1
|
Kadier K, Niu T, Ding B, Chen B, Qi X, Chen D, Cheng X, Fang Y, Zhou J, Zhao W, Liu Z, Yuan Y, Zhou Z, Dong X, Yang B, He Q, Cao J, Jiang L, Zhu CL. PROTAC-Mediated HDAC7 Protein Degradation Unveils Its Deacetylase-Independent Proinflammatory Function in Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309459. [PMID: 39049738 PMCID: PMC11423193 DOI: 10.1002/advs.202309459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/25/2024] [Indexed: 07/27/2024]
Abstract
Class IIa histone deacetylases (Class IIa HDACs) play critical roles in regulating essential cellular metabolism and inflammatory pathways. However, dissecting the specific roles of each class IIa HDAC isoform is hindered by the pan-inhibitory effect of current inhibitors and a lack of tools to probe their functions beyond epigenetic regulation. In this study, a novel PROTAC-based compound B4 is developed, which selectively targets and degrades HDAC7, resulting in the effective attenuation of a specific set of proinflammatory cytokines in both lipopolysaccharide (LPS)-stimulated macrophages and a mouse model. By employing B4 as a molecular probe, evidence is found for a previously explored role of HDAC7 that surpasses its deacetylase function, suggesting broader implications in inflammatory processes. Mechanistic investigations reveal the critical involvement of HDAC7 in the Toll-like receptor 4 (TLR4) signaling pathway by directly interacting with the TNF receptor-associated factor 6 and TGFβ-activated kinase 1 (TRAF6-TAK1) complex, thereby initiating the activation of the downstream mitogen-activated protein kinase/nuclear factor-κB (MAPK/NF-κB) signaling cascade and subsequent gene transcription. This study expands the insight into HDAC7's role within intricate inflammatory networks and highlights its therapeutic potential as a novel target for anti-inflammatory treatments.
Collapse
Affiliation(s)
- Kailibinuer Kadier
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tian Niu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Baoli Ding
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Boya Chen
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xuxin Qi
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Danni Chen
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xirui Cheng
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yizheng Fang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiahao Zhou
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenyi Zhao
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
| | - Zeqi Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yi Yuan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhan Zhou
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
| | - Xiaowu Dong
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, 310058, P. R. China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, P. R. China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, 310058, P. R. China
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ji Cao
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, 310058, P. R. China
| | - Li Jiang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
| | - Cheng-Liang Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
2
|
Wang Z, Zhao L, Zhang B, Feng J, Wang Y, Zhang B, Jin H, Ding L, Wang N, He S. Discovery of novel polysubstituted N-alkyl acridone analogues as histone deacetylase isoform-selective inhibitors for cancer therapy. J Enzyme Inhib Med Chem 2023; 38:2206581. [PMID: 37144599 PMCID: PMC10165928 DOI: 10.1080/14756366.2023.2206581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Pan-histone deacetylase (HDAC) inhibitors often have some toxic side effects. In this study, three series of novel polysubstituted N-alkyl acridone analogous were designed and synthesised as HDAC isoform-selective inhibitors. Among them, 11b and 11c exhibited selective inhibition of HDAC1, HDAC3, and HDAC10, with IC50 values ranging from 87 nM to 418 nM. However, these compounds showed no inhibitory effect against HDAC6 and HDAC8. Moreover, 11b and 11c displayed potent antiproliferative activity against leukaemia HL-60 cells and colon cancer HCT-116 cells, with IC50 values ranging from 0.56 μM to 4.21 μM. Molecular docking and energy scoring functions further analysed the differences in the binding modes of 11c with HDAC1/6. In vitro anticancer studies revealed that the hit compounds 11b and 11c effectively induced histone H3 acetylation, S-phase cell cycle arrest, and apoptosis in HL-60 cells in a concentration-dependent manner.
Collapse
Affiliation(s)
- Ze Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Li Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, People's Republic of China
| | - Bo Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Jiahe Feng
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Yule Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Haixiao Jin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, People's Republic of China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, People's Republic of China
| |
Collapse
|
3
|
Geurs S, Clarisse D, De Bosscher K, D'hooghe M. The Zinc-Binding Group Effect: Lessons from Non-Hydroxamic Acid Vorinostat Analogs. J Med Chem 2023. [PMID: 37276138 DOI: 10.1021/acs.jmedchem.3c00226] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Histone deacetylases (HDACs) are enzymes pursued as drug targets in various cancers and several non-oncological conditions, such as inflammation and neurodegenerative disorders. In the past decade, HDAC inhibitors (HDACi) have emerged as relevant pharmaceuticals, with many efforts devoted to the development of new representatives. However, the growing safety concerns regarding the established hydroxamic acid-based HDAC inhibitors tend to drive current research more toward the design of inhibitors bearing alternative zinc-binding groups (ZBGs). This Perspective presents an overview of all non-hydroxamic acid ZBGs that have been incorporated into the clinically approved prototypical HDACi, suberoylanilide hydroxamic acid (vorinostat). This provides the unique opportunity to compare the inhibition potential and biological effects of different ZBGs in a direct way, as the compounds selected for this Perspective differ only in their ZBG. To that end, different strategies used to select a ZBG, its properties, activity, and liabilities are discussed.
Collapse
Affiliation(s)
- Silke Geurs
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
4
|
Rajaraman S, Balakrishnan R, Deshmukh D, Ganorkar A, Biswas S, Pulya S, Ghosh B. HDAC8 as an emerging target in drug discovery with special emphasis on medicinal chemistry. Future Med Chem 2023; 15:885-908. [PMID: 37227732 DOI: 10.4155/fmc-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
HDAC8 catalyzes the deacetylation of both histones and nonhistone proteins. The abnormal expression of HDAC8 is associated with various pathological conditions causing cancer and other diseases like myopathies, Cornelia de Lange syndrome, renal fibrosis, and viral and parasitic infections. The substrates of HDAC8 are involved in diverse molecular mechanisms of cancer such as cell proliferation, invasion, metastasis and drug resistance. Based on the crystal structures and the key residues at the active site, HDAC8 inhibitors have been designed along the canonical pharmacophore. This article details the importance, recent advancements, and the structural and functional aspects of HDAC8 with special emphasis on the medicinal chemistry aspect of HDAC8 inhibitors that will help in developing novel epigenetic therapeutics.
Collapse
Affiliation(s)
- Srinidhi Rajaraman
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Ranjani Balakrishnan
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Dhruv Deshmukh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Abhiram Ganorkar
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| |
Collapse
|
5
|
Kong SJ, Nam G, Boggu PR, Park GM, Kang JE, Park HJ, Jung YH. Synthesis and biological evaluation of novel N-benzyltriazolyl-hydroxamate derivatives as selective histone deacetylase 6 inhibitors. Bioorg Med Chem 2023; 79:117154. [PMID: 36645952 DOI: 10.1016/j.bmc.2023.117154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Histone deacetylases (HDAC) regulate post-translational acetylation and the inhibition of these enzymes has emerged as an intriguing disease therapeutic. Among them, class IIb HDAC6 has the unique characteristic of mainly deacetylating cytoplasmic proteins, suggesting clinical applications for neurodegenerative diseases, inflammation, and cancer. In this study, we designed a novel N-benzyltriazolyl-hydroxamate scaffold based on the known HDAC6 inhibitors nexturastat A and tubastatin A. Among the 27 derivatives, 3-fluoro-4-((3-(2-fluorophenyl)-1H-1,2,4-triazol-1-yl)methyl)-N-hydroxybenzamide 4u (HDAC6 IC50 = 7.08 nM) showed nanomolar HDAC6 inhibitory activity with 42-fold selectivity over HDAC1. Structure-activity relationship (SAR) and computational docking studies were conducted to optimize the triazole capping group. Docking analysis revealed that the capping group aligned with the conserved L1 pocket of HDAC6 and was associated with subtype selectivity. Overall, our study explored the triazole-based biaryl capping group and its substitution and orientation, suggesting a rationale for the design of HDAC6-selective inhibitors.
