1
|
Rivière F, Dian C, Dutheil RF, Monassa P, Giglione C, Meinnel T. Novel, tightly structurally related N-myristoyltransferase inhibitors display equally potent yet distinct inhibitory mechanisms. Structure 2024; 32:1737-1750.e3. [PMID: 39208793 DOI: 10.1016/j.str.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
N-myristoyltransferases (NMTs) catalyze essential acylations of N-terminal alpha or epsilon amino groups of glycines or lysines. Here, we reveal that peptides tightly fitting the optimal glycine recognition pattern of human NMTs are potent prodrugs relying on a single-turnover mechanism. Sequence scanning of the inhibitory potency of the series closely reflects NMT glycine substrate specificity rules, with the lead inhibitor blocking myristoylation by NMTs of various species. We further redesigned the series based on the recently recognized lysine-myristoylation mechanism by taking advantage of (1) the optimal peptide chassis and (2) lysine side chain mimicry with unnatural enantiomers. Unlike the lead series, the inhibitory properties of the new compounds rely on the protonated state of the side chain amine, which stabilizes a salt bridge with the catalytic base at the active site. Our study provides the basis for designing first-in-class NMT inhibitors tailored for infectious diseases and alternative active site targeting.
Collapse
Affiliation(s)
- Frédéric Rivière
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Cyril Dian
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Rémi F Dutheil
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Paul Monassa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Fenwick M, Reers AR, Liu Y, Zigweid R, Sankaran B, Shin J, Hulverson MA, Hammerson B, Fernández Álvaro E, Myler PJ, Kaushansky A, Van Voorhis WC, Fan E, Staker BL. Identification of and Structural Insights into Hit Compounds Targeting N-Myristoyltransferase for Cryptosporidium Drug Development. ACS Infect Dis 2023; 9:1821-1833. [PMID: 37722671 PMCID: PMC10580320 DOI: 10.1021/acsinfecdis.3c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 09/20/2023]
Abstract
Each year, approximately 50,000 children under 5 die as a result of diarrhea caused by Cryptosporidium parvum, a protozoan parasite. There are currently no effective drugs or vaccines available to cure or prevent Cryptosporidium infection, and there are limited tools for identifying and validating targets for drug or vaccine development. We previously reported a high throughput screening (HTS) of a large compound library against Plasmodium N-myristoyltransferase (NMT), a validated drug target in multiple protozoan parasite species. To identify molecules that could be effective against Cryptosporidium, we counter-screened hits from the Plasmodium NMT HTS against Cryptosporidium NMT. We identified two potential hit compounds and validated them against CpNMT to determine if NMT might be an attractive drug target also for Cryptosporidium. We tested the compounds against Cryptosporidium using both cell-based and NMT enzymatic assays. We then determined the crystal structure of CpNMT bound to Myristoyl-Coenzyme A (MyrCoA) and structures of ternary complexes with MyrCoA and the hit compounds to identify the ligand binding modes. The binding site architectures display different conformational states in the presence of the two inhibitors and provide a basis for rational design of selective inhibitors.
Collapse
Affiliation(s)
- Michael
K. Fenwick
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Alexandra R. Reers
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Yi Liu
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rachael Zigweid
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Banumathi Sankaran
- Berkeley
Center for Structural Biology, Advanced Light Source, Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Janis Shin
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Matthew A. Hulverson
- Center
for Emerging and Re-emerging Infectious Diseases, Division of Allergy
and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Bradley Hammerson
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | | | - Peter J. Myler
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Global Health, University of Washington, Seattle, Washington 98195, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Alexis Kaushansky
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Center
for Emerging and Re-emerging Infectious Diseases, Division of Allergy
and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington 98109, United States
- Department
of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Wesley C. Van Voorhis
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Emerging and Re-emerging Infectious Diseases, Division of Allergy
and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Erkang Fan
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Bart L. Staker
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| |
Collapse
|
3
|
Nascimento IJDS, Cavalcanti MDAT, de Moura RO. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases. Eur J Med Chem 2023; 258:115550. [PMID: 37336067 DOI: 10.1016/j.ejmech.2023.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Neglected tropical diseases (NTDs) constitute a group of approximately 20 infectious diseases that mainly affect the impoverished population without basic sanitation in tropical countries. These diseases are responsible for many deaths worldwide, costing billions of dollars in public health investment to treat and control these infections. Among them are the diseases caused by protozoa of the Trypanosomatid family, which constitute Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness), and Leishmaniasis. In addition, there is a classification of other diseases, called the big three, AIDS, tuberculosis, and malaria, which are endemic in countries with tropical conditions. Despite the high mortality rates, there is still a gap in the treatment. The drugs have a high incidence of side effects and protozoan resistance, justifying the investment in developing new alternatives. In fact, the Target-Based Drug Design (TBDD) approach is responsible for identifying several promising compounds, and among the targets explored through this approach, N-myristoyltransferase (NMT) stands out. It is an enzyme related to the co-translational myristoylation of N-terminal glycine in various peptides. The myristoylation process is a co-translation that occurs after removing the initiator methionine. This process regulates the assembly of protein complexes and stability, which justifies its potential as a drug target. In order to propose NMT as a potential target for parasitic diseases, this review will address the entire structure and function of this enzyme and the primary studies demonstrating its promising potential against Leishmaniasis, T. cruzi, T. brucei, and malaria. We hope our information can help researchers worldwide search for potential drugs against these diseases that have been threatening the health of the world's population.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Cesmac University Center, Pharmacy Departament, Maceió, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil.
