisov
- Department of Chemistry, R.E. Alekseev Nizhny Novgorod State Technical University, Minin St., 24, 603155 Nizhny Novgorod, Russia
| | - Maria M. Grishina
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| | - Margarita N. Kurasova
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| | - Anatoly A. Kirichuk
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| | - Alexander S. Peregudov
- Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilov St., 28, 119991 Moscow, Russia
| | - Andreii S. Kritchenkov
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| | - Alexander G. Tskhovrebov
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, Miklukho-Maklaya St., 6, 117198 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ul. Kosygina, 4, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
4
|
Musella S, Carotenuto L, Iraci N, Baroli G, Ciaglia T, Nappi P, Basilicata MG, Salviati E, Barrese V, Vestuto V, Pignataro G, Pepe G, Sommella E, Di Sarno V, Manfra M, Campiglia P, Gomez-Monterrey I, Bertamino A, Taglialatela M, Ostacolo C, Miceli F. Beyond Retigabine: Design, Synthesis, and Pharmacological Characterization of a Potent and Chemically Stable Neuronal Kv7 Channel Activator with Anticonvulsant Activity. J Med Chem 2022; 65:11340-11364. [PMID: 35972998 PMCID: PMC9421656 DOI: 10.1021/acs.jmedchem.2c00911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Neuronal Kv7 channels represent important pharmacological
targets
for hyperexcitability disorders including epilepsy. Retigabine is
the prototype Kv7 activator clinically approved for seizure treatment;
however, severe side effects associated with long-term use have led
to its market discontinuation. Building upon the recently described
cryoEM structure of Kv7.2 complexed with retigabine and on previous
structure–activity relationship studies, a small library of
retigabine analogues has been designed, synthesized, and characterized
for their Kv7 opening ability using both fluorescence- and electrophysiology-based
assays. Among all tested compounds, 60 emerged as a potent
and photochemically stable neuronal Kv7 channel activator. Compared
to retigabine, compound 60 displayed a higher brain/plasma
distribution ratio, a longer elimination half-life, and more potent
and effective anticonvulsant effects in an acute seizure model in
mice. Collectively, these data highlight compound 60 as
a promising lead compound for the development of novel Kv7 activators
for the treatment of hyperexcitability diseases.
Collapse
Affiliation(s)
- Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Lidia Carotenuto
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale Ferdinando Stagno d'Alcontres 31, Messina 98166, Italy
| | - Giulia Baroli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Piera Nappi
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | | | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Giuseppe Pignataro
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Michele Manfra
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, Potenza 85100, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Isabel Gomez-Monterrey
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, Naples 80131, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, Naples 80131, Italy
| | - Francesco Miceli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| |
Collapse
|
5
|
Carbone D, Vestuto V, Ferraro MR, Ciaglia T, Pecoraro C, Sommella E, Cascioferro S, Salviati E, Novi S, Tecce MF, Amodio G, Iraci N, Cirrincione G, Campiglia P, Diana P, Bertamino A, Parrino B, Ostacolo C. Metabolomics-assisted discovery of a new anticancer GLS-1 inhibitor chemotype from a nortopsentin-inspired library: From phenotype screening to target identification. Eur J Med Chem 2022; 234:114233. [DOI: 10.1016/j.ejmech.2022.114233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/21/2022]
|
6
|
Iraci N, Ostacolo C, Medina-Peris A, Ciaglia T, Novoselov AM, Altieri A, Cabañero D, Fernandez-Carvajal A, Campiglia P, Gomez-Monterrey I, Bertamino A, Kurkin AV. In Vitro and In Vivo Pharmacological Characterization of a Novel TRPM8 Inhibitor Chemotype Identified by Small-Scale Preclinical Screening. Int J Mol Sci 2022; 23:2070. [PMID: 35216186 PMCID: PMC8877448 DOI: 10.3390/ijms23042070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
Transient receptor potential melastatin type 8 (TRPM8) is a target for the treatment of different physio-pathological processes. While TRPM8 antagonists are reported as potential drugs for pain, cancer, and inflammation, to date only a limited number of chemotypes have been investigated and thus a limited number of compounds have reached clinical trials. Hence there is high value in searching for new TRPM8 antagonistic to broaden clues to structure-activity relationships, improve pharmacological properties and explore underlying molecular mechanisms. To address this, the EDASA Scientific in-house molecular library has been screened in silico, leading to identifying twenty-one potentially antagonist compounds of TRPM8. Calcium fluorometric assays were used to validate the in-silico hypothesis and assess compound selectivity. Four compounds were identified as selective TRPM8 antagonists, of which two were dual-acting TRPM8/TRPV1 modulators. The most potent TRPM8 antagonists (BB 0322703 and BB 0322720) underwent molecular modelling studies to highlight key structural features responsible for drug-protein interaction. The two compounds were also investigated by patch-clamp assays, confirming low micromolar potencies. The most potent compound (BB 0322703, IC50 1.25 ± 0.26 μM) was then profiled in vivo in a cold allodinya model, showing pharmacological efficacy at 30 μM dose. The new chemotypes identified showed remarkable pharmacological properties paving the way to further investigations for drug discovery and pharmacological purposes.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Carmine Ostacolo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (C.O.); (I.G.-M.)