Collapse
Affiliation(s)
- Sun Ju Kong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gibeom Nam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pulla Reddy Boggu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gi Min Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Eun Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Hoon Jung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Surguchov A. α-Synuclein and Mechanisms of Epigenetic Regulation. Brain Sci 2023; 13:brainsci13010150. [PMID: 36672131 PMCID: PMC9857298 DOI: 10.3390/brainsci13010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases with common pathological lesions associated with the excessive accumulation and abnormal intracellular deposition of toxic species of α-synuclein. The shared clinical features are chronic progressive decline of motor, cognitive, and behavioral functions. These disorders include Parkinson's disease, dementia with Lewy body, and multiple system atrophy. Vigorous research in the mechanisms of pathology of these illnesses is currently under way to find disease-modifying treatment and molecular markers for early diagnosis. α-Synuclein is a prone-to-aggregate, small amyloidogenic protein with multiple roles in synaptic vesicle trafficking, neurotransmitter release, and intracellular signaling events. Its expression is controlled by several mechanisms, one of which is epigenetic regulation. When transmitted to the nucleus, α-synuclein binds to DNA and histones and participates in epigenetic regulatory functions controlling specific gene transcription. Here, we discuss the various aspects of α-synuclein involvement in epigenetic regulation in health and diseases.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
7
|
Carbajo-García MC, García-Alcázar Z, Corachán A, Monleón J, Trelis A, Faus A, Pellicer A, Ferrero H. Histone deacetylase inhibition by suberoylanilide hydroxamic acid: a therapeutic approach to treat human uterine leiomyoma. Fertil Steril 2021; 117:433-443. [PMID: 34809976 DOI: 10.1016/j.fertnstert.2021.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate the effect of inhibition of histone deacetylases (HDACs) by suberoylanilide hydroxamic acid (SAHA) treatment of human uterine leiomyoma primary (HULP) cells in vitro on cell proliferation, cell cycle, extracellular matrix (ECM) formation, and transforming growth factor β3 (TGF-β3) signaling. DESIGN Prospective study comparing uterine leiomyoma (UL) vs. adjacent myometrium (MM) tissue and cells with or without SAHA treatment. SETTING Hospital and university laboratories. PATIENT(S) Women with UL without any hormone treatment. INTERVENTION(S) Myomectomy or hysterectomy surgery in women for leiomyoma disease. MAIN OUTCOME MEASURE(S) HDAC activity was assessed by enzyme-linked immunosorbent assay, and gene expression was assessed by quantitative real-time polymerase chain reaction. Effects of SAHA on HULP cells were analyzed by CellTiter (Promega, Madison, Wisconsin), Western blot, and quantitative real-time polymerase chain reaction. RESULT(S) The expression of HDAC genes (HDAC1, fold change [FC] = 1.65; HDAC3, FC = 2.08; HDAC6, FC = 2.42) and activity (0.56 vs. 0.10 optical density [OD]/h/mg) was significantly increased in UL vs. MM tissue. SAHA decreased HDAC activity in HULP cells but not in MM cells. Cell viability significantly decreased in HULP cells (81.68% at 5 μM SAHA, 73.46% at 10 μM SAHA), but not in MM cells. Proliferating cell nuclear antigen expression was significantly inhibited in SAHA-treated HULP cells (5 μM SAHA, FC = 0.556; 10 μM SAHA, FC = 0.622). Cell cycle markers, including C-MYC (5 μM SAHA, FC = 0.828) and CCND1 (5 μM SAHA, FC = 0.583; 10 μM SAHA, FC = 0.482), were significantly down-regulated after SAHA treatment. SAHA significantly inhibited ECM protein expression, including FIBRONECTIN (5 μM SAHA, FC = 0.815; 10 μM SAHA, FC = 0.673) and COLLAGEN I (5 μM SAHA, FC = 0.599; 10 μM SAHA, FC = 0.635), in HULP cells. TGFβ3 and MMP9 gene expression was also significantly down-regulated by 10 μM SAHA (TGFβ3, FC = 0.596; MMP9, FC = 0.677). CONCLUSION(S) SAHA treatment inhibits cell proliferation, cell cycle, ECM formation, and TGF-β3 signaling in HULP cells, suggesting that histone deacetylation may be useful for treatment of UL.
Collapse
Affiliation(s)
- María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Spain
| | | | - Ana Corachán
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Spain
| | - Javier Monleón
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; IVIRMA Rome, Rome, Italy
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| |
Collapse
|
8
|
Hearn KN, Ashton TD, Acharya R, Feng Z, Gueven N, Pfeffer FM. Direct Amidation to Access 3-Amido-1,8-Naphthalimides Including Fluorescent Scriptaid Analogues as HDAC Inhibitors. Cells 2021; 10:1505. [PMID: 34203745 PMCID: PMC8232238 DOI: 10.3390/cells10061505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Methodology to access fluorescent 3-amido-1,8-naphthalimides using direct Buchwald-Hartwig amidation is described. The protocol was successfully used to couple a number of substrates (including an alkylamide, an arylamide, a lactam and a carbamate) to 3-bromo-1,8-naphthalimide in good yield. To further exemplify the approach, a set of scriptaid analogues with amide substituents at the 3-position were prepared. The new compounds were more potent than scriptaid at a number of histone deacetylase (HDAC) isoforms including HDAC6. Activity was further confirmed in a whole cell tubulin deacetylation assay where the inhibitors were more active than the established HDAC6 selective inhibitor Tubastatin. The optical properties of these new, highly active, compounds make them amenable to cellular imaging studies and theranostic applications.
Collapse
Affiliation(s)
- Kyle N. Hearn
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
- STEM College, RMIT University, Melbourne, VIC 3000, Australia;
| | - Trent D. Ashton
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rameshwor Acharya
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Zikai Feng
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Frederick M. Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
9
|
Mazzocchi M, Goulding SR, Wyatt SL, Collins LM, Sullivan AM, O'Keeffe GW. LMK235, a small molecule inhibitor of HDAC4/5, protects dopaminergic neurons against neurotoxin- and α-synuclein-induced degeneration in cellular models of Parkinson's disease. Mol Cell Neurosci 2021; 115:103642. [PMID: 34119632 DOI: 10.1016/j.mcn.2021.103642] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/24/2023] Open
Abstract
Epigenetic modifications in neurodegenerative disease are under investigation for their roles in disease progression. Alterations in acetylation rates of certain Parkinson's disease (PD)-linked genes have been associated with the pathological progression of this disorder. In light of this, and given the lack of disease-modifying therapies for PD, HDAC inhibitors (HDIs) are under consideration as potential pharmacological agents. The neuroprotective effects of pan-HDACs and some class-specific inhibitors have been tested in in vivo and in vitro models of PD, with varying outcomes. Here we used gene co-expression analysis to identify HDACs that are associated with human dopaminergic (DA) neuron development. We identified HDAC3, HDAC5, HDAC6 and HDAC9 as being highly correlated with the DA markers, SLC6A3 and NR4A2. RT-qPCR revealed that mRNA expression of these HDACs exhibited similar temporal profiles during embryonic mouse midbrain DA (mDA) neuron development. We tested the neuroprotective potential of a number of class-specific small molecule HDIs on human SH-SY5Y cells, using neurite growth as a phenotypic readout of neurotrophic action. Neither the class I-specific HDIs, RGFP109 and RGFP966, nor the HDAC6 inhibitor ACY1215, had significant effects on neurite outgrowth. However, the class IIa HDI, LMK235 (a HDAC4/5 inhibitor), significantly increased histone acetylation and neurite outgrowth. We found that LMK235 increased BMP-Smad-dependent transcription in SH-SY5Y cells and that this was required for its neurite growth-promoting effects on SH-SY5Y cells and on DA neurons in primary cultures of embryonic day (E) 14 rat ventral mesencephalon (VM). These effects were also seen in SH-SY5Y cells transfected with HDAC5 siRNA. Furthermore, LMK235 treatment exerted neuroprotective effects against degeneration induced by the DA neurotoxin 1-methyl-4-phenylpyridinium (MPP+), in both SH-SY5Y cells and cultured DA neurons. Treatment with LMK235 was also neuroprotective against axonal degeneration induced by overexpression of wild-type (WT) or A53T mutant α-synuclein in both SH-SY5Y cells and primary cultures of DA neurons. In summary, these data show the neuroprotective potential of the class IIa HDI, LMK235, in cell models of relevance to PD.
Collapse
Affiliation(s)
- Martina Mazzocchi
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Susan R Goulding
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Sean L Wyatt
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Louise M Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; Department of Physiology, UCC, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| |
Collapse
|
10
|
Ren Y, Li S, Zhu R, Wan C, Song D, Zhu J, Cai G, Long S, Kong L, Yu W. Discovery of STAT3 and Histone Deacetylase (HDAC) Dual-Pathway Inhibitors for the Treatment of Solid Cancer. J Med Chem 2021; 64:7468-7482. [PMID: 34043359 DOI: 10.1021/acs.jmedchem.1c00136] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nowadays, simultaneous inhibition of multiple targets through drug combination is an important anticancer strategy owing to the complex mechanism behind tumorigenesis. Recent studies have demonstrated that the inhibition of histone deacetylases (HDACs) will lead to compensated activation of a notorious cancer-related drug target, signal transducer and activator of transcription 3 (STAT3), in breast cancer through a cascade, which probably limits the anti-proliferation effect of HDAC inhibitors in solid tumors. By incorporating the pharmacophore of the HDAC inhibitor SAHA (vorinostat) into the STAT3 inhibitor pterostilbene, a series of potent pterostilbene hydroxamic acid derivatives with dual-target inhibition activity were synthesized. An excellent hydroxamate derivate, compound 14, inhibited STAT3 (KD = 33 nM) and HDAC (IC50 = 23.15 nM) with robust potency in vitro. Compound 14 also showed potent anti-proliferation ability in vivo and in vitro. Our study provides the first STAT3 and HDAC dual-target inhibitor for further exploration.
Collapse
Affiliation(s)
- Yuhao Ren
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Shanshan Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ren Zhu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Chengying Wan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Dongmei Song
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jiawen Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Guiping Cai
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Wenying Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
11
|
Overexpression of Human ABCB1 and ABCG2 Reduces the Susceptibility of Cancer Cells to the Histone Deacetylase 6-Specific Inhibitor Citarinostat. Int J Mol Sci 2021; 22:ijms22052592. [PMID: 33807514 PMCID: PMC7961520 DOI: 10.3390/ijms22052592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Citarinostat (ACY-241) is a promising oral histone deacetylase 6 (HDAC6)-selective inhibitor currently in clinical trials for the treatment of multiple myeloma (MM) and non-small-cell lung cancer (NSCLC). However, the inevitable emergence of resistance to citarinostat may reduce its clinical effectiveness in cancer patients and limit its clinical usefulness in the future. In this study, we investigated the potential role of the multidrug efflux transporters ABCB1 and ABCG2, which are two of the most common mechanisms of acquired resistance to anticancer drugs, on the efficacy of citarinostat in human cancer cells. We discovered that the overexpression of ABCB1 or ABCG2 significantly reduced the sensitivity of human cancer cells to citarinostat. We demonstrated that the intracellular accumulation of citarinostat and its activity against HDAC6 were substantially reduced by the drug transport function of ABCB1 and ABCG2, which could be restored by treatment with an established inhibitor of ABCB1 or ABCG2, respectively. In conclusion, our results revealed a novel mechanism by which ABCB1 and ABCG2 actively transport citarinostat away from targeting HDAC6 in cancer cells. Our results suggest that the co-administration of citarinostat with a non-toxic modulator of ABCB1 and ABCG2 may optimize its therapeutic application in the clinic.