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
4
|
Khan SR, Masood S, Yousuf M, Raheel A, Begum S, Sattar SA, Tauseef S, Dastagir J. Complexation, Antifungal, Antioxidant Activities, and In Silico Studies of Metals Cu(II), Co(II), and Mn(II) with 3,5-Dinitrobenzoic Acid. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Saleh MA, El-Badry MA, R Ezz Eldin R. Novel 6-hydroxyquinolinone derivatives: Design, synthesis, antimicrobial evaluation, in silico study and toxicity profiling. J Comput Chem 2021; 42:1561-1578. [PMID: 34041765 DOI: 10.1002/jcc.26693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/09/2021] [Indexed: 11/07/2022]
Abstract
Infectious diseases of bacteria and fungi have become a major risk to public health because of antibiotic and antifungal resistance. However, the availability of effective antibacterial and antifungal agents is becoming increasingly limited with growing resistance to existing drugs. In response to that, novel agents are critically needed to overcome such resistance. A new series of 6-hydroxyquinolinone 3, 4, 5a, 5b, 6a and 6b bearing different side chains were synthesized and evaluated as antimicrobials against numbers of bacteria and fungi, using inhibition zone technique. As one of these derivatives, compound 3 was identified as a potent antibacterial and antifungal agent against all tested microorganisms with good minimum inhibitory concentration values comparable to reference drugs. Molecular docking studies were performed on antibacterial and antifungal targets; microbial DNA gyrase B of Staphylococcus aureus (PDB ID: 4URO); N-myristoyltransferase of Candida albicans (PDB ID: 1IYK), respectively, to predict the most probable type of interaction at the active site of the target protein in addition to binding affinities and orientations of docked ligands. Additionally, in silico prediction in terms of detailed physicochemical ADME and toxicity profile relating drug-likeness as well as medicinal chemistry friendliness was performed to all synthesized compounds. The results indicated that a novel 4,6-dihydroxyquinolin-2(1H)-one (3) is likely to be a newly synthesized drug candidate, indicating low toxicity in addition to good in silico absorption. In order to pave the way for more logical production of such compounds, structure-activity and toxicity relationships are also discussed.
Collapse
Affiliation(s)
- Marwa A Saleh
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Mohamed A El-Badry
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Rogy R Ezz Eldin
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| |
Collapse
|
6
|
Zaki MEA, Al-Hussain SA, Masand VH, Akasapu S, Lewaa I. QSAR and Pharmacophore Modeling of Nitrogen Heterocycles as Potent Human N-Myristoyltransferase (Hs-NMT) Inhibitors. Molecules 2021; 26:molecules26071834. [PMID: 33805223 PMCID: PMC8038050 DOI: 10.3390/molecules26071834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022] Open
Abstract
N-myristoyltransferase (NMT) is an important eukaryotic monomeric enzyme which has emerged as an attractive target for developing a drug for cancer, leishmaniasis, ischemia-reperfusion injury, malaria, inflammation, etc. In the present work, statistically robust machine leaning models (QSAR (Quantitative Structure–Activity Relationship) approach) for Human NMT (Hs-NMT) inhibitory has been performed for a dataset of 309 Nitrogen heterocycles screened for NMT inhibitory activity. Hundreds of QSAR models were derived. Of these, the model 1 and 2 were chosen as they not only fulfil the recommended values for a good number of validation parameters (e.g., R2 = 0.77–0.79, Q2LMO = 0.75–0.76, CCCex = 0.86–0.87, Q2-F3 = 0.74–0.76, etc.) but also provide useful insights into the structural features that sway the Hs-NMT inhibitory activity of Nitrogen heterocycles. That is, they have an acceptable equipoise of descriptive and predictive qualities as per Organisation for Economic Co-operation and Development (OECD) guidelines. The developed QSAR models identified a good number of molecular descriptors like solvent accessible surface area of all atoms having specific partial charge, absolute surface area of Carbon atoms, etc. as important features to be considered in future optimizations. In addition, pharmacophore modeling has been performed to get additional insight into the pharmacophoric features, which provided additional results.