| | - Alicia Medina-Peris
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de la Universidad, 03202 Elche, Spain; (A.M.-P.); (D.C.); (A.F.-C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (P.C.)
| | - Anton M. Novoselov
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, 119991 Moscow, Russia; (A.M.N.); (A.A.)
| | - Andrea Altieri
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, 119991 Moscow, Russia; (A.M.N.); (A.A.)
- EDASA Scientific srls, Via Stingi 37, 66050 San Salvo, Italy
| | - David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de la Universidad, 03202 Elche, Spain; (A.M.-P.); (D.C.); (A.F.-C.)
| | - Asia Fernandez-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de la Universidad, 03202 Elche, Spain; (A.M.-P.); (D.C.); (A.F.-C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (P.C.)
| | - Isabel Gomez-Monterrey
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (C.O.); (I.G.-M.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (P.C.)
| | - Alexander V. Kurkin
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, 119991 Moscow, Russia; (A.M.N.); (A.A.)
| |
Collapse
|
7
|
Skoreński M, Sieńczyk M. The Fellowship of Privileged Scaffolds-One Structure to Inhibit Them All. Pharmaceuticals (Basel) 2021; 14:ph14111164. [PMID: 34832946 PMCID: PMC8622370 DOI: 10.3390/ph14111164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past few years, the application of privileged structure has emerged as a powerful approach to the discovery of new biologically active molecules. Privileged structures are molecular scaffolds with binding properties to the range of different biological targets. Moreover, privileged structures typically exhibit good drug-like properties, thus assuring more drug-like properties of modified compound. Our main objective is to discuss the privileged structures used for the development of antiviral agents.
Collapse
|
8
|
l-Arginine Improves Solubility and ANTI SARS-CoV-2 Mpro Activity of Rutin but Not the Antiviral Activity in Cells. Molecules 2021; 26:molecules26196062. [PMID: 34641606 PMCID: PMC8512140 DOI: 10.3390/molecules26196062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022] Open
Abstract
The COVID-19 pandemic outbreak prompts an urgent need for efficient therapeutics, and repurposing of known drugs has been extensively used in an attempt to get to anti-SARS-CoV-2 agents in the shortest possible time. The glycoside rutin shows manifold pharmacological activities and, despite its use being limited by its poor solubility in water, it is the active principle of many pharmaceutical preparations. We herein report our in silico and experimental investigations of rutin as a SARS-CoV-2 Mpro inhibitor and of its water solubility improvement obtained by mixing it with l-arginine. Tests of the rutin/l-arginine mixture in a cellular model of SARS-CoV-2 infection highlighted that the mixture still suffers from unfavorable pharmacokinetic properties, but nonetheless, the results of this study suggest that rutin might be a good starting point for hit optimization.
Collapse
|
9
|
Cedraro N, Cannalire R, Astolfi A, Mangiaterra G, Felicetti T, Vaiasicca S, Cernicchi G, Massari S, Manfroni G, Tabarrini O, Cecchetti V, Barreca ML, Biavasco F, Sabatini S. From Quinoline to Quinazoline-Based S. aureus NorA Efflux Pump Inhibitors by Coupling a Focused Scaffold Hopping Approach and a Pharmacophore Search. ChemMedChem 2021; 16:3044-3059. [PMID: 34032014 PMCID: PMC8518402 DOI: 10.1002/cmdc.202100282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Indexed: 11/29/2022]
Abstract
Antibiotic resistance breakers, such as efflux pump inhibitors (EPIs), represent a powerful alternative to the development of new antimicrobials. Recently, by using previously described EPIs, we developed pharmacophore models able to identify inhibitors of NorA, the most studied efflux pump of Staphylococcus aureus. Herein we report the pharmacophore-based virtual screening of a library of new potential NorA EPIs generated by an in-silico scaffold hopping approach of the quinoline core. After chemical synthesis and biological evaluation of the best virtual hits, we found the quinazoline core as the best performing scaffold. Accordingly, we designed and synthesized a series of functionalized 2-arylquinazolines, which were further evaluated as NorA EPIs. Four of them exhibited a strong synergism with ciprofloxacin and a good inhibition of ethidium bromide efflux on resistant S. aureus strains coupled with low cytotoxicity against human cell lines, thus highlighting a promising safety profile.