Collapse
|
12
|
Mak JYW, Wu KC, Gupta PK, Barbero S, McLaughlin MG, Lucke AJ, Tng J, Lim J, Loh Z, Sweet MJ, Reid RC, Liu L, Fairlie DP. HDAC7 Inhibition by Phenacetyl and Phenylbenzoyl Hydroxamates. J Med Chem 2021; 64:2186-2204. [PMID: 33570940 DOI: 10.1021/acs.jmedchem.0c01967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The zinc-containing histone deacetylase enzyme HDAC7 is emerging as an important regulator of immunometabolism and cancer. Here, we exploit a cavity in HDAC7, filled by Tyr303 in HDAC1, to derive new inhibitors. Phenacetyl hydroxamates and 2-phenylbenzoyl hydroxamates bind to Zn2+ and are 50-2700-fold more selective inhibitors of HDAC7 than HDAC1. Phenylbenzoyl hydroxamates are 30-70-fold more potent HDAC7 inhibitors than phenacetyl hydroxamates, which is attributed to the benzoyl aromatic group interacting with Phe679 and Phe738. Phthalimide capping groups, including a saccharin analogue, decrease rotational freedom and provide hydrogen bond acceptor carbonyl/sulfonamide oxygens that increase inhibitor potency, liver microsome stability, solubility, and cell activity. Despite being the most potent HDAC7 inhibitors to date, they are not selective among class IIa enzymes. These strategies may help to produce tools for interrogating HDAC7 biology related to its catalytic site.
Collapse
Affiliation(s)
- Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kai-Chen Wu
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Praveer K Gupta
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sheila Barbero
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Maddison G McLaughlin
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiahui Tng
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhixuan Loh
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew J Sweet
- Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C Reid
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Lemos M, Stefanova N. Histone Deacetylase 6 and the Disease Mechanisms of α-Synucleinopathies. Front Synaptic Neurosci 2020; 12:586453. [PMID: 33041780 PMCID: PMC7518386 DOI: 10.3389/fnsyn.2020.586453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
The abnormal accumulation of α-Synuclein (α-Syn) is a prominent pathological feature in a group of diseases called α-Synucleinopathies, such as Parkinson’s disease, dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). The formation of Lewy bodies (LBs) and glial cytoplasmic inclusions (GCIs) in neurons and oligodendrocytes, respectively, is highly investigated. However, the molecular mechanisms behind α-Syn improper folding and aggregation remain unclear. Histone deacetylase 6 (HDAC6) is a Class II deacetylase, containing two active catalytic domains and a ubiquitin-binding domain. The properties of HDAC6 and its exclusive cytoplasmic localization allow HDAC6 to modulate the microtubule dynamics, acting as a specific α-tubulin deacetylase. Also, HDAC6 can bind ubiquitinated proteins, facilitating the formation of the aggresome, a cellular defense mechanism to cope with higher levels of misfolded proteins. Several studies report that the aggresome shares similarities in size and composition with LBs and GCIs. HDAC6 is found to co-localize with α-Syn in neurons and in oligodendrocytes, together with other aggresome-related proteins. The involvement of HDAC6 in several neurodegenerative diseases is already under discussion, however, the results obtained by modulating HDAC6 activity are not entirely conclusive. The main goal of this review is to summarize and critically discuss previous in vitro and in vivo data regarding the specific role of HDAC6 in the context of α-Syn accumulation and protein aggregation in α-Synucleinopathies.
Collapse
Affiliation(s)
- Miguel Lemos
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Cappellacci L, Perinelli DR, Maggi F, Grifantini M, Petrelli R. Recent Progress in Histone Deacetylase Inhibitors as Anticancer Agents. Curr Med Chem 2020; 27:2449-2493. [PMID: 30332940 DOI: 10.2174/0929867325666181016163110] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/29/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Histone Deacetylase (HDAC) inhibitors are a relatively new class of anti-cancer agents that play important roles in epigenetic or non-epigenetic regulation, inducing death, apoptosis, and cell cycle arrest in cancer cells. Recently, their use has been clinically validated in cancer patients resulting in the approval by the FDA of four HDAC inhibitors, vorinostat, romidepsin, belinostat and panobinostat, used for the treatment of cutaneous/peripheral T-cell lymphoma and multiple myeloma. Many more HDAC inhibitors are at different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. Also, clinical trials of several HDAC inhibitors for use as anti-cancer drugs (alone or in combination with other anti-cancer therapeutics) are ongoing. In the intensifying efforts to discover new, hopefully, more therapeutically efficacious HDAC inhibitors, molecular modelingbased rational drug design has played an important role. In this review, we summarize four major structural classes of HDAC inhibitors (hydroxamic acid derivatives, aminobenzamide, cyclic peptide and short-chain fatty acids) that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility.
Collapse
Affiliation(s)
- Loredana Cappellacci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Diego R Perinelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Filippo Maggi
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Mario Grifantini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Riccardo Petrelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
15
|
Hassan MM, Israelian J, Nawar N, Ganda G, Manaswiyoungkul P, Raouf YS, Armstrong D, Sedighi A, Olaoye OO, Erdogan F, Cabral AD, Angeles F, Altintas R, de Araujo ED, Gunning PT. Characterization of Conformationally Constrained Benzanilide Scaffolds for Potent and Selective HDAC8 Targeting. J Med Chem 2020; 63:8634-8648. [PMID: 32672458 DOI: 10.1021/acs.jmedchem.0c01025] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histone deacetylases (HDACs) are an attractive therapeutic target for a variety of human diseases. Currently, all four FDA-approved HDAC-targeting drugs are nonselective, pan-HDAC inhibitors, exhibiting adverse side effects at therapeutic doses. Although selective HDAC inhibition has been proposed to mitigate toxicity, the targeted catalytic domains are highly conserved. Herein, we describe a series of rationally designed, conformationally constrained, benzanilide foldamers which selectively bind the catalytic tunnel of HDAC8. The series includes benzanilides, MMH371, MMH409, and MMH410, which exhibit potent in vitro HDAC8 activity (IC50 = 66, 23, and 66 nM, respectively) and up to 410-fold selectivity for HDAC8 over the next targeted HDAC. Experimental and computational analyses of the benzanilide structure docked with human HDAC8 enzyme showed the adoption of a low-energy L-shaped conformer that favors HDAC8 selectivity. The conformationally constrained HDAC8 inhibitors present an alternative biological probe for further determining the clinical utility and safety of pharmacological knockdown of HDAC8 in diseased cells.
Collapse
Affiliation(s)
- Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Johan Israelian
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga ON L5L 1C6, Canada
| | - Nabanita Nawar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Giovanni Ganda
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Yasir S Raouf
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - David Armstrong
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga ON L5L 1C6, Canada
| | - Abootaleb Sedighi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Olasunkanmi O Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Fettah Erdogan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Aaron D Cabral
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Fabrizio Angeles
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Rabia Altintas
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.,Heidelberg Medical Faculty, University of Heidelberg, Heidelberg 691171, Germany
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga ON L5L 1C6, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| |
Collapse
|
16
|
De Vita S, Terracciano S, Bruno I, Chini MG. From Natural Compounds to Bioactive Molecules through NMR and
In Silico
Methodologies. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Simona De Vita
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Stefania Terracciano
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Ines Bruno
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory University of Molise C.da Fonte Lappone‐ 86090 Pesche (IS) Italy
| |
Collapse
|
17
|
Morgen M, Steimbach RR, Géraldy M, Hellweg L, Sehr P, Ridinger J, Witt O, Oehme I, Herbst‐Gervasoni CJ, Osko JD, Porter NJ, Christianson DW, Gunkel N, Miller AK. Design and Synthesis of Dihydroxamic Acids as HDAC6/8/10 Inhibitors. ChemMedChem 2020; 15:1163-1174. [PMID: 32348628 PMCID: PMC7335359 DOI: 10.1002/cmdc.202000149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/23/2020] [Indexed: 12/22/2022]
Abstract
We report the synthesis and evaluation of a class of selective multitarget agents for the inhibition of HDAC6, HDAC8, and HDAC10. The concept for this study grew out of a structural analysis of the two selective inhibitors Tubastatin A (HDAC6/10) and PCI-34051 (HDAC8), which we recognized share the same N-benzylindole core. Hybridization of the two inhibitor structures resulted in dihydroxamic acids with benzyl-indole and -indazole core motifs. These substances exhibit potent activity against HDAC6, HDAC8, and HDAC10, while retaining selectivity over HDAC1, HDAC2, and HDAC3. The best substance inhibited the viability of the SK-N-BE(2)C neuroblastoma cell line with an IC50 value similar to a combination treatment with Tubastatin A and PCI-34051. This compound class establishes a proof of concept for such hybrid molecules and could serve as a starting point for the further development of enhanced HDAC6/8/10 inhibitors.