Collapse
Affiliation(s)
- Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 13318, Saudi Arabia;
- Correspondence: (M.E.A.Z.); (V.H.M.)
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 13318, Saudi Arabia;
| | - Vijay H. Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati 444 602, Maharashtra, India
- Correspondence: (M.E.A.Z.); (V.H.M.)
| | | | - Israa Lewaa
- Department of Business Administration, Faculty of Business Administration, Economics and Political Science, British University in Egypt, Cairo 11837, Egypt;
| |
Collapse
|
7
|
Fedoryshchak RO, Ocasio CA, Strutton B, Mattocks J, Corran AJ, Tate EW. Wheat pathogen Zymoseptoria tritici N-myristoyltransferase inhibitors: on-target antifungal activity and an unusual metabolic defense mechanism. RSC Chem Biol 2020; 1:68-78. [PMID: 34458749 PMCID: PMC8341946 DOI: 10.1039/d0cb00020e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Zymoseptoria tritici is the causative agent of Septoria tritici blotch (STB), which costs billions of dollars annually to major wheat-producing countries in terms of both fungicide use and crop loss. Agricultural pathogenic fungi have acquired resistance to most commercially available fungicide classes, and the rate of discovery and development of new fungicides has stalled, demanding new approaches and insights. Here we investigate a potential mechanism of targeting an important wheat pathogen Z. tritici via inhibition of N-myristoyltransferase (NMT). We characterize Z. tritici NMT biochemically for the first time, profile the in vivo Z. tritici myristoylated proteome and identify and validate the first Z. tritici NMT inhibitors. Proteomic investigation of the downstream effects of NMT inhibition identified an unusual and novel mechanism of defense against chemical toxicity in Z. tritici through the application of comparative bioinformatics to deconvolute function from the previously largely unannotated Z. tritici proteome. Research into novel fungicidal modes-of-action is essential to satisfy an urgent unmet need for novel fungicide targets, and we anticipate that this study will serve as a useful proteomics and bioinformatics resource for researchers studying Z. tritici.
Collapse
Affiliation(s)
- Roman O Fedoryshchak
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub Wood Lane London W12 0BZ UK
- The Francis Crick Institute 1 Midland Rd London NW1 1AT UK
| | - Cory A Ocasio
- The Francis Crick Institute 1 Midland Rd London NW1 1AT UK
| | | | - Jo Mattocks
- Syngenta AG, Jealott's Hill Research Centre Bracknell UK
| | | | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub Wood Lane London W12 0BZ UK
- The Francis Crick Institute 1 Midland Rd London NW1 1AT UK
| |
Collapse
|
8
|
Khalil R, Ashraf S, Khalid A, Ul-Haq Z. Exploring Novel N-Myristoyltransferase Inhibitors: A Molecular Dynamics Simulation Approach. ACS OMEGA 2019; 4:13658-13670. [PMID: 31497683 PMCID: PMC6714517 DOI: 10.1021/acsomega.9b00843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/25/2019] [Indexed: 05/06/2023]
Abstract
N-Myristoyltransferase (NMT) is a cytosolic monomeric enzyme involved in the allocation of the myristoyl group to the aminoterminal of glycine in several viral and eukaryotic cellular proteins. NMT has been validated as a potential drug target against kinetoplastid for parasitic protozoa. A multistep virtual screening protocol based on the pharmacophore modeling, molecular docking, and molecular dynamics simulation was carried out. Initially, Maybridge database was virtually screened via a validated pharmacophore model. The effective pharmacophore models were accompanied with exclusion volumes to improve their receiver operating characteristic curve to identify potential NMT inhibitors. The hits identified as actives based on the 3D-pharmacophore model were evaluated by molecular docking studies. In stepwise screening, six compounds were shortlisted for the dynamic simulation to get insights into their binding mode. In conclusion, this study provides fundamental information about the architecture of the binding site and some crucial residues that may provide insights into the development of new antiparasitic agents.
Collapse
Affiliation(s)
- Ruqaiya Khalil
- Dr.