Collapse
Affiliation(s)
- Nicholas Cedraro
- Department of Life and Environmental SciencesUniversità Politecnica delle Marchevia Brecce Bianche60131AnconaItaly
| | - Rolando Cannalire
- Current address: Department of PharmacyUniversity of Napoli “Federico II”via D. Montesano 4980131NapoliItaly
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Andrea Astolfi
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Gianmarco Mangiaterra
- Department of Life and Environmental SciencesUniversità Politecnica delle Marchevia Brecce Bianche60131AnconaItaly
| | - Tommaso Felicetti
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Salvatore Vaiasicca
- Department of Life and Environmental SciencesUniversità Politecnica delle Marchevia Brecce Bianche60131AnconaItaly
| | - Giada Cernicchi
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Serena Massari
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Giuseppe Manfroni
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Oriana Tabarrini
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Violetta Cecchetti
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Maria Letizia Barreca
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Francesca Biavasco
- Department of Life and Environmental SciencesUniversità Politecnica delle Marchevia Brecce Bianche60131AnconaItaly
| | - Stefano Sabatini
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| |
Collapse
|
10
|
Yadav P, Awasthi SK. Probing the catalytic activity of highly efficient sulfonic acid fabricated cobalt ferrite magnetic nanoparticles for the clean and scalable synthesis of dihydro, spiro and bis quinazolinones. NEW J CHEM 2021. [DOI: 10.1039/d1nj01149a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An exceptionally productive, rapid, simple, and eco-friendly approach for the synthesis of 2,3-dihydroquinazolin-4(1H)-one has been developed utilizing acidic magnetically retrievable cobalt ferrite nanoparticles (CFNP@SO3H).
Collapse
Affiliation(s)
- Priyanka Yadav
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Satish K. Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
11
|
6-Nitro-7-tosylquinazolin-4(3H)-one. MOLBANK 2020. [DOI: 10.3390/m1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sulfones are important building blocks in the construction of biologically active molecules or functional materials. The sulfonyl functional group in sulfones is so versatile that it can act as either a nucleophile, an electrophile, or a radical in different organic reactions. Recently, quinazoline sulfones have been used to build asymmetrical ether derivatives as inhibitors of signaling pathways governed by tyrosine kinases and the epidermal growth factor-receptor. In this paper, we report a facile synthesis of a novel quinazoline sulfone, 6-nitro-7-tosylquinazolin-4(3H)-one (III), using the modified protocol from 7-chloro-6-nitroquinazolin-4(3H)-one (I) and sodium p-toluenesulfinate (II). The structure of the title compound III was determined using mass-spectrometry, FT-IR, 1H-NMR, 13C-NMR, DEPT, HSQC (Heteronuclear single quantum coherence), HMBC (Heteronuclear Multiple Bond Correlation Spectroscopy) spectroscopies, and PXRD analysis.
Collapse
|
12
|
Nizi MG, Desantis J, Nakatani Y, Massari S, Mazzarella MA, Shetye G, Sabatini S, Barreca ML, Manfroni G, Felicetti T, Rushton-Green R, Hards K, Latacz G, Satała G, Bojarski AJ, Cecchetti V, Kolář MH, Handzlik J, Cook GM, Franzblau SG, Tabarrini O. Antitubercular polyhalogenated phenothiazines and phenoselenazine with reduced binding to CNS receptors. Eur J Med Chem 2020; 201:112420. [DOI: 10.1016/j.ejmech.2020.112420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/21/2020] [Accepted: 05/02/2020] [Indexed: 02/08/2023]
|
13
|
Massari S, Corona A, Distinto S, Desantis J, Caredda A, Sabatini S, Manfroni G, Felicetti T, Cecchetti V, Pannecouque C, Maccioni E, Tramontano E, Tabarrini O. From cycloheptathiophene-3-carboxamide to oxazinone-based derivatives as allosteric HIV-1 ribonuclease H inhibitors. J Enzyme Inhib Med Chem 2019; 34:55-74. [PMID: 30362381 PMCID: PMC6211256 DOI: 10.1080/14756366.2018.1523901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 11/30/2022] Open
Abstract
The paper focussed on a step-by-step structural modification of a cycloheptathiophene-3-carboxamide derivative recently identified by us as reverse transcriptase (RT)-associated ribonuclease H (RNase H) inhibitor. In particular, its conversion to a 2-aryl-cycloheptathienoozaxinone derivative and the successive thorough exploration of both 2-aromatic and cycloheptathieno moieties led to identify oxazinone-based compounds as new anti-RNase H chemotypes. The presence of the catechol moiety at the C-2 position of the scaffold emerged as critical to achieve potent anti-RNase H activity, which also encompassed anti-RNA dependent DNA polymerase (RDDP) activity for the tricyclic derivatives. Benzothienooxazinone derivative 22 resulted the most potent dual inhibitor exhibiting IC50s of 0.53 and 2.90 μM against the RNase H and RDDP functions. Mutagenesis and docking studies suggested that compound 22 binds two allosteric pockets within the RT, one located between the RNase H active site and the primer grip region and the other close to the DNA polymerase catalytic centre.