Collapse
Affiliation(s)
- Michael Morgen
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Raphael R. Steimbach
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- Faculty of BiosciencesUniversity of Heidelberg69120HeidelbergGermany
| | - Magalie Géraldy
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Lars Hellweg
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Peter Sehr
- Chemical Biology Core FacilityEuropean Molecular Biology Laboratory (EMBL)69117HeidelbergGermany
| | - Johannes Ridinger
- Hopp Children's Cancer Center Heidelberg (KiTZ)69120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
- Department of Pediatric OncologyHematology and ImmunologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ)69120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
- Department of Pediatric OncologyHematology and ImmunologyUniversity Hospital Heidelberg69120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ)69120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
- Department of Pediatric OncologyHematology and ImmunologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Corey J. Herbst‐Gervasoni
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - Jeremy D. Osko
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - Nicholas J. Porter
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - David W. Christianson
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - Nikolas Gunkel
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| | - Aubry K. Miller
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| |
Collapse
|
18
|
Rodrigues DA, Pinheiro PDSM, Sagrillo FS, Bolognesi ML, Fraga CAM. Histone deacetylases as targets for the treatment of neurodegenerative disorders: Challenges and future opportunities. Med Res Rev 2020; 40:2177-2211. [DOI: 10.1002/med.21701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel A. Rodrigues
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Química, Instituto de Química Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Pedro de S. M. Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| | - Fernanda S. Sagrillo
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| | - Carlos A. M. Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Química, Instituto de Química Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| |
Collapse
|
19
|
Dewaker V, Srivastava AK, Arora A, Prabhakar YS. Investigation of HDAC8-ligands’ intermolecular forces through molecular dynamics simulations: profiling of non-bonding energies to design potential compounds as new anti-cancer agents. J Biomol Struct Dyn 2020; 39:4726-4751. [DOI: 10.1080/07391102.2020.1780940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Varun Dewaker
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ajay K. Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ashish Arora
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Yenamandra S. Prabhakar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
20
|
Kavianpour P, Gemmell MCM, Kahlert JU, Rendina LM. Histone Deacetylase 2 (HDAC2) Inhibitors Containing Boron. Chembiochem 2020; 21:2786-2791. [DOI: 10.1002/cbic.202000131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Poya Kavianpour
- School of Chemistry, The University of Sydney The University of Sydney F11, Eastern Avenue Sydney NSW 2006 Australia
| | - Madeleine C. M. Gemmell
- School of Chemistry, The University of Sydney The University of Sydney F11, Eastern Avenue Sydney NSW 2006 Australia
| | - Jan U. Kahlert
- School of Chemistry, The University of Sydney The University of Sydney F11, Eastern Avenue Sydney NSW 2006 Australia
| | - Louis M. Rendina
- School of Chemistry, The University of Sydney The University of Sydney F11, Eastern Avenue Sydney NSW 2006 Australia
- The University of Sydney Nano Institute Camperdown NSW 2050 Sydney NSW 2006 Australia
| |
Collapse
|
21
|
Anticancer Ruthenium Complexes with HDAC Isoform Selectivity. Molecules 2020; 25:molecules25102383. [PMID: 32455529 PMCID: PMC7287671 DOI: 10.3390/molecules25102383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 01/08/2023] Open
Abstract
The histone deacetylase (HDAC) enzymes have emerged as an important class of molecular targets in cancer therapy, with five inhibitors in clinical use. Recently, it has been shown that a lack of selectivity between the 11 Zn-dependent HDAC isoforms may lead to unwanted side-effects. In this paper, we show that piano stool Ru complexes can act as HDAC inhibitors, and variation in the capping arene leads to differences in HDAC isoform selectivity.
Collapse
|
22
|
He J, Wang S, Liu X, Lin R, Deng F, Jia Z, Zhang C, Li Z, Zhu H, Tang L, Yang P, He D, Jia Q, Zhang Y. Synthesis and Biological Evaluation of HDAC Inhibitors With a Novel Zinc Binding Group. Front Chem 2020; 8:256. [PMID: 32351936 PMCID: PMC7174758 DOI: 10.3389/fchem.2020.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/17/2020] [Indexed: 01/17/2023] Open
Abstract
Vorinostat (SAHA) with great therapeutic potential has been approved by the FDA for the treatment of cutaneous T-cell lymphoma as the first HDACs inhibitor, but the drawbacks associated with hydroxamic acid group (poor stability, easy metabolism, weak binding ability to class IIa isozymes, and poor selectivity) have been exposed during the continuous clinical application. Based on the pharmacophore of HDAC inhibitors, two series of compounds with novel zinc binding group (ZBG) were designed and synthesized, and the antitumor bioactivities were evaluated in four human cancer cell lines (A549, Hela, HepG2, and MCF-7). Among the synthesized compounds, compounds a6, a9, a10, b8, and b9 exhibited promising inhibitory activities against the selected tumor cell lines, especially compounds a9 and b8 on Hela's cytostatic activity (a9: IC50 = 11.15 ± 3.24 μM; b8: IC50 = 13.68 ± 1.31 μM). The enzyme inhibition assay against Hela extracts and HDAC1&6 subtypes showed that compound a9 had a certain broad-spectrum inhibitory activity, while compound b8 had selective inhibitory activity against HDAC6, which was consistent with Western blot results. In addition, the inhibitory mechanism of compounds a9 and b8 in HDAC1&6 were both compared through computational approaches, and the binding interactions between the compounds and the enzymes target were analyzed from the perspective of energy profile and conformation. In summary, the compounds with novel ZBG exhibited certain antitumor activities, providing valuable hints for the discovery of novel HDAC inhibitors.
Collapse
Affiliation(s)
- Junquan He
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China.,NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Gansu Institute for Drug Control, Lanzhou, China
| | - Songsong Wang
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xingang Liu
- College of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Ruili Lin
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China.,NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Gansu Institute for Drug Control, Lanzhou, China
| | - Fang Deng
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China
| | - Zhong Jia
- Pharmacy Department, Lanzhou Second People's Hospital, Lanzhou, China
| | - Chenghong Zhang
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China
| | - Zhao Li
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China
| | - Hongtian Zhu
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China
| | - Lei Tang
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China
| | - Pingrong Yang
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China.,NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Gansu Institute for Drug Control, Lanzhou, China
| | - Dian He
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China.,Pharmacy Department, Lanzhou Second People's Hospital, Lanzhou, China
| | - Qingzhong Jia
- College of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Yang Zhang
- College of Pharmacy, Hebei Medical University, Shijiazhuang, China.,School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
23
|
Wong LW, Chong YS, Wong WLE, Sajikumar S. Inhibition of Histone Deacetylase Reinstates Hippocampus-Dependent Long-Term Synaptic Plasticity and Associative Memory in Sleep-Deprived Mice. Cereb Cortex 2020; 30:4169-4182. [PMID: 32188968 DOI: 10.1093/cercor/bhaa041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sleep plays an important role in the establishment of long-term memory; as such, lack of sleep severely impacts domains of our health including cognitive function. Epigenetic mechanisms regulate gene transcription and protein synthesis, playing a critical role in the modulation of long-term synaptic plasticity and memory. Recent evidences indicate that transcriptional dysregulation as a result of sleep deprivation (SD) may contribute to deficits in plasticity and memory function. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, a clinically approved drug for human use, has been shown to ameliorate cognitive deficits in several neurological disease models. To further explore the therapeutic effect of SAHA, we have examined its potential role in improving the SD-mediated impairments in long-term plasticity, associative plasticity, and associative memory. Here we show that SAHA preserves long-term plasticity, associative plasticity, and associative memory in SD hippocampus. Furthermore, we find that SAHA prevents SD-mediated epigenetic changes by upregulating histone acetylation, hence preserving the ERK-cAMP-responsive element-binding protein (CREB)/CREB-binding protein-brain-derived neurotrophic factor pathway in the hippocampus. These data demonstrate that modifying epigenetic mechanisms via SAHA can prevent or reverse impairments in long-term plasticity and memory that result from sleep loss. Thus, SAHA could be a potential therapeutic agent in improving SD-related memory deficits.
Collapse
Affiliation(s)
- Lik-Wei Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Yee Song Chong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Win Lee Edwin Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| |
Collapse
|
24
|
Ge D, Han L, Yang F, Zhao N, Yang Y, Zhang H, Chen Y. Development of hydroxamate-based histone deacetylase inhibitors of bis-substituted aromatic amides with antitumor activities. MEDCHEMCOMM 2019; 10:1828-1837. [PMID: 32180916 PMCID: PMC7053699 DOI: 10.1039/c9md00306a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022]
Abstract
Previously, we designed and synthesized a series of bis-substituted aromatic amide-based histone deacetylase (HDAC) inhibitors. In this study, we report the replacement of a bromine atom by different amides on the phenyl ring of the CAP region. Representative compounds 9d and 10k exhibited low nanomolar IC50 values against HDAC1, which were ten times lower than that of the positive control SAHA. The IC50 of 9d against the human A549 cancer cell line was 2.13 μM. Furthermore, 9d increased the acetylation of histones H3 and H4 in a dose-dependent manner. Moreover, 9d significantly arrested A549 cells at the G2/M phase and induced A549 cell apoptosis. Finally, molecular docking investigation rationalized the high potency of compound 9d.
Collapse
Affiliation(s)
- Di Ge
- School of Biological Science and Technology , University of Jinan , Jinan , Shandong Province 250022 , China . ;
| | - Lina Han
- School of Biological Science and Technology , University of Jinan , Jinan , Shandong Province 250022 , China . ;
| | - Feifei Yang
- School of Biological Science and Technology , University of Jinan , Jinan , Shandong Province 250022 , China . ;
- Shanghai Key Laboratory of Regulatory Biology , The Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , Shanghai , 200241 , China .
| | - Na Zhao
- School of Biological Science and Technology , University of Jinan , Jinan , Shandong Province 250022 , China . ;
| | - Yang Yang
- Shanghai Key Laboratory of Regulatory Biology , The Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , Shanghai , 200241 , China .
| | - Hua Zhang
- School of Biological Science and Technology , University of Jinan , Jinan , Shandong Province 250022 , China . ;
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology , The Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , Shanghai , 200241 , China .
| |
Collapse
|
25
|
Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, García-Barroso C, Ugarte A, Estella-Hermoso de Mendoza A, Sáez E, Espelosin M, Ursua S, Tan H, Wu W, Xu M, Pineda-Lucena A, Garcia-Osta A, Oyarzabal J. Multitarget Approach for the Treatment of Alzheimer's Disease: Inhibition of Phosphodiesterase 9 (PDE9) and Histone Deacetylases (HDACs) Covering Diverse Selectivity Profiles. ACS Chem Neurosci 2019; 10:4076-4101. [PMID: 31441641 DOI: 10.1021/acschemneuro.9b00303] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Here, we present a series of dual-target phosphodiesterase 9 (PDE9) and histone deacetylase (HDAC) inhibitors devised as pharmacological tool compounds for assessing the implications of these two targets in Alzheimer's disease (AD). These novel inhibitors were designed taking into account the key pharmacophoric features of known selective PDE9 inhibitors as well as privileged chemical structures, bearing zinc binding groups (hydroxamic acids and ortho-amino anilides) that hit HDAC targets. These substituents were selected according to rational criteria and previous knowledge from our group to explore diverse HDAC selectivity profiles (pan-HDAC, HDAC6 selective, and class I selective) that were confirmed in biochemical screens. Their functional response in inducing acetylation of histone and tubulin and phosphorylation of cAMP response element binding (CREB) was measured as a requisite for further progression into complete in vitro absorption, distribution, metabolism and excretion (ADME) and in vivo brain penetration profiling. Compound 31b, a selective HDAC6 inhibitor with acceptable brain permeability, was chosen for assessing in vivo efficacy of these first-in-class inhibitors, as well as studying their mode of action (MoA).