Panjwani Center for Molecular Medicine and Drug Research, International
Center for Chemical and Biological Sciences, and HEJ Research Institute of Chemistry,
International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sajda Ashraf
- Dr.
Panjwani Center for Molecular Medicine and Drug Research, International
Center for Chemical and Biological Sciences, and HEJ Research Institute of Chemistry,
International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box
2424, Khartoum 11111, Sudan
| | - Zaheer Ul-Haq
- Dr.
Panjwani Center for Molecular Medicine and Drug Research, International
Center for Chemical and Biological Sciences, and HEJ Research Institute of Chemistry,
International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- E-mail:
| |
Collapse
|
9
|
Suwanmanee S, Mahakhunkijcharoen Y, Ampawong S, Leaungwutiwong P, Missé D, Luplertlop N. Inhibition of N-myristoyltransferase1 affects dengue virus replication. Microbiologyopen 2019; 8:e00831. [PMID: 30848105 PMCID: PMC6741125 DOI: 10.1002/mbo3.831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/05/2023] Open
Abstract
Dengue virus (DENV) causes dengue fever, a self‐limiting disease that could be fatal due to serious complications. No specific treatment is currently available and the preventative vaccine is only partially protective. To develop a potential drug target for dengue fever, we need to understand its biology and pathogenesis thoroughly. N‐myristoyltransferase (NMT) is an N‐terminal protein lipidation enzyme that catalyzes the covalent cotranslational attachment of fatty acids to the amino‐terminal glycine residue of a number of proteins, leading to the modulation of various signaling molecules. In this study, we investigated the interaction of dengue viral proteins with host NMT and its subsequent effect on DENV. Our bioinformatics, molecular docking, and far‐western blotting analyses demonstrated the interaction of viral envelope protein (E) with NMT. The gene expression of NMT was strongly elevated in a dependent manner during the viral replication phase in dendritic cells. Moreover, NMT gene silencing significantly inhibited DENV replication in dendritic cells. Further studies investigating the target cell types of other host factors are suggested.
Collapse
Affiliation(s)
- San Suwanmanee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yuvadee Mahakhunkijcharoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dorothée Missé
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Masand VH, El-Sayed NN, Bambole MU, Patil VR, Thakur SD. Multiple quantitative structure-activity relationships (QSARs) analysis for orally active trypanocidal N-myristoyltransferase inhibitors. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.07.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Apel C, Bignon J, Garcia-Alvarez MC, Ciccone S, Clerc P, Grondin I, Girard-Valenciennes E, Smadja J, Lopes P, Frédérich M, Roussi F, Meinnel T, Giglione C, Litaudon M. N-myristoyltransferases inhibitory activity of ellagitannins from Terminalia bentzoë (L.) L. f. subsp. bentzoë. Fitoterapia 2018; 131:91-95. [PMID: 30342177 DOI: 10.1016/j.fitote.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022]
Abstract
N-myristoylation (Myr) is an eukaryotic N-terminal co- or post-translational protein modification in which the enzyme N-myristoyltransferase (NMT) transfers a fatty acid (C14:0) to the N-terminal glycine residues of several cellular key proteins. Depending on the cellular context, NMT may serve as a molecular target in anticancer or anti-infectious therapy, and drugs that inhibit this enzyme may be useful in the treatment of cancer or infectious diseases. As part of an on-going project to identify natural Homo sapiens N-myristoyltransferase 1 inhibitors (HsNMT1), two ellagitannins, punicalagin (1) and isoterchebulin (2), along with eschweilenol C (3) and ellagic acid (4) were isolated from the bark of Terminalia bentzoë (L.) L. f. subsp. bentzoë. Their structures were determined by means of spectroscopic analyses and comparison with literature data. Punicalagin (1) and isoterchebulin (2) showed significant inhibitory activity towards HsNMT1, and also against Plasmodium falciparum NMT (PfNMT) both in vitro and in cellulo, opening alternative paths for new NMT inhibitors development. This is the first report identifying natural products from a botanical source as inhibitors of HsNMT and PfNMT.
Collapse
Affiliation(s)
- Cécile Apel
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay, 91198 cedex, Gif-sur-Yvette, France.