Collapse
Affiliation(s)
- Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Jenny Desantis
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessia Caredda
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, K.U. Leuven, Leuven, Belgium
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
14
|
Krasowska D, Iraci N, Santi C, Drabowicz J, Cieslak M, Kaźmierczak-Barańska J, Palomba M, Królewska-Golińska K, Magiera J, Sancineto L. Diselenides and Benzisoselenazolones as Antiproliferative Agents and Glutathione-S-Transferase Inhibitors. Molecules 2019; 24:E2914. [PMID: 31405214 PMCID: PMC6721112 DOI: 10.3390/molecules24162914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023] Open
Abstract
A series of variously functionalized selenium-containing compounds were purposely synthesized and evaluated against a panel of cancer cell lines. Most of the compounds showed an interesting cytotoxicity profile with compound 5 showing a potent activity on MCF7 cells. The ethyl amino derivative 5 acts synergistically with cis-platin and inhibits the GST enzyme with a potency that well correlates with the cytotoxicity observed in MCF7 cells. A computational analysis suggests a possible binding mode on the GST enzyme. As the main outcome of the present study, the ethyl amino derivative 5 emerged as a valid lead compound for further, future developments.
Collapse
Affiliation(s)
- Dorota Krasowska
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Nunzio Iraci
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Józef Drabowicz
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
- Institute of Chemistry Jan Długosz University in Częstochowa Częstochowa, 42-200 Armii Krajowej 13/15, Poland
| | - Marcin Cieslak
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Julia Kaźmierczak-Barańska
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Martina Palomba
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Karolina Królewska-Golińska
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Jakub Magiera
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Luca Sancineto
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland.
| |
Collapse
|
15
|
Penteado F, Monti B, Sancineto L, Perin G, Jacob RG, Santi C, Lenardão EJ. Ultrasound‐Assisted Multicomponent Reactions, Organometallic and Organochalcogen Chemistry. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800477] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Filipe Penteado
- Laboratório de Síntese Orgânica Limpa – LASOL –Universidade Federal de Pelotas – UFPel – P.O. Box 354 96010-900 Pelotas (RS) Brazil
| | - Bonifacio Monti
- Department of Pharmaceutical Sciences –University of Perugia - Via del Liceo, 1 Perugia (PG) Italy
| | - Luca Sancineto
- Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences, Sienkiewicza 112 90-363 Łódź Poland
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa – LASOL –Universidade Federal de Pelotas – UFPel – P.O. Box 354 96010-900 Pelotas (RS) Brazil
| | - Raquel G. Jacob
- Laboratório de Síntese Orgânica Limpa – LASOL –Universidade Federal de Pelotas – UFPel – P.O. Box 354 96010-900 Pelotas (RS) Brazil
| | - Claudio Santi
- Department of Pharmaceutical Sciences –University of Perugia - Via del Liceo, 1 Perugia (PG) Italy
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa – LASOL –Universidade Federal de Pelotas – UFPel – P.O. Box 354 96010-900 Pelotas (RS) Brazil
| |
Collapse
|
16
|
Badolato M, Aiello F, Neamati N. 2,3-Dihydroquinazolin-4(1 H)-one as a privileged scaffold in drug design. RSC Adv 2018; 8:20894-20921. [PMID: 35542353 PMCID: PMC9080947 DOI: 10.1039/c8ra02827c] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
2,3-Dihydroquinazolin-4-one (DHQ) belongs to the class of nitrogen-containing heterocyclic compounds representing a core structural component in various biologically active compounds. In the past decades, several methodologies have been developed for the synthesis of the DHQ framework, especially the 2-substituted derivatives. Unfortunately, multistep syntheses, harsh reaction conditions, and the use of toxic reagents and solvents have limited their full potential as a versatile fragment. Recently, use of green chemistry and alternative strategies are being explored to prepare diverse DHQ derivatives. This fragment is used as a synthon for the preparation of biologically active quinazolinones and as a functional substrate for the synthesis of modified DHQ derivatives exhibiting different biological properties. In this review, we provide a comprehensive assessment of the synthesis and biological evaluations of DHQ derivatives.