Collapse
Affiliation(s)
| | | | - Mar Cuadrado-Tejedor
- Pathology, Anatomy and Physiology Department, School of Medicine, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | | | | | | | | | | | | | - Maria Espelosin
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | - Susana Ursua
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | - Haizhong Tan
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | - Wei Wu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | - Musheng Xu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | | | - Ana Garcia-Osta
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | | |
Collapse
|
26
|
Structure-activity relationship study of thiazolyl-hydroxamate derivatives as selective histone deacetylase 6 inhibitors. Bioorg Med Chem 2019; 27:3408-3420. [DOI: 10.1016/j.bmc.2019.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 11/19/2022]
|
27
|
Aboukhatwa SM, Hanigan TW, Taha TY, Neerasa J, Ranjan R, El-Bastawissy EE, Elkersh MA, El-Moselhy TF, Frasor J, Mahmud N, McLachlan A, Petukhov PA. Structurally Diverse Histone Deacetylase Photoreactive Probes: Design, Synthesis, and Photolabeling Studies in Live Cells and Tissue. ChemMedChem 2019; 14:1096-1107. [PMID: 30921497 PMCID: PMC6548601 DOI: 10.1002/cmdc.201900114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/28/2019] [Indexed: 01/27/2023]
Abstract
Histone deacetylase (HDAC) activity is modulated in vivo by post-translational modifications and formation of multiprotein complexes. Novel chemical tools to study how these factors affect engagement of HDAC isoforms by HDAC inhibitors (HDACi) in cells and tissues are needed. In this study, a synthetic strategy to access chemically diverse photoreactive probes (PRPs) was developed and used to prepare seven novel HDAC PRPs 9-15. The class I HDAC isoform engagement by PRPs was determined in biochemical assays and photolabeling experiments in live SET-2, HepG2, HuH7, and HEK293T cell lines and in mouse liver tissue. Unlike the HDAC protein abundance and biochemical activity against recombinant HDACs, the chemotype of the PRPs and the type of cells were key in defining the engagement of HDAC isoforms in live cells. Our findings suggest that engagement of HDAC isoforms by HDACi in vivo may be substantially modulated in a cell- and tissue-type-dependent manner.
Collapse
Affiliation(s)
- Shaimaa M Aboukhatwa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Thomas W Hanigan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Taha Y Taha
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Jayaprakash Neerasa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Rajeev Ranjan
- Section of Hematology/Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Eman E El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Mohamed A Elkersh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University, Alexandria, 21311, Egypt
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Nadim Mahmud
- Section of Hematology/Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Pavel A Petukhov
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| |
Collapse
|
28
|
Miao H, Gao J, Mou Z, Wang B, Zhang L, Su L, Han Y, Luan Y. Design, synthesis and biological evaluation of 4-piperidin-4-yl-triazole derivatives as novel histone deacetylase inhibitors. Biosci Trends 2019; 13:197-203. [DOI: 10.5582/bst.2019.01055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- He Miao
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University
- Department of Pharmacology, School of Pharmacy, Qingdao University
| | - Jianjun Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University
| | - Zishuo Mou
- Department of Pharmacology, School of Pharmacy, Qingdao University
| | - Baolei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University
| | - Li Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University
| | - Li Su
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University
| | - Yantao Han
- Department of Pharmacology, College of Basic Medicine, Qingdao University
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University
| |
Collapse
|
29
|
Yang F, Zhao N, Ge D, Chen Y. Next-generation of selective histone deacetylase inhibitors. RSC Adv 2019; 9:19571-19583. [PMID: 35519364 PMCID: PMC9065321 DOI: 10.1039/c9ra02985k] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) are clinically validated epigenetic drug targets for cancer treatment. HDACs inhibitors (HDACis) have been successfully applied against a series of cancers. First-generation inhibitors are mainly pan-HDACis that target multiple isoforms which might lead to serious side effects. At present, the next-generation HDACis are mainly focused on being class- or isoform-selective which can provide improved risk–benefit profiles compared to non-selective inhibitors. Because of the rapid development in next-generation HDACis, it is necessary to have an updated and state-of-the-art overview. Here, we summarize the strategies and achievements of the selective HDACis. Histone deacetylases (HDACs) are clinically validated epigenetic drug targets for cancer treatment.![]()
Collapse
Affiliation(s)
- Feifei Yang
- School of Biological Science and Technology
- University of Jinan
- Jinan
- China
- Shanghai Key Laboratory of Regulatory Biology
| | - Na Zhao
- School of Biological Science and Technology
- University of Jinan
- Jinan
- China
| | - Di Ge
- School of Biological Science and Technology
- University of Jinan
- Jinan
- China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology
- The Institute of Biomedical Sciences and School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
30
|
Méndez C, Ledger S, Petoumenos K, Ahlenstiel C, Kelleher AD. RNA-induced epigenetic silencing inhibits HIV-1 reactivation from latency. Retrovirology 2018; 15:67. [PMID: 30286764 PMCID: PMC6172763 DOI: 10.1186/s12977-018-0451-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Current antiretroviral therapy is effective in controlling HIV-1 infection. However, cessation of therapy is associated with rapid return of viremia from the viral reservoir. Eradicating the HIV-1 reservoir has proven difficult with the limited success of latency reactivation strategies and reflects the complexity of HIV-1 latency. Consequently, there is a growing need for alternate strategies. Here we explore a "block and lock" approach for enforcing latency to render the provirus unable to restart transcription despite exposure to reactivation stimuli. Reactivation of transcription from latent HIV-1 proviruses can be epigenetically blocked using promoter-targeted shRNAs to prevent productive infection. We aimed to determine if independent and combined expression of shRNAs, PromA and 143, induce a repressive epigenetic profile that is sufficiently stable to protect latently infected cells from HIV-1 reactivation when treated with a range of latency reversing agents (LRAs). RESULTS J-Lat 9.2 cells, a model of HIV-1 latency, expressing shRNAs PromA, 143, PromA/143 or controls were treated with LRAs to evaluate protection from HIV-1 reactivation as determined by levels of GFP expression. Cells expressing shRNA PromA, 143, or both, showed robust resistance to viral reactivation by: TNF, SAHA, SAHA/TNF, Bryostatin/TNF, DZNep, and Chaetocin. Given the physiological importance of TNF, HIV-1 reactivation was induced by TNF (5 ng/mL) and ChIP assays were performed to detect changes in expression of epigenetic markers within chromatin in both sorted GFP- and GFP+ cell populations, harboring latent or reactivated proviruses, respectively. Ordinary two-way ANOVA analysis used to identify interactions between shRNAs and chromatin marks associated with repressive or active chromatin in the integrated provirus revealed significant changes in the levels of H3K27me3, AGO1 and HDAC1 in the LTR, which correlated with the extent of reduced proviral reactivation. The cell line co-expressing shPromA and sh143 consistently showed the least reactivation and greatest enrichment of chromatin compaction indicators. CONCLUSION The active maintenance of epigenetic silencing by shRNAs acting on the HIV-1 LTR impedes HIV-1 reactivation from latency. Our "block and lock" approach constitutes a novel way of enforcing HIV-1 "super latency" through a closed chromatin architecture that renders the virus resistant to a range of latency reversing agents.
Collapse
Affiliation(s)
- Catalina Méndez
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia
| | - Scott Ledger
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia
| | - Kathy Petoumenos
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia
| | - Chantelle Ahlenstiel
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia.
| | - Anthony D Kelleher
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia
| |
Collapse
|
31
|
Létévé M, Gonzalez C, Moroy G, Martinez A, Jeanblanc J, Legastelois R, Naassila M, Sapi J, Bourguet E. Unexpected effect of cyclodepsipeptides bearing a sulfonylhydrazide moiety towards histone deacetylase activity. Bioorg Chem 2018; 81:222-233. [PMID: 30153587 DOI: 10.1016/j.bioorg.2018.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Mathieu Létévé
- Institut de Chimie Moléculaire de Reims, UMR 7312-CNRS, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France; Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé), France
| | - Céline Gonzalez
- INSERM U1247, Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP), Université de Picardie Jules Verne, C.U.R.S. (Centre Universitaire de Recherche en Santé), Chemin du Thil, 80000 Amiens, France; Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé), France
| | - Gautier Moroy
- INSERM UMR-S 973, Molécules Thérapeutiques In Silico, Université de Paris Diderot, Sorbonne Paris Cité, 35 rue Hélène Brion, 75013 Paris Cedex, France
| | - Agathe Martinez
- Institut de Chimie Moléculaire de Reims, UMR 7312-CNRS, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France
| | - Jérôme Jeanblanc
- INSERM U1247, Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP), Université de Picardie Jules Verne, C.U.R.S. (Centre Universitaire de Recherche en Santé), Chemin du Thil, 80000 Amiens, France; Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé), France
| | - Rémi Legastelois
- INSERM U1247, Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP), Université de Picardie Jules Verne, C.U.R.S. (Centre Universitaire de Recherche en Santé), Chemin du Thil, 80000 Amiens, France; Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé), France
| | - Mickaël Naassila
- INSERM U1247, Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP), Université de Picardie Jules Verne, C.U.R.S. (Centre Universitaire de Recherche en Santé), Chemin du Thil, 80000 Amiens, France; Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé), France
| | - Janos Sapi
- Institut de Chimie Moléculaire de Reims, UMR 7312-CNRS, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France; Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé), France
| | - Erika Bourguet
- Institut de Chimie Moléculaire de Reims, UMR 7312-CNRS, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France; Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé), France.
| |
Collapse
|
32
|
Human ATP-binding cassette transporters ABCB1 and ABCG2 confer resistance to histone deacetylase 6 inhibitor ricolinostat (ACY-1215) in cancer cell lines. Biochem Pharmacol 2018; 155:316-325. [PMID: 30028995 DOI: 10.1016/j.bcp.2018.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Ricolinostat is the first orally available, selective inhibitor of histone deacetylase 6 (HDAC6), currently under evaluation in clinical trials in patients with various malignancies. It is likely that the inevitable emergence of resistance to ricolinostat is likely to reduce its clinical effectiveness in cancer patients. In this study, we investigated the potential impact of multidrug resistance-linked ATP-binding cassette (ABC) transporters ABCB1 and ABCG2 on the efficacy of ricolinostat, which may present a major hurdle to its development as an anticancer drug in the future. We demonstrated that the overexpression of ABCB1 or ABCG2 reduces the intracellular accumulation of ricolinostat, resulting in reduced efficacy of ricolinostat to inhibit the activity of HDAC6 in cancer cells. Moreover, the efficacy of ricolinostat can be fully restored by inhibiting the drug efflux function of ABCB1 and ABCG2 in drug-resistant cancer cells. In conclusion, our results provide some insights into the basis for the development of resistance to ricolinostat and suggest that co-administration of ricolinostat with a modulator of ABCB1 or ABCG2 could overcome ricolinostat resistance in human cancer cells, which may be relevant to its use in the clinic.