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay, 91198 cedex, Gif-sur-Yvette, France
| | - María Concepción Garcia-Alvarez
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay, 91198 cedex, Gif-sur-Yvette, France
| | - Sarah Ciccone
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Patricia Clerc
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments (LCSNSA), Université de La Réunion, 15, Avenue rené Cassin, CS 92003-97744 Saint-Denis cedex 9, France
| | - Isabelle Grondin
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments (LCSNSA), Université de La Réunion, 15, Avenue rené Cassin, CS 92003-97744 Saint-Denis cedex 9, France
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments (LCSNSA), Université de La Réunion, 15, Avenue rené Cassin, CS 92003-97744 Saint-Denis cedex 9, France
| | - Jacqueline Smadja
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments (LCSNSA), Université de La Réunion, 15, Avenue rené Cassin, CS 92003-97744 Saint-Denis cedex 9, France
| | - Philippe Lopes
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay, 91198 cedex, Gif-sur-Yvette, France
| | - Michel Frédérich
- Université de Liège, CIRM (Centre Interfacultaire de Recherche sur le Médicament), Laboratoire de Pharmacognosie, Liège, Belgium
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay, 91198 cedex, Gif-sur-Yvette, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay, 91198 cedex, Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Luo B, Li D, Zhang AL, Gao JM. Synthesis, Antifungal Activities and Molecular Docking Studies of Benzoxazole and Benzothiazole Derivatives. Molecules 2018; 23:molecules23102457. [PMID: 30257495 PMCID: PMC6222379 DOI: 10.3390/molecules23102457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 11/16/2022] Open
Abstract
Based on benzoxazole and benzothiazole scaffold as an important pharmacophore, two series of 2-(aryloxymethyl) benzoxazole and benzothiazole derivatives were synthesized and their antifungal effects against eight phytopathogenic fungi were evaluated. Compounds 5a, 5b, 5h, and 5i exhibited significant antifungal activities against most of the pathogens tested. Especially 5a, 5b, 5h, 5i, 5j, and 6h inhibited the growth of F. solani with IC50 of 4.34⁻17.61 μg/mL, which were stronger than that of the positive control, hymexazol (IC50 of 38.92 μg/mL). 5h was the most potent inhibitor (IC50 of 4.34 μg/mL) against F. Solani, which was about nine times more potent than hymexazol. Most of the test compounds displayed significant antifungal effects against B. cinerea (IC50 of 19.92⁻77.41 μg/mL), among them, 5a was the best one (IC50 of 19.92 μg/mL). The structure-activity relationships (SARs) were compared and analyzed. The result indicates that the electron-drawing ability and position of the substituents have a significant impact on biological activities. Furthermore, docking studies were carried out on the lipid transfer protein sec14p from S. cerevisiae, and preliminarily verified the antifungal activities. Taken together, these results provide 2-(phenoxymethyl)benzo[d]oxazole as an encouraging framework that could lead to the development of potent novel antifungal agents.
Collapse
Affiliation(s)
- Bo Luo
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China.
- Shaanxi Key Labotory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Ding Li
- Shaanxi Key Labotory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - An-Ling Zhang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Jin-Ming Gao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
13
|
Li Q, Alsaidan OA, Ma Y, Kim S, Liu J, Albers T, Liu K, Beharry Z, Zhao S, Wang F, Lebedyeva I, Cai H. Pharmacologically targeting the myristoylation of the scaffold protein FRS2α inhibits FGF/FGFR-mediated oncogenic signaling and tumor progression. J Biol Chem 2018. [PMID: 29540482 DOI: 10.1074/jbc.ra117.000940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling facilitates tumor initiation and progression. Although currently approved inhibitors of FGFR kinase have shown therapeutic benefit in clinical trials, overexpression or mutations of FGFRs eventually confer drug resistance and thereby abrogate the desired activity of kinase inhibitors in many cancer types. In this study, we report that loss of myristoylation of fibroblast growth factor receptor substrate 2 (FRS2α), a scaffold protein essential for FGFR signaling, inhibits FGF/FGFR-mediated oncogenic signaling and FGF10-induced tumorigenesis. Moreover, a previously synthesized myristoyl-CoA analog, B13, which targets the activity of N-myristoyltransferases, suppressed FRS2α myristoylation and decreased the phosphorylation with mild alteration of FRS2α localization at the cell membrane. B13 inhibited oncogenic signaling induced by WT FGFRs or their drug-resistant mutants (FGFRsDRM). B13 alone or in combination with an FGFR inhibitor suppressed FGF-induced WT FGFR- or FGFRDRM-initiated phosphoinositide 3-kinase (PI3K) activity or MAPK signaling, inducing cell cycle arrest and thereby inhibiting cell proliferation and migration in several cancer cell types. Finally, B13 significantly inhibited the growth of xenograft tumors without pathological toxicity to the liver, kidney, or lung in vivo In summary, our study suggests a possible therapeutic approach for inhibiting FGF/FGFR-mediated cancer progression and drug-resistant FGF/FGFR mutants.