Collapse
Affiliation(s)
- Mariateresa Badolato
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Ed. Polifunzionale 87036 Arcavacata di Rende CS Italy
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Ed. Polifunzionale 87036 Arcavacata di Rende CS Italy
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex 1600 Huron Parkway Ann Arbor MI 48109 USA
| |
Collapse
|
17
|
2-Phenylquinazolinones as dual-activity tankyrase-kinase inhibitors. Sci Rep 2018; 8:1680. [PMID: 29374194 PMCID: PMC5785997 DOI: 10.1038/s41598-018-19872-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/09/2018] [Indexed: 12/20/2022] Open
Abstract
Tankyrases (TNKSs) are enzymes specialized in catalyzing poly-ADP-ribosylation of target proteins. Several studies have validated TNKSs as anti-cancer drug targets due to their regulatory role in Wnt/β-catenin pathway. Recently a lot of effort has been put into developing more potent and selective TNKS inhibitors and optimizing them towards anti-cancer agents. We noticed that some 2-phenylquinazolinones (2-PQs) reported as CDK9 inhibitors were similar to previously published TNKS inhibitors. In this study, we profiled this series of 2-PQs against TNKS and selected kinases that are involved in the Wnt/β-catenin pathway. We found that they were much more potent TNKS inhibitors than they were CDK9/kinase inhibitors. We evaluated the compound selectivity to tankyrases over the ARTD enzyme family and solved co-crystal structures of the compounds with TNKS2. Comparative structure-based studies of the catalytic domain of TNKS2 with selected CDK9 inhibitors and docking studies of the inhibitors with two kinases (CDK9 and Akt) revealed important structural features, which could explain the selectivity of the compounds towards either tankyrases or kinases. We also discovered a compound, which was able to inhibit tankyrases, CDK9 and Akt kinases with equal µM potency.
Collapse
|
18
|
Sancineto L, Iraci N, Tabarrini O, Santi C. NCp7: targeting a multitasking protein for next-generation anti-HIV drug development part 1: covalent inhibitors. Drug Discov Today 2017; 23:260-271. [PMID: 29107765 DOI: 10.1016/j.drudis.2017.10.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022]
Abstract
The major internal component of the HIV virion core is the nucleocapsid protein 7 (NCp7), a small, highly basic protein that is essential for multiple stages of the viral replicative cycle, and whose structure is preserved in all viral strains, including clinical isolates from therapy-experienced patients. This key protein is recognised as a potential target for an effective next-generation antiretroviral therapy, because it could offer the possibility to develop broad-spectrum agents that are less prone to select for resistant strains. Here, we provide a comprehensive overview of the covalent NCp7 inhibitors that have emerged over the past 25 years of drug discovery campaigns, emphasising, where possible, their structure-activity relationships (SARs) and pharmacophoric features.
Collapse
Affiliation(s)
- Luca Sancineto
- Department of Heterorganic Chemistry, Centre of Molecular and Macromolecular Studies, Lodz, Poland.
| | - Nunzio Iraci
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Palomba M, Rossi L, Sancineto L, Tramontano E, Corona A, Bagnoli L, Santi C, Pannecouque C, Tabarrini O, Marini F. A new vinyl selenone-based domino approach to spirocyclopropyl oxindoles endowed with anti-HIV RT activity. Org Biomol Chem 2016; 14:2015-24. [PMID: 26754878 DOI: 10.1039/c5ob02451j] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Herein, we disclose a general and flexible access to spirocyclopropyl oxindoles by a domino Michael/intramolecular nucleophilic substitution pathway with variously substituted vinyl selenones and enolizable oxindoles in aqueous sodium hydroxide solution. The spirocyclopropyl oxindole being a privileged scaffold, some of the synthesized compounds were selected for biological evaluation. Compound showed selective anti-HIV-1 activity thanks to its ability to inhibit the reverse transcriptase.