Collapse
|
33
|
Tang C, Du Y, Liang Q, Cheng Z, Tian J. Development of a Novel Ferrocenyl Histone Deacetylase Inhibitor for Triple-Negative Breast Cancer Therapy. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, People’s Republic of China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305-5344, United States
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, People’s Republic of China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
| |
Collapse
|
34
|
Discovery of novel N-hydroxy-2-arylisoindoline-4-carboxamides as potent and selective inhibitors of HDAC11. Bioorg Med Chem Lett 2018; 28:2143-2147. [DOI: 10.1016/j.bmcl.2018.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 11/23/2022]
|
35
|
Abdelkarim H, Neelarapu R, Madriaga A, Vaidya AS, Kastrati I, Wang YT, Taha TY, Thatcher GRJ, Frasor J, Petukhov PA. Design, Synthesis, Molecular Modeling, and Biological Evaluation of Novel Amine-based Histone Deacetylase Inhibitors. ChemMedChem 2017; 12:2030-2043. [PMID: 29080240 PMCID: PMC5881582 DOI: 10.1002/cmdc.201700449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/19/2017] [Indexed: 01/08/2023]
Abstract
Histone deacetylases (HDACs) are promising drug targets for a variety of therapeutic applications. Herein we describe the design, synthesis, biological evaluation in cellular models of cancer, and preliminary drug metabolism and pharmacokinetic studies (DMPK) of a series of secondary and tertiary N-substituted 7-aminoheptanohydroxamic acid-based HDAC inhibitors. Introduction of an amino group with one or two surface binding groups (SBGs) yielded a successful strategy to develop novel and potent HDAC inhibitors. The secondary amines were found to be generally more potent than the corresponding tertiary amines. Docking studies suggested that the SBGs of tertiary amines cannot be favorably accommodated at the gorge region of the binding site. The secondary amines with naphthalen-2-ylmethyl, 5-phenylthiophen-2-ylmethyl, and 1H-indol-2-ylmethyl (2 j) substituents exhibited the highest potency against class I HDACs: HDAC1 IC50 39-61 nm, HDAC2 IC50 260-690 nm, HDAC3 IC50 25-68 nm, and HDAC8 IC50 320-620 nm. The cytotoxicity of a representative set of secondary and tertiary N-substituted 7-aminoheptanoic acid hydroxyamide-based inhibitors against HT-29, SH-SY5Y, and MCF-7 cancer cells correlated with their inhibition of HDAC1, 2, and 3 and was found to be similar to or better than that of suberoylanilide hydroxamic acid (SAHA). Compounds in this series increased the acetylation of histones H3 and H4 in a time-dependent manner. DMPK studies indicated that secondary amine 2 j is metabolically stable and has plasma and brain concentrations >23- and >1.6-fold higher than the IC50 value for class I HDACs, respectively. Overall, the secondary and tertiary N-substituted 7-aminoheptanoic acid hydroxyamide-based inhibitors exhibit excellent lead- and drug-like properties and therapeutic capacity for cancer applications.
Collapse
Affiliation(s)
- Hazem Abdelkarim
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Raghupathi Neelarapu
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Antonett Madriaga
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Aditya S. Vaidya
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Irida Kastrati
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yue-ting Wang
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Taha Y. Taha
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Gregory R. J. Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pavel A. Petukhov
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| |
Collapse
|
36
|
Hsieh HY, Chuang HC, Shen FH, Detroja K, Hsin LW, Chen CS. Targeting breast cancer stem cells by novel HDAC3-selective inhibitors. Eur J Med Chem 2017; 140:42-51. [DOI: 10.1016/j.ejmech.2017.08.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
|
37
|
Uba AI, Yelekçi K. Identification of potential isoform-selective histone deacetylase inhibitors for cancer therapy: a combined approach of structure-based virtual screening, ADMET prediction and molecular dynamics simulation assay. J Biomol Struct Dyn 2017; 36:3231-3245. [PMID: 28938863 DOI: 10.1080/07391102.2017.1384402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Histone deacetylases (HDACs) have gained increased attention as targets for anticancer drug design and development. HDAC inhibitors have proven to be effective for reversing the malignant phenotype in HDAC-dependent cancer cases. However, lack of selectivity of the many HDAC inhibitors in clinical use and trials contributes to toxicities to healthy cells. It is believed that, the continued identification of isoform-selective inhibitors will eliminate these undesirable adverse effects - a task that remains a major challenge to HDAC inhibitor designs. Here, in an attempt to identify isoform-selective inhibitors, a large compound library containing 2,703,000 compounds retrieved from Otava database was screened against class I HDACs by exhaustive approach of structure-based virtual screening using rDOCK and Autodock Vina. A total of 41 compounds were found to show high-isoform selectivity and were further redocked into their respective targets using Autodock4. Thirty-six compounds showed remarkable isoform selectivity and passed drug-likeness and absorption, distribution, metabolism, elimination and toxicity prediction tests using ADMET Predictor™ and admetSAR. Furthermore, to study the stability of ligand binding modes, 10 ns-molecular dynamics (MD) simulations of the free HDAC isoforms and their complexes with respective best-ranked ligands were performed using nanoscale MD software. The inhibitors remained bound to their respective targets over time of the simulation and the overall potential energy, root-mean-square deviation, root-mean-square fluctuation profiles suggested that the detected compounds may be potential isoform-selective HDAC inhibitors or serve as promising scaffolds for further optimization towards the design of selective inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- a Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences , Kadir Has University , Fatih, Istanbul 34083 , Turkey.,b Center for Biotechnology Research , Bayero University , P.M.B. 3011, B.U.K. Road, Kano , Nigeria
| | - Kemal Yelekçi
- a Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences , Kadir Has University , Fatih, Istanbul 34083 , Turkey
| |
Collapse
|
38
|
Ho RH, Chan JCY, Fan H, Kioh DYQ, Lee BW, Chan ECY. In Silico and in Vitro Interactions between Short Chain Fatty Acids and Human Histone Deacetylases. Biochemistry 2017; 56:4871-4878. [PMID: 28809557 DOI: 10.1021/acs.biochem.7b00508] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Short chain fatty acids (SCFAs) are postulated to modulate the immune development of neonates via epigenetic regulations such as histone deacetylase (HDAC) inhibition. In the context of atopic diseases, the inhibition of HDAC maintains T-cell homeostasis and induces naïve T-cell differentiation into adaptive Treg, which regulates the production of anti-inflammatory cytokines and suppression of Th2 immune responses. We investigated the structure-inhibition relationships of SCFAs with class I HDAC3 and class IIa HDAC7 using in silico docking simulation and the in vitro human recombinant HDAC inhibition assay. In silico docking simulation demonstrated that the lower binding energy of SCFAs toward HDACs was associated with the longer aliphatic chain length of SCFAs. Conversely, branching of SCFAs increased their binding energies toward both HDAC3 and HDAC7. The in vitro HDAC inhibition assay revealed that SCFAs more potently inhibit HDAC3 than HDAC7, with butyric acid being the most potent HDAC3 inhibitor among SCFAs (IC50 = 0.318 mM). In conclusion, our findings inform novel structural relationships between SCFAs and HDAC3 versus HDAC7. Future investigation of human disposition of SCFAs is important to establish their effects on innate versus adaptive immunity.
Collapse
Affiliation(s)
- Rou Hui Ho
- Department of Pharmacy, National University of Singapore , 18 Science Drive 4, Singapore 117543
| | - James Chun Yip Chan
- Department of Pharmacy, National University of Singapore , 18 Science Drive 4, Singapore 117543
| | - Hao Fan
- Bioinformatics Institute , 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Department of Biological Sciences, National University of Singapore , 14 Science Drive 4, Singapore 117545
| | - Dorinda Yan Qin Kioh
- Department of Pharmacy, National University of Singapore , 18 Science Drive 4, Singapore 117543
| | - Bee Wah Lee
- Department of Pediatrics, National University Health System , 5 Lower Kent Ridge Road, Singapore 119074
| | - Eric Chun Yong Chan
- Department of Pharmacy, National University of Singapore , 18 Science Drive 4, Singapore 117543.,Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Sciences (SICS) , 30 Medical Drive, Singapore 117609
| |
Collapse
|
39
|
Bourguet E, Ozdarska K, Moroy G, Jeanblanc J, Naassila M. Class I HDAC Inhibitors: Potential New Epigenetic Therapeutics for Alcohol Use Disorder (AUD). J Med Chem 2017; 61:1745-1766. [PMID: 28771357 DOI: 10.1021/acs.jmedchem.7b00115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) represents a serious public health issue, and discovery of new therapies is a pressing necessity. Alcohol exposure has been widely demonstrated to modulate epigenetic mechanisms, such as histone acetylation/deacetylation balance, in part via histone deacetylase (HDAC) inhibition. Epigenetic factors have been suggested to play a key role in AUD. To date, 18 different mammalian HDAC isoforms have been identified, and these have been divided into four classes. Since recent studies have suggested that both epigenetic mechanisms underlying AUD and the efficacy of HDAC inhibitors (HDACIs) in different animal models of AUD may involve class I HDACs, we herein report the development of class I HDACIs, including information regarding their structure, potency, and selectivity. More effort is required to improve the selectivity, pharmacokinetics, and toxicity profiles of HDACIs to achieve a better understanding of their efficacy in reducing addictive behavior.
