1
|
Schröder M, Petrova M, Vlahova Z, Dobrikov GM, Slavchev I, Pasheva E, Ugrinova I. In Vitro Anticancer Activity of Two Ferrocene-Containing Camphor Sulfonamides as Promising Agents against Lung Cancer Cells. Biomedicines 2022; 10:biomedicines10061353. [PMID: 35740374 PMCID: PMC9219647 DOI: 10.3390/biomedicines10061353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The successful design of antitumour drugs often combines in one molecule different biologically active subunits that can affect various regulatory pathways in the cell and thus achieve higher efficacy. Two ferrocene derivatives, DK-164 and CC-78, with different residues were tested for cytotoxic potential on non-small lung cancer cell lines, A549 and H1299, and non-cancerous MRC5. DK-164 demonstrated remarkable selectivity toward cancer cells and more pronounced cytotoxicity against A549. The cytotoxicity of CC-78 toward H1299 was even higher than that of the well-established anticancer drugs cisplatin and tamoxifen, but it did not reveal any noticeable selective effect. DK-164 showed predominantly pro-apoptotic activity in non-small cell lung carcinoma (NSCLC) cells, while CC-78 caused accidental cell death with features characteristic of necrosis. The level of induced autophagy was similar for both substances in cancer cells. DK-164 treatment of A549, H1299, and MRC5 cells for 48 h significantly increased the fluorescence signal of the NFkB (nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells) protein in the nucleus in all three cell lines, while CC-78 did not provoke NFkB translocation in any of the tested cell lines. Both compounds caused a significant transfer of the p53 protein in the nucleus of A549 cells but not in non-cancerous MRC5 cells. In A549, DK-164 generated oxidative stress close to the positive control after 48 h, while CC-78 had a moderate effect on the cellular redox status. In the non-cancerous cells, MRC5, both compounds produced ROS similar to the positive control for the same incubation period. The different results related to the cytotoxic potential of DK-164 and CC-78 associated with the examined cellular mechanisms induced in lung cancer cells might be used to conclude the specific functions of the various functional groups in the ferrocene compounds, which can offer new perspectives for the design of antitumour drugs.
Collapse
Affiliation(s)
- Maria Schröder
- Institute of Molecular Biology “Akad. Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (Z.V.); (E.P.)
| | - Maria Petrova
- Institute of Molecular Biology “Akad. Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (Z.V.); (E.P.)
| | - Zlatina Vlahova
- Institute of Molecular Biology “Akad. Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (Z.V.); (E.P.)
| | - Georgi M. Dobrikov
- Institute of Organic Chemistry with Center of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl 9, 1113 Sofia, Bulgaria; (G.M.D.); (I.S.)
| | - Ivaylo Slavchev
- Institute of Organic Chemistry with Center of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl 9, 1113 Sofia, Bulgaria; (G.M.D.); (I.S.)
| | - Evdokia Pasheva
- Institute of Molecular Biology “Akad. Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (Z.V.); (E.P.)
| | - Iva Ugrinova
- Institute of Molecular Biology “Akad. Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (Z.V.); (E.P.)
- Correspondence: ; Tel.: +359-887-985-463
| |
Collapse
|
2
|
Bouché M, Hognon C, Grandemange S, Monari A, Gros PC. Recent advances in iron-complexes as drug candidates for cancer therapy: reactivity, mechanism of action and metabolites. Dalton Trans 2020; 49:11451-11466. [PMID: 32776052 DOI: 10.1039/d0dt02135k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this perspective, we discuss iron-complexes as drug candidates that are promising alternatives to conventional platinum-based chemotherapies owing to their broad range of reactivities and to the targeting of different biological systems. Breakthroughs in the comprehension of iron complexes' structure-activity relationship contributed to the clarification of their metabolization pathways, sub-cellular localization and influence on iron homeostasis, while enlightening the primary molecular targets of theses likely multi-target metallodrugs. Both the antiproliferative activity and elevated safety index observed among the family of iron complexes showed encouraging results as per their therapeutic potential and selectivity also with the aim of reducing chemotherapy side-effects, and facilitated more pre-clinical investigations. The purpose of this perspective is to summarize the recent advances that contributed in unveiling the intricate relationships between the structural modifications on iron-complexes and their reactivity, cellular trafficking and global mechanisms of action to broaden their use as anticancer drugs and advance to clinical evaluation.