Collapse
Affiliation(s)
- M Palomba
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - L Rossi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - L Sancineto
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - E Tramontano
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato SS554 - 09042, Monserrato (Cagliari), Italy
| | - A Corona
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato SS554 - 09042, Monserrato (Cagliari), Italy
| | - L Bagnoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - C Santi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - C Pannecouque
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - O Tabarrini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - F Marini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| |
Collapse
|
20
|
Hu H, Wu J, Ao M, Wang H, Zhou T, Xue Y, Qiu Y, Fang M, Wu Z. Synthesis, structure-activity relationship studies and biological evaluation of novel 2,5-disubstituted indole derivatives as anticancer agents. Chem Biol Drug Des 2016; 88:766-778. [PMID: 27315790 DOI: 10.1111/cbdd.12808] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/05/2016] [Accepted: 06/12/2016] [Indexed: 01/13/2023]
Abstract
Three novel series of 2,5-disubstituted indole derivatives were synthesized and evaluated in vitro for their antiproliferative activity against human cancer cells and HIV-1 inhibition activity used as a readout of cellular activity. Most compounds were found to have potent anticancer activity. In particular, 2c and 3b which showed effectively to repress HIV-1 transcription had a pan antiproliferative activity in cervical cancer cells (HeLa), breast cancer cells (MCF-7), liver cancer cells (HepG2), and lung cancer cells (H460 and A549). While 3b exhibited high sensitivity to A549 cells with the IC50 value 0.48 ± 0.15 μm, 2c showed high selectivity toward HepG2 cells with the IC50 value 13.21 ± 0.30 μm. With respect to the cellular mechanism of action, HepG2 cells treated with 2c and A549 cells treated with 3b for 24 h were studied by annexin V/PI staining and Western blot analysis, and results revealed that 2c and 3b may induce cancer cells apoptosis through inhibiting the phosphorylation at Ser2 of RNAPII CTD which can be phosphorylated by cyclin-dependent kinase 9. These studies indicated that 2c and 3b may develop as potent lead compounds in the therapy of cancer. However, determining their roles in preventing HIV-1 still requires further intensive study.
Collapse
Affiliation(s)
- Hongyu Hu
- School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China
| | - Jun Wu
- School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China
| | - Mingtao Ao
- School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China
| | - Huiru Wang
- School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China
| | - Tongtong Zhou
- School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China
| | - Yuhua Xue
- School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China
| | - Yingkun Qiu
- School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China
| | - Meijuan Fang
- School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China.
| | - Zhen Wu
- School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China.
| |
Collapse
|
21
|
Le Douce V, Ait-Amar A, Forouzan Far F, Fahmi F, Quiel J, El Mekdad H, Daouad F, Marban C, Rohr O, Schwartz C. Improving combination antiretroviral therapy by targeting HIV-1 gene transcription. Expert Opin Ther Targets 2016; 20:1311-1324. [PMID: 27266557 DOI: 10.1080/14728222.2016.1198777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Combination Antiretroviral Therapy (cART) has not allowed the cure of HIV. The main obstacle to HIV eradication is the existence of quiescent reservoirs. Several other limitations of cART have been described, such as strict life-long treatment and high costs, restricting it to Western countries, as well as the development of multidrug resistance. Given these limitations and the impetus to find a cure, the development of new treatments is necessary. Areas covered: In this review, we discuss the current status of several efficient molecules able to suppress HIV gene transcription, including NF-kB and Tat inhibitors. We also assess the potential of new proteins belonging to the intriguing DING family, which have been reported to have potential anti-HIV-1 activity by inhibiting HIV gene transcription. Expert opinion: Targeting HIV-1 gene transcription is an alternative approach, which could overcome cART-related issues, such as the emergence of multidrug resistance. Improving cART will rely on the identification and characterization of new actors inhibiting HIV-1 transcription. Combining such efforts with the use of new technologies, the development of new models for preclinical studies, and improvement in drug delivery will considerably reduce drug toxicity and thus increase patient adherence.