Collapse
Affiliation(s)
- Qianjin Li
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Omar Awad Alsaidan
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Yongjie Ma
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Sungjin Kim
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Junchen Liu
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030
| | | | - Kebin Liu
- Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia 30912, and
| | - Zanna Beharry
- the Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965
| | - Shaying Zhao
- the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Fen Wang
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030
| | | | - Houjian Cai
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| |
Collapse
|
14
|
Liu N, Tu J, Dong G, Wang Y, Sheng C. Emerging New Targets for the Treatment of Resistant Fungal Infections. J Med Chem 2018; 61:5484-5511. [DOI: 10.1021/acs.jmedchem.7b01413] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Liu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
15
|
Zhong Y, Han X, Li S, Qi H, Song Y, Qiao X. Design, Synthesis, Antifungal Activity and Molecular Docking of Thiochroman-4-one Derivatives. Chem Pharm Bull (Tokyo) 2017; 65:904-910. [PMID: 28966274 DOI: 10.1248/cpb.c17-00274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N-Myristoyltransferase (NMT) has been validated pre-clinically as a target for treatment of fungal infections. Various substituted thiochroman-4-one derivatives have been synthesized by an efficient method. The synthesized compounds 7a-y and 8a-t were evaluated for their in vitro antifungal activity against the Canidia albicans, Cryptococcus neoformans, Epidermophyton floccosum, Mucor racemosus, Microsporum gypseum and Aspergillus nigerstrain. A series of compounds exhibited significant activity (minimal inhibitory concentrotion (MIC)=0.5-16 µg/mL) against Canidia albicans and Cryptococcus neoformans. The antifungal activity of compound 7b was reached to that of fluconazole, which can serve as a good starting point for further studies of structural diversity of the NMT inhibitors. The molecular docking studies revealed an interesting binding profile with very high receptor affinity for NMT of Canidia albicans.
Collapse
Affiliation(s)
- Yifan Zhong
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University
| | - Xiaoyan Han
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University
| | - Shengbin Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University
| | - Hui Qi
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University
| | - Xiaoqiang Qiao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University
| |
Collapse
|
16
|
Kim S, Alsaidan OA, Goodwin O, Li Q, Sulejmani E, Han Z, Bai A, Albers T, Beharry Z, Zheng YG, Norris JS, Szulc ZM, Bielawska A, Lebedyeva I, Pegan SD, Cai H. Blocking Myristoylation of Src Inhibits Its Kinase Activity and Suppresses Prostate Cancer Progression. Cancer Res 2017; 77:6950-6962. [PMID: 29038344 DOI: 10.1158/0008-5472.can-17-0981] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/24/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Protein N-myristoylation enables localization to membranes and helps maintain protein conformation and function. N-myristoyltransferases (NMT) catalyze co- or posttranslational myristoylation of Src family kinases and other oncogenic proteins, thereby regulating their function. In this study, we provide genetic and pharmacologic evidence that inhibiting the N-myristoyltransferase NMT1 suppresses cell-cycle progression, proliferation, and malignant growth of prostate cancer cells. Loss of myristoylation abolished the tumorigenic potential of Src and its synergy with androgen receptor in mediating tumor invasion. We identified the myristoyl-CoA analogue B13 as a small-molecule inhibitor of NMT1 enzymatic activity. B13 exposure blocked Src myristoylation and Src localization to the cytoplasmic membrane, attenuating Src-mediated oncogenic signaling. B13 exerted its anti-invasive and antitumor effects against prostate cancer cells, with minimal toxic side-effects in vivo Structural optimization based on structure-activity relationships enabled the chemical synthesis of LCL204, with enhanced inhibitory potency against NMT1. Collectively, our results offer a preclinical proof of concept for the use of protein myristoylation inhibitors as a strategy to block prostate cancer progression. Cancer Res; 77(24); 6950-62. ©2017 AACR.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Omar Awad Alsaidan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Octavia Goodwin
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Qianjin Li
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Essilvo Sulejmani
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Zhen Han
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Aiping Bai
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Thomas Albers
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia
| | - Zanna Beharry
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - James S Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia
| | - Scott D Pegan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia.