Collapse
Affiliation(s)
- Erika Bourguet
- Institut de Chimie Moléculaire de Reims, UMR 7312-CNRS, UFR Pharmacie , Université de Reims Champagne-Ardenne , 51 rue Cognacq-Jay , 51096 Reims Cedex , France.,Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé) , 51095 Reims Cedex , France
| | - Katarzyna Ozdarska
- Institut de Chimie Moléculaire de Reims, UMR 7312-CNRS, UFR Pharmacie , Université de Reims Champagne-Ardenne , 51 rue Cognacq-Jay , 51096 Reims Cedex , France.,Department of Bioanalysis and Drugs Analysis , Medical University of Warsaw , S. Banacha 1 , 02-097 Warsaw , Poland
| | - Gautier Moroy
- Sorbonne Paris Cité, Molécules Thérapeutiques In Silico (MTi), INSERM UMR-S 973 , Université Paris Diderot , 35 rue Hélène Brion , 75013 Paris , France
| | - Jérôme Jeanblanc
- INSERM ERi 24, Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP) , Université de Picardie Jules Verne, C.U.R.S. (Centre Universitaire de Recherche en Santé) , Chemin du Thil , 80000 Amiens , France.,Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé) , 51095 Reims Cedex , France
| | - Mickaël Naassila
- INSERM ERi 24, Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP) , Université de Picardie Jules Verne, C.U.R.S. (Centre Universitaire de Recherche en Santé) , Chemin du Thil , 80000 Amiens , France.,Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé) , 51095 Reims Cedex , France
| |
Collapse
|
40
|
Ocasio CA, Sansook S, Jones R, Roberts JM, Scott TG, Tsoureas N, Coxhead P, Guille M, Tizzard GJ, Coles SJ, Hochegger H, Bradner JE, Spencer J. Pojamide: An HDAC3-Selective Ferrocene Analogue with Remarkably Enhanced Redox-Triggered Ferrocenium Activity in Cells. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00437] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Cory A. Ocasio
- Genome
Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, U.K
| | - Supojjanee Sansook
- Department
of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, U.K
| | - Rhiannon Jones
- Department
of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, U.K
| | - Justin M. Roberts
- Department
of Medical Oncology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Thomas G. Scott
- Department
of Medical Oncology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Nikolaos Tsoureas
- Department
of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, U.K
| | - Peter Coxhead
- School
of Biological Sciences, University of Portsmouth, King Henry Building, Portsmouth PO1 2DT, U.K
| | - Matthew Guille
- School
of Biological Sciences, University of Portsmouth, King Henry Building, Portsmouth PO1 2DT, U.K
| | - Graham J. Tizzard
- UK
National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Simon J. Coles
- UK
National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Helfrid Hochegger
- Genome
Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, U.K
| | - James E. Bradner
- Department
of Medical Oncology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - John Spencer
- Department
of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, U.K
| |
Collapse
|
41
|
Zhou H, Wang C, Deng T, Tao R, Li W. Novel urushiol derivatives as HDAC8 inhibitors: rational design, virtual screening, molecular docking and molecular dynamics studies. J Biomol Struct Dyn 2017. [DOI: 10.1080/07391102.2017.1344568] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Zhou
- Key Lab of Biomass Energy and Material, Nanjing, Jiangsu 210042, China
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Chengzhang Wang
- Key Lab of Biomass Energy and Material, Nanjing, Jiangsu 210042, China
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Tao Deng
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Wenjun Li
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| |
Collapse
|
42
|
Novel Class IIa-Selective Histone Deacetylase Inhibitors Discovered Using an in Silico Virtual Screening Approach. Sci Rep 2017; 7:3228. [PMID: 28607401 PMCID: PMC5468338 DOI: 10.1038/s41598-017-03417-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylases (HDAC) contain eighteen isoforms that can be divided into four classes. Of these isoform enzymes, class IIa (containing HDAC4, 5, 7 and 9) target unique substrates, some of which are client proteins associated with epigenetic control. Class IIa HDACs are reportedly associated with some neuronal disorders, making HDACs therapeutic targets for treating neurodegenerative diseases. Additionally, some reported HDAC inhibitors contain hydroxamate moiety that chelates with zinc ion to become the cofactor of HDAC enzymes. However, the hydroxamate functional group is shown to cause undesirable effects and has poor pharmacokinetic profile. This study used in silico virtual screening methodology to identify several nonhydroxamate compounds, obtained from National Cancer Institute database, which potentially inhibited HDAC4. Comparisons of the enzyme inhibitory activity against a panel of HDAC isoforms revealed these compounds had strong inhibitory activity against class IIa HDACs, but weak inhibitory activity against class I HDACs. Further analysis revealed that a single residue affects the cavity size between class I and class IIa HDACs, thus contributing to the selectivity of HDAC inhibitors discovered in this study. The discovery of these inhibitors presents the possibility of developing new therapeutic treatments that can circumvent the problems seen in traditional hydroxamate-based drugs.
Collapse
|
43
|
Lv W, Zhang G, Barinka C, Eubanks JH, Kozikowski AP. Design and Synthesis of Mercaptoacetamides as Potent, Selective, and Brain Permeable Histone Deacetylase 6 Inhibitors. ACS Med Chem Lett 2017; 8:510-515. [PMID: 28523102 DOI: 10.1021/acsmedchemlett.7b00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022] Open
Abstract
A series of nonhydroxamate HDAC6 inhibitors were prepared in our effort to develop potent and selective compounds for possible use in central nervous system (CNS) disorders, thus obviating the genotoxicity often associated with the hydroxamates. Halogens are incorporated in the cap groups of the designed mercaptoacetamides in order to increase brain accessibility. The indole analogue 7e and quinoline analogue 13a displayed potent HDAC6 inhibitory activity (IC50, 11 and 2.8 nM) and excellent selectivity against HDAC1. Both 7e and 13a together with their ester prodrug 14 and disulfide prodrugs 15 and 16 were found to be effective in promoting tubulin acetylation in HEK cells. The disulfide prodrugs 15 and 16 also released a stable concentration of 7e and 13a upon microsomal incubation. Administration of 15 and 16in vivo was found to trigger an increase of tubulin acetylation in mouse cortex. These results suggest that further exploration of these compounds for the treatment of CNS disorders is warranted.
Collapse
Affiliation(s)
- Wei Lv
- Department
of Medicinal Chemistry and Pharmacognosy, Drug Discovery Program, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Guangming Zhang
- Division
of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Cyril Barinka
- Laboratory
of Structural Biology, Institute of Biotechnology, Czech Academy of Science, Vestec 252 50, Czech Republic
| | - James H. Eubanks
- Division
of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Alan P. Kozikowski
- Department
of Medicinal Chemistry and Pharmacognosy, Drug Discovery Program, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
44
|
Cheng-Sánchez I, García-Ruiz C, Guerrero-Vásquez GA, Sarabia F. An Olefin Cross-Metathesis Approach to Depudecin and Stereoisomeric Analogues. J Org Chem 2017; 82:4744-4757. [PMID: 28397496 DOI: 10.1021/acs.joc.7b00424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new total synthesis of the natural product (-)-depudecin, a unique and unexplored histone deacetylase (HDAC) inhibitor, is reported. A key feature of the synthesis is the utilization of an olefin cross-metathesis strategy, which provides for an efficient and improved access to natural depudecin, compared with our previous linear synthesis. Featured by its brevity and convergency, our developed synthetic strategy was applied to the preparation of the 10-epi derivative and the enantiomer of depudecin, which represent interesting stereoisomeric analogues for structure-activity relationship studies.
Collapse
Affiliation(s)
- Iván Cheng-Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga , Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Cristina García-Ruiz
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga , Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Guillermo A Guerrero-Vásquez
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga , Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga , Campus de Teatinos s/n, 29071, Malaga, Spain
| |
Collapse
|
45
|
Traoré MM, Zwick V, Simões-Pires CA, Nurisso A, Issa M, Cuendet M, Maynadier M, Wein S, Vial H, Jamet H, Wong YS. Hydroxyl Ketone-Based Histone Deacetylase Inhibitors To Gain Insight into Class I HDAC Selectivity versus That of HDAC6. ACS OMEGA 2017; 2:1550-1562. [PMID: 30023639 PMCID: PMC6044785 DOI: 10.1021/acsomega.6b00481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Little is known about the biological and structural features that govern the isoform selectivity for class I histone deacetylases (HDACs) over HDAC6. In addition to that for known inhibitors, like benzamides, psammaplin A, and cyclodepsipeptide-derived thiols, selectivity was also observed for naturally occurring cyclopeptide HDAC inhibitors with an aliphatic flexible linker and ketonelike zinc-binding group (ZBG). The present study reports that this isoform selectivity is mainly due to the linker and ZBG, as replacement of the cyclopeptide cap region by a simple aniline retained class I HDAC isoform selectivity toward HDAC6 in enzymatic assays. The best cyclopeptide-free analogues preserved efficacy against Plasmodium falciparum and cancer cell lines. Molecular modeling provided hypotheses to explain this selectivity and suggests different behaviors of the flexible linker on HDAC1 and HDAC6 pockets, which may influence, on the basis of the strength of the ZBG, its coordination with the zinc ion.