Collapse
Affiliation(s)
- Valentin Le Douce
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France.,c UCD Centre for Research in Infectious Diseases (CRID) School of Medicine and Medical Science , University College Dublin , Dublin 4 , Ireland
| | - Amina Ait-Amar
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Faezeh Forouzan Far
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Faiza Fahmi
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Jose Quiel
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Hala El Mekdad
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Fadoua Daouad
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Céline Marban
- d Faculté de Chirurgie Dentaire , Inserm UMR 1121 , Strasbourg , France
| | - Olivier Rohr
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France.,e Institut Universitaire de France , Paris , France
| | - Christian Schwartz
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France
| |
Collapse
|
22
|
Recent advances in the identification of Tat-mediated transactivation inhibitors: progressing toward a functional cure of HIV. Future Med Chem 2016; 8:421-42. [PMID: 26933891 DOI: 10.4155/fmc.16.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The current anti-HIV combination therapy does not eradicate the virus that persists mainly in quiescent infected CD4(+) T cells as a latent integrated provirus that resumes after therapy interruption. The Tat-mediated transactivation (TMT) is a critical step in the HIV replication cycle that could give the opportunity to reduce the size of latent reservoirs. More than two decades of research led to the identification of various TMT inhibitors. While none of them met the criteria to reach the market, the search for a suitable TMT inhibitor is still actively pursued. Really promising compounds, including one in a Phase III clinical trial, have been recently identified, thus warranting an update.
Collapse
|
23
|
Sancineto L, Mariotti A, Bagnoli L, Marini F, Desantis J, Iraci N, Santi C, Pannecouque C, Tabarrini O. Design and Synthesis of DiselenoBisBenzamides (DISeBAs) as Nucleocapsid Protein 7 (NCp7) Inhibitors with anti-HIV Activity. J Med Chem 2015; 58:9601-14. [PMID: 26613134 DOI: 10.1021/acs.jmedchem.5b01183] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The interest in the synthesis of Se-containing compounds is growing with the discovery of derivatives exhibiting various biological activities. In this manuscript, we have identified a series of 2,2'-diselenobisbenzamides (DISeBAs) as novel HIV retroviral nucleocapsid protein 7 (NCp7) inhibitors. Because of its pleiotropic functions in the whole viral life cycle and its mutation intolerant nature, NCp7 represents a target of great interest which is not reached by any anti-HIV agent in clinical use. Using the diselenobisbenzoic scaffold, amino acid, and benzenesulfonamide derivatives were prepared and biologically profiled against different models of HIV infection. The incorporation of amino acids such as glycine and glutamate into DISeBAs 7 and 8 resulted in selective anti-HIV activity against both acutely and chronically infected cells as well as an interesting virucidal effect. DISeBAs demonstrated broad antiretroviral activity, encompassing HIV-1 drug-resistant strains including clinical isolates, as well as simian immunodeficiency virus (SIV). Time of addition experiments, along with the observed dose dependent inhibition of the Gag precursor proper processing, confirmed that their mechanism of action is based on NCp7 inhibition.
Collapse
Affiliation(s)
- Luca Sancineto
- Department of Pharmaceutical Sciences, Group of Catalysis and Organic Green Chemistry, University of Perugia , Via del Liceo 1, Perugia 06100, Italy
| | - Alice Mariotti
- Department of Pharmaceutical Sciences, Group of Catalysis and Organic Green Chemistry, University of Perugia , Via del Liceo 1, Perugia 06100, Italy
| | - Luana Bagnoli
- Department of Pharmaceutical Sciences, Group of Catalysis and Organic Green Chemistry, University of Perugia , Via del Liceo 1, Perugia 06100, Italy
| | - Francesca Marini
- Department of Pharmaceutical Sciences, Group of Catalysis and Organic Green Chemistry, University of Perugia , Via del Liceo 1, Perugia 06100, Italy
| | - Jenny Desantis
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, Perugia 06100, Italy
| | - Nunzio Iraci
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, Perugia 06100, Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences, Group of Catalysis and Organic Green Chemistry, University of Perugia , Via del Liceo 1, Perugia 06100, Italy
| | - Christophe Pannecouque
- Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven , B-3000 Leuven, Belgium
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, Perugia 06100, Italy
| |
Collapse
|
24
|
Ross CT, Roodgar M, Smith DG. Evolutionary distance of amino acid sequence orthologs across macaque subspecies: identifying candidate genes for SIV resistance in Chinese rhesus macaques. PLoS One 2015; 10:e0123624. [PMID: 25884674 PMCID: PMC4401517 DOI: 10.1371/journal.pone.0123624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/20/2015] [Indexed: 11/18/2022] Open
Abstract
We use the Reciprocal Smallest Distance (RSD) algorithm to identify amino acid sequence orthologs in the Chinese and Indian rhesus macaque draft sequences and estimate the evolutionary distance between such orthologs. We then use GOanna to map gene function annotations and human gene identifiers to the rhesus macaque amino acid sequences. We conclude methodologically by cross-tabulating a list of amino acid orthologs with large divergence scores with a list of genes known to be involved in SIV or HIV pathogenesis. We find that many of the amino acid sequences with large evolutionary divergence scores, as calculated by the RSD algorithm, have been shown to be related to HIV pathogenesis in previous laboratory studies. Four of the strongest candidate genes for SIVmac resistance in Chinese rhesus macaques identified in this study are CDK9, CXCL12, TRIM21, and TRIM32. Additionally, ANKRD30A, CTSZ, GORASP2, GTF2H1, IL13RA1, MUC16, NMDAR1, Notch1, NT5M, PDCD5, RAD50, and TM9SF2 were identified as possible candidates, among others. We failed to find many laboratory experiments contrasting the effects of Indian and Chinese orthologs at these sites on SIVmac pathogenesis, but future comparative studies might hold fertile ground for research into the biological mechanisms underlying innate resistance to SIVmac in Chinese rhesus macaques.