| |
Collapse
|
17
|
Novel Therapeutic Targets for Human African Trypanosomiasis. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017. [DOI: 10.1007/s40506-017-0120-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Tetrazolylmethyl quinolines: Design, docking studies, synthesis, anticancer and antifungal analyses. Eur J Med Chem 2017; 128:258-273. [PMID: 28192709 DOI: 10.1016/j.ejmech.2017.01.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 12/27/2022]
Abstract
A new series of 2,5 and 1,5-regioisomers of the tetrazolyl group viz., 3-[(5-benzyl/benzylthio-2H-tetrazol-2-yl) methyl]-2-chloro-6-substituted quinoline 6h-q and 3-[(5-benzyl/benzylthio-1H-tetrazol-1-yl) methyl]-2-chloro-6-substituted quinolines 7h-q were synthesized. Docking studies of all these compounds with DNA as target using PDB: 1AU5 and 453D revealed that the compounds 6h and 6i act as covalent cross linker on the DNA helix of the former and intercalate the latter both with higher C score values. Another set of docking studies in the active pocket of dihydrofolate reductase and N-myristoyl transferase as targets to assess antifungal activity revealed that compounds 6k, 6l, 6p and 7q (with bromo and fluro substituents) showcases different binding modes and hydrogen bonding. Further, the compounds were screened for anticancer activity (primary cytotoxicity) against NCI-60 Human tumor cell line at a single high dose (10-5 M) concentration assay. Among the tested compounds, 6h has shown 99.28% of GI against Melanoma (SK-MEL-5) and compound 6i has shown 97.56% of GI against Breast Cancer (T-47D). Further, in vitro antifungal assay against A. fumigatus and C. albicans for these compounds 6h-q and 7h-q revealed potential to moderate activities as compared to the standard.
Collapse
|
19
|
Design, synthesis, docking and in vitro antifungal study of 1,2,4-triazole hybrids of 2-(aryloxy)quinolines. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2016-0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractSubstituted quinolines containing a 1,2,4-triazole moiety were synthesized using reported methods. The molecular docking studies support the experimental results that these compounds are active against
Collapse
|
20
|
Azevedo RVDM, Rizzo J, Rodrigues ML. Virulence Factors as Targets for Anticryptococcal Therapy. J Fungi (Basel) 2016; 2:jof2040029. [PMID: 29376946 PMCID: PMC5715936 DOI: 10.3390/jof2040029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 12/24/2022] Open
Abstract
The global mortality due to cryptococcosis caused by Cryptococcus neoformans or C. gattii is unacceptably high. Currently available therapies are decades old and may be impacted by drug resistance. Therefore, the need for more effective antifungal drugs for cryptococcosis is evident. A number of Cryptococcus virulence factors have been studied in detail, providing crucial information about the fungal biology and putative molecular targets for antifungals. This review focuses on the use of well-described virulence factors of Cryptococcus as potential anticryptococcal agents.
Collapse
Affiliation(s)
- Renata V D M Azevedo
- Fundação Oswaldo Cruz-Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), 21040-361 Rio de Janeiro, Brazil.
| | - Juliana Rizzo
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
- Instituto de Bioquímica Médica (IBqM), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Marcio L Rodrigues
- Fundação Oswaldo Cruz-Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), 21040-361 Rio de Janeiro, Brazil.
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Abstract
The development of next-generation antifungal agents with novel chemical scaffolds and new mechanisms of action is vital due to increased incidence and mortality of invasive fungal infections and severe drug resistance. This review will summarize current strategies to discover novel antifungal scaffolds. In particular, high-throughput screening, drug repurposing, antifungal natural products and new antifungal targets are focused on. New scaffolds with validated antifungal activity, their discovery and optimization process as well as structure–activity relationships are discussed in detail. Perspectives that could inspire future antifungal drug discovery are provided.
Collapse
|
22
|
Hemalatha K, Madhumitha G, Ravi L, Khanna VG, Al-Dhabi NA, Arasu MV. Binding mode of dihydroquinazolinones with lysozyme and its antifungal activity against Aspergillus species. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:71-9. [PMID: 27214045 DOI: 10.1016/j.jphotobiol.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/03/2016] [Indexed: 11/28/2022]
Abstract
Aspergillosis is one of the infectious fungal diseases affecting mainly the immunocompromised patients. The scarcity of the antifungal targets has identified the importance of N-myristoyl transferase (NMT) in the regulation of fungal pathway. The dihydroquinazolinone molecules were designed on the basis of fragments responsible for binding with the target enzyme. The aryl halide, 1(a-g), aryl boronic acid and potassium carbonate were heated together in water and dioxane mixture to yield new CC bond formation in dihydroquinazolinone. The bis(triphenylphosphine)palladium(II) dichloride was used as catalyst for the CC bond formation. The synthesized series were screened for their in vitro antifungal activity against Aspergillus niger and Aspergillus fumigatus. The binding interactions of the active compound with lysozyme were explored using multiple spectroscopic studies. Molecular docking study of dihydroquinazolinones with the enzyme revealed the information regarding various binding forces involved in the interaction.