Collapse
Affiliation(s)
- Mohamed
D. M. Traoré
- Département
de Pharmacochimie Moléculaire, CNRS
UMR 5063, ICMG FR 2607, Univ. Grenoble Alpes, 470 rue de la chimie, 38041 Grenoble cedex 9, France
- Département
de Chimie Moléculaire, CNRS UMR 5250,
ICMG FR 2607, Univ. Grenoble Alpes, 301 rue de la chimie, 38041 Grenoble cedex 9, France
| | - Vincent Zwick
- School
of Pharmaceutical Sciences, University of
Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Claudia A. Simões-Pires
- School
of Pharmaceutical Sciences, University of
Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Alessandra Nurisso
- School
of Pharmaceutical Sciences, University of
Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva, Switzerland
- Laboratoire
Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Mark Issa
- School
of Pharmaceutical Sciences, University of
Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Muriel Cuendet
- School
of Pharmaceutical Sciences, University of
Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Marjorie Maynadier
- Département
de Biochimie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Sharon Wein
- Département
de Biochimie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Henri Vial
- Département
de Biochimie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Helene Jamet
- Département
de Chimie Moléculaire, CNRS UMR 5250,
ICMG FR 2607, Univ. Grenoble Alpes, 301 rue de la chimie, 38041 Grenoble cedex 9, France
| | - Yung-Sing Wong
- Département
de Pharmacochimie Moléculaire, CNRS
UMR 5063, ICMG FR 2607, Univ. Grenoble Alpes, 470 rue de la chimie, 38041 Grenoble cedex 9, France
| |
Collapse
|
46
|
Abdizadeh T, Kalani MR, Abnous K, Tayarani-Najaran Z, Khashyarmanesh BZ, Abdizadeh R, Ghodsi R, Hadizadeh F. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur J Med Chem 2017; 132:42-62. [PMID: 28340413 DOI: 10.1016/j.ejmech.2017.03.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 01/26/2023]
Abstract
Histone deacetylases (HDACs) are attractive therapeutic targets for the treatment of cancer and other diseases. It has four classes (I-IV), among them especially class I isozyme are involved in promoting tumor cells proliferation, angiogenesis, differentiation, invasion and metastasis and also viable targets for cancer therapeutics. A novel series of coumarin-based benzamides was designed and synthesized as HDAC inhibitors. The cytotoxic activity of the synthesized compounds (8a-u) was evaluated against six human cancer cell lines including HCT116, A2780, MCF7, PC3, HL60 and A549 and a single normal cell line (Huvec). We evaluated their inhibitory activities against pan HDAC and HDAC1 isoform. Four compounds (8f, 8q, 8r and 8u) showed significant cytotoxicity with IC50 in the range of 0.53-57.59 μM on cancer cells and potent pan-HDAC inhibitory activity (consists of HDAC isoenzymes) (IC50 = 0.80-14.81 μM) and HDAC1 inhibitory activity (IC50 = 0.47-0.87 μM and also, had no effect on Huvec (human normal cell line) viability (IC50 > 100 μM). Among them, 8u displayed a higher potency for HDAC1 inhibition with IC50 value of 0.47 ± 0.02 μM near equal to the reference drug Entinostat (IC50 = 0.41 ± 0.06 μM). Molecular docking studies and Molecular dynamics simulation of compound 8a displayed possible mode of interaction between this compound and HDAC1enzyme.
Collapse
Affiliation(s)
- Tooba Abdizadeh
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Kalani
- School of Cell and Molecular Biology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Molecular Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Zahra Khashyarmanesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahman Abdizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
Pham-The H, Casañola-Martin G, Diéguez-Santana K, Nguyen-Hai N, Ngoc NT, Vu-Duc L, Le-Thi-Thu H. Quantitative structure-activity relationship analysis and virtual screening studies for identifying HDAC2 inhibitors from known HDAC bioactive chemical libraries. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:199-220. [PMID: 28332438 DOI: 10.1080/1062936x.2017.1294198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/08/2017] [Indexed: 05/22/2023]
Abstract
Histone deacetylases (HDAC) are emerging as promising targets in cancer, neuronal diseases and immune disorders. Computational modelling approaches have been widely applied for the virtual screening and rational design of novel HDAC inhibitors. In this study, different machine learning (ML) techniques were applied for the development of models that accurately discriminate HDAC2 inhibitors form non-inhibitors. The obtained models showed encouraging results, with the global accuracy in the external set ranging from 0.83 to 0.90. Various aspects related to the comparison of modelling techniques, applicability domain and descriptor interpretations were discussed. Finally, consensus predictions of these models were used for screening HDAC2 inhibitors from four chemical libraries whose bioactivities against HDAC1, HDAC3, HDAC6 and HDAC8 have been known. According to the results of virtual screening assays, structures of some hits with pair-isoform-selective activity (between HDAC2 and other HDACs) were revealed. This study illustrates the power of ML-based QSAR approaches for the screening and discovery of potent, isoform-selective HDACIs.
Collapse
Affiliation(s)
- H Pham-The
- a Hanoi University of Pharmacy , Hanoi , Vietnam
| | - G Casañola-Martin
- b Department of Systems and Computer Engineering , Carleton University , Ottawa , ON , Canada
| | - K Diéguez-Santana
- c Faculty of Life Sciences , Amazonian State University , Puyo , Pastaza , Ecuador
| | - N Nguyen-Hai
- a Hanoi University of Pharmacy , Hanoi , Vietnam
| | - N T Ngoc
- a Hanoi University of Pharmacy , Hanoi , Vietnam
| | - L Vu-Duc
- d School of Medicine and Pharmacy, Vietnam National University , Hanoi , Vietnam
| | - H Le-Thi-Thu
- d School of Medicine and Pharmacy, Vietnam National University , Hanoi , Vietnam
| |
Collapse
|
48
|
Terranova-Barberio M, Roca MS, Zotti AI, Leone A, Bruzzese F, Vitagliano C, Scogliamiglio G, Russo D, D'Angelo G, Franco R, Budillon A, Di Gennaro E. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget 2016; 7:7715-31. [PMID: 26735339 PMCID: PMC4884949 DOI: 10.18632/oncotarget.6802] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022] Open
Abstract
The prognosis of patients with metastatic breast cancer remains poor, and thus novel therapeutic approaches are needed. Capecitabine, which is commonly used for metastatic breast cancer in different settings, is an inactive prodrug that takes advantage of elevated levels of thymidine phosphorylase (TP), a key enzyme that is required for its conversion to 5-fluororacil, in tumors. We demonstrated that histone deacetylase inhibitors (HDACi), including low anticonvulsant dosage of VPA, induced the dose- and time-dependent up-regulation of TP transcript and protein expression in breast cancer cells, but not in the non-tumorigenic breast MCF-10A cell line. Through the use of siRNA or isoform-specific HDACi, we demonstrated that HDAC3 is the main isoform whose inhibition is involved in the modulation of TP. The combined treatment with capecitabine and HDACi, including valproic acid (VPA), resulted in synergistic/additive antiproliferative and pro-apoptotic effects in breast cancer cells but not in TP-knockout cells, both in vitro and in vivo, highlighting the crucial role of TP in the synergism observed. Overall, this study suggests that the combination of HDACi (e.g., VPA) and capecitabine is an innovative antitumor strategy that warrants further clinical evaluation for the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Andrea Ilaria Zotti
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Giosuè Scogliamiglio
- Pathology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Domenico Russo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Giovanni D'Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Renato Franco
- Pathology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| |
Collapse
|
49
|
Reddy DR, Ballante F, Zhou NJ, Marshall GR. Design and synthesis of benzodiazepine analogs as isoform-selective human lysine deacetylase inhibitors. Eur J Med Chem 2016; 127:531-553. [PMID: 28109947 DOI: 10.1016/j.ejmech.2016.12.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 12/24/2022]
Abstract
A comprehensive investigation was performed to identify new benzodiazepine (BZD) derivatives as potent and selective human lysine deacetylase inhibitors (hKDACis). A total of 108 BZD compounds were designed, synthesized and from that 104 compounds were biologically evaluated against human lysine deacetylases (hKDACs) 1, 3 and 8 (class I) and 6 (class IIb). The most active compounds showed mid-nanomolar potencies against hKDACs 1, 3 and 6 and micromolar activity against hKDAC8, while a promising compound (6q) showed selectivity towards hKDAC3 among the different enzyme isoforms. An hKDAC6 homology model, refined by molecular dynamics simulation was generated, and molecular docking studies performed to rationalize the dominant ligand-residue interactions as well as to define structure-activity-relationships. Experimental results confirmed the usefulness of the benzodiazepine moiety as capping group when pursuing hKDAC isoform-selectivity inhibition, suggesting its continued use when designing new hKDACis.
Collapse
Affiliation(s)
- D Rajasekhar Reddy
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Nancy J Zhou
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Garland R Marshall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
50
|
De Vreese R, Galle L, Depetter Y, Franceus J, Desmet T, Van Hecke K, Benoy V, Van Den Bosch L, D'hooghe M. Synthesis of Potent and Selective HDAC6 Inhibitors Bearing a Cyclohexane- or Cycloheptane-Annulated 1,5-Benzothiazepine Scaffold. Chemistry 2016; 23:128-136. [DOI: 10.1002/chem.201604167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Rob De Vreese
- SynBioC Research Group; Faculty of Bioscience Engineering; Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Lisa Galle
- SynBioC Research Group; Faculty of Bioscience Engineering; Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Yves Depetter
- SynBioC Research Group; Faculty of Bioscience Engineering; Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Jorick Franceus
- Centre for Industrial Biotechnology and Biocatalysis; Faculty of Bioscience Engineering; Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis; Faculty of Bioscience Engineering; Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Kristof Van Hecke
- XStruct, Department of Inorganic and Physical Chemistry; Faculty of Sciences; Ghent University; Krijgslaan 281-S3 9000 Ghent Belgium
| | - Veronick Benoy
- University of Leuven; Department of Neurosciences, Experimental Neurology, VIB-Vesalius Research Center, Laboratory of Neurobiology; 3000 Leuven Belgium
| | - Ludo Van Den Bosch
- University of Leuven; Department of Neurosciences, Experimental Neurology, VIB-Vesalius Research Center, Laboratory of Neurobiology; 3000 Leuven Belgium
| | - Matthias D'hooghe
- SynBioC Research Group; Faculty of Bioscience Engineering; Ghent University; Coupure Links 653 9000 Ghent Belgium
| |
Collapse
|