Collapse
Affiliation(s)
- Cody T. Ross
- Department of Anthropology, University of California, Davis. Davis, United States of America
- Molecular Anthropology Laboratory, University of California, Davis. Davis, United States of America
| | - Morteza Roodgar
- Molecular Anthropology Laboratory, University of California, Davis. Davis, United States of America
- California National Primate Research Center, University of California, Davis. Davis, United States of America
- Graduate Group of Comparative Pathology, University of California, Davis. Davis, United States of America
| | - David Glenn Smith
- Department of Anthropology, University of California, Davis. Davis, United States of America
- Molecular Anthropology Laboratory, University of California, Davis. Davis, United States of America
- California National Primate Research Center, University of California, Davis. Davis, United States of America
| |
Collapse
|
25
|
Abstract
Antiretroviral therapy (ART) potently suppresses HIV-1 replication, but the virus persists in quiescent infected CD4(+)T cells as a latent integrated provirus, and patients must indefinitely remain on therapy. If ART is terminated, these integrated proviruses can reactivate, driving new rounds of infection. A functional cure for HIV requires eliminating low-level ongoing viral replication that persists in certain tissue sanctuaries and preventing viral reactivation. The HIV Tat protein plays an essential role in HIV transcription by recruiting the kinase activity of the P-TEFb complex to the viral mRNA's stem-bulge-loop structure, TAR, activating transcriptional elongation. Because the Tat-mediated transactivation cascade is critical for robust HIV replication, the Tat/TAR/P-TEFb complex is one of the most attractive targets for drug development. Importantly, compounds that interfere with transcription could impair viral reactivation, low-level ongoing replication, and replenishment of the latent reservoir, thereby reducing the size of the latent reservoir pool. Here, we discuss the potential importance of transcriptional inhibitors in the treatment of latent HIV-1 disease and review recent findings on targeting Tat, TAR, and P-TEFb individually or as part of a complex. Finally, we discuss the impact of extracellular Tat in HIV-associated neurocognitive disorders and cancers.
Collapse
|
26
|
Sancineto L, Iraci N, Barreca ML, Massari S, Manfroni G, Corazza G, Cecchetti V, Marcello A, Daelemans D, Pannecouque C, Tabarrini O. Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands. Bioorg Med Chem 2014; 22:4658-66. [PMID: 25127466 DOI: 10.1016/j.bmc.2014.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
It is getting clearer that many drugs effective in different therapeutic areas act on multiple rather than single targets. The application of polypharmacology concepts might have numerous advantages especially for disease such as HIV/AIDS, where the rapid emergence of resistance requires a complex combination of more than one drug. In this paper, we have designed three hybrid molecules combining WM5, a quinolone derivative we previously identified as HIV Tat-mediated transcription (TMT) inhibitor, with the tricyclic core of nevirapine and BILR 355BS (BILR) non-nucleoside reverse transcriptase inhibitors (NNRTIs) to investigate whether it could be possible to obtain molecules acting on both transcription steps of the HIV replicative cycle. One among the three designed multiple ligands, reached this goal. Indeed, compound 1 inhibited both TMT and reverse transcriptase (RT) activity. Unexpectedly, while the anti-TMT activity exerted by compound 1 resulted into a selective inhibition of HIV-1 reactivation from latently infected OM10.1 cells, the anti-RT properties shown by all of the synthesized compounds did not translate into an anti-HIV activity in acutely infected cells. Thus, we have herein produced the proof of concept that the design of dual TMT-RT inhibitors is indeed possible, but optimization efforts are needed to obtain more potent derivatives.
Collapse
Affiliation(s)
- Luca Sancineto
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Nunzio Iraci
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Gianmarco Corazza
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Dirk Daelemans
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| |
Collapse
|