Collapse
Affiliation(s)
- K Hemalatha
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India
| | - G Madhumitha
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India.
| | - Lokesh Ravi
- Division of Bio-medical Sciences, School of Biosciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | - V Gopiesh Khanna
- Division of Bio-medical Sciences, School of Biosciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Han XY, Zhong YF, Li SB, Liang GC, Zhou G, Wang XK, Chen BH, Song YL. Synthesis, Characterization and Antifungal Evaluation of Novel Thiochromanone Derivatives Containing Indole Skeleton. Chem Pharm Bull (Tokyo) 2016; 64:1411-6. [DOI: 10.1248/cpb.c16-00366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiao-Yan Han
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University
| | - Yi-Fan Zhong
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University
| | - Sheng-Bin Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University
| | - Guo-Chao Liang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University
| | - Guan Zhou
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University
| | - Xiao-Ke Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University
| | - Bao-Hua Chen
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University
| | - Ya-Li Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University
| |
Collapse
|
24
|
Kumar S, Sharma RK. N-terminal region of the catalytic domain of human N-myristoyltransferase 1 acts as an inhibitory module. PLoS One 2015; 10:e0127661. [PMID: 26000639 PMCID: PMC4441422 DOI: 10.1371/journal.pone.0127661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/17/2015] [Indexed: 11/18/2022] Open
Abstract
N-myristoyltransferase (NMT) plays critical roles in the modulation of various signaling molecules, however, the regulation of this enzyme in diverse cellular states remains poorly understood. We provide experimental evidence to show for the first time that for the isoform 1 of human NMT (hNMT1), the regulatory roles extend into the catalytic core. In our present study, we expressed, purified, and characterized a truncation mutant devoid of 28 N-terminal amino acids from the catalytic module (Δ28-hNMT1s) and compared its properties to the full-length catalytic domain of hNMT1. The deletion of the N-terminal peptide had no effect on the enzyme stability. Our findings suggest that the N-terminal region in the catalytic module of hNMT1 functions serves as a regulatory control element. The observations of an ~3 fold increase in enzymatic efficiency following removal of the N-terminal peptide of hNMT1s indicates that N-terminal amino acids acts as an inhibitory segment and negatively regulate the enzyme activity. Our findings that the N-terminal region confers control over activity, taken together with the earlier observations that the N-terminal of hNMT1 is differentially processed in diverse cellular states, suggests that the proteolytic processing of the peptide segment containing the inhibitory region provides a molecular mechanism for physiological up-regulation of myristoyltransferase activity.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rajendra K. Sharma
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (RKS)
| |
Collapse
|
25
|
Shimada T, Suzuki M, Katakura SI. Structure of N-myristoyltransferase from Aspergillus fumigatus. ACTA ACUST UNITED AC 2015; 71:754-61. [PMID: 25849386 DOI: 10.1107/s1399004715000401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/09/2015] [Indexed: 11/10/2022]
Abstract
N-Myristoyltransferase (NMT) is an enzyme which translocates the 14-carbon saturated fatty acid myristate from myristoyl-CoA to the N-terminal glycine of substrate peptides. This myristoylation process is involved in protein modification in various eukaryotes, including animals and fungi. Furthermore, this enzyme has been shown to be essential to the growth of various species, such as Saccharomyces cerevisiae, which indicates that NMT is an attractive target for the development of a novel antifungal drug. In this study, the crystal structure of a ternary complex of NMT from Aspergillus fumigatus with S-(2-oxo)pentadecyl-CoA, a myristoyl-CoA analogue cofactor, and a synthetic inhibitor is reported at a resolution of 2.1 Å. The results advance the understanding of the specificity of NMT inhibitors and provide valuable information for structure-based drug design.
Collapse
Affiliation(s)
- Takashi Shimada
- Drug Discovery and Biomedical Technology Unit, Daiichi Sankyo RD Novare Co. Ltd, 1-16-13 Kita-kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Makoto Suzuki
- Drug Discovery and Biomedical Technology Unit, Daiichi Sankyo RD Novare Co. Ltd, 1-16-13 Kita-kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Shin-ichi Katakura
- Drug Discovery and Biomedical Technology Unit, Daiichi Sankyo RD Novare Co. Ltd, 1-16-13 Kita-kasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|