Collapse
Affiliation(s)
- Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| | - Cécilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Philippe C Gros
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| |
Collapse
|
3
|
Chellan P, Sadler PJ. Enhancing the Activity of Drugs by Conjugation to Organometallic Fragments. Chemistry 2020; 26:8676-8688. [PMID: 32452579 PMCID: PMC7496994 DOI: 10.1002/chem.201904699] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/12/2020] [Indexed: 12/22/2022]
Abstract
Resistance to chemotherapy is a current clinical problem, especially in the treatment of microbial infections and cancer. One strategy to overcome this is to make new derivatives of existing drugs by conjugation to organometallic fragments, either by an appropriate linker, or by direct coordination of the drug to a metal. We illustrate this with examples of conjugated organometallic metallocene sandwich and half-sandwich complexes, RuII and OsII arene, and RhIII and IrIII cyclopentadienyl half-sandwich complexes. Ferrocene conjugates are particularly promising. The ferrocene-chloroquine conjugate ferroquine is in clinical trials for malaria treatment, and a ferrocene-tamoxifen derivative (a ferrocifen) seems likely to enter anticancer trails soon. Several other examples illustrate that organometallic conjugation can restore the activity of drugs to which resistance has developed.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry and Polymer ScienceStellenbosch University7600Matieland, Western CapeSouth Africa
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
4
|
Development and future prospects of selective organometallic compounds as anticancer drug candidates exhibiting novel modes of action. Eur J Med Chem 2019; 175:269-286. [PMID: 31096151 DOI: 10.1016/j.ejmech.2019.04.062] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/30/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023]
|
5
|
Zaki M, Hairat S, Aazam ES. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies. RSC Adv 2019; 9:3239-3278. [PMID: 35518979 PMCID: PMC9060267 DOI: 10.1039/c8ra07926a] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/26/2018] [Indexed: 02/02/2023] Open
Abstract
The advent of the clinically approved drug cisplatin started a new era in the design of metallodrugs for cancer chemotherapy. However, to date, there has not been much success in this field due to the persistence of some side effects and multi-drug resistance of cancer cells. In recent years, there has been increasing interest in the design of metal chemotherapeutics using organometallic complexes due to their good stability and unique properties in comparison to normal coordination complexes. Their intermediate properties between that of traditional inorganic and organic materials provide researchers with a new platform for the development of more promising cancer therapeutics. Classical metal-based drugs exert their therapeutic potential by targeting only DNA, but in the case of organometallic complexes, their molecular target is quite distinct to avoid drug resistance by cancer cells. Some organometallic drugs act by targeting a protein or inhibition of enzymes such as thioredoxin reductase (TrRx), while some target mitochondria and endoplasmic reticulum. In this review, we mainly discuss organometallic complexes of Ru, Ti, Au, Fe and Os and their mechanisms of action and how new approaches improve their therapeutic potential towards various cancer phenotypes. Herein, we discuss the role of structure-reactivity relationships in enhancing the anticancer potential of drugs for the benefit of humans both in vitro and in vivo. Besides, we also include in vivo tumor models that mimic human physiology to accelerate the development of more efficient clinical organometallic chemotherapeutics.
Collapse
Affiliation(s)
- Mehvash Zaki
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| | - Suboot Hairat
- Department of Biotechnology, Wachemo University Hossana Ethiopia
| | - Elham S Aazam
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| |
Collapse
|
6
|
Silva MPGD, Candido ACL, Lins SDL, Aquino TMD, Mendonça FJB, de Abreu FC. Electrochemical investigation of the toxicity of a new nitrocompound and its interaction with β-cyclodextrin and polyamidoamine third-generation. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Deo KM, Pages BJ, Ang DL, Gordon CP, Aldrich-Wright JR. Transition Metal Intercalators as Anticancer Agents-Recent Advances. Int J Mol Sci 2016; 17:ijms17111818. [PMID: 27809241 PMCID: PMC5133819 DOI: 10.3390/ijms17111818] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/11/2016] [Accepted: 10/23/2016] [Indexed: 12/20/2022] Open
Abstract
The diverse anticancer utility of cisplatin has stimulated significant interest in the development of additional platinum-based therapies, resulting in several analogues receiving clinical approval worldwide. However, due to structural and mechanistic similarities, the effectiveness of platinum-based therapies is countered by severe side-effects, narrow spectrum of activity and the development of resistance. Nonetheless, metal complexes offer unique characteristics and exceptional versatility, with the ability to alter their pharmacology through facile modifications of geometry and coordination number. This has prompted the search for metal-based complexes with distinctly different structural motifs and non-covalent modes of binding with a primary aim of circumventing current clinical limitations. This review discusses recent advances in platinum and other transition metal-based complexes with mechanisms of action involving intercalation. This mode of DNA binding is distinct from cisplatin and its derivatives. The metals focused on in this review include Pt, Ru and Cu along with examples of Au, Ni, Zn and Fe complexes; these complexes are capable of DNA intercalation and are highly biologically active.
Collapse
Affiliation(s)
- Krishant M Deo
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Campbelltown, NSW 2560, Australia.
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Benjamin J Pages
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Campbelltown, NSW 2560, Australia.
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Dale L Ang
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Campbelltown, NSW 2560, Australia.
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Christopher P Gordon
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Janice R Aldrich-Wright
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Campbelltown, NSW 2560, Australia.
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
8
|
Electrochemical, spectroscopic and pharmacological approaches toward the understanding of biflorin DNA damage effects. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Wani WA, Baig U, Shreaz S, Shiekh RA, Iqbal PF, Jameel E, Ahmad A, Mohd-Setapar SH, Mushtaque M, Ting Hun L. Recent advances in iron complexes as potential anticancer agents. NEW J CHEM 2016. [DOI: 10.1039/c5nj01449b] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The iron complexes discussed in this review highlight their promising future as anticancer agents.
Collapse
Affiliation(s)
- Waseem A. Wani
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- 81310 UTM Skudai
- Malaysia
| | - Umair Baig
- Center of Excellence for Scientific Research Collaboration with MIT
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Sheikh Shreaz
- Oral Microbiology Laboratory
- Department of Bioclinical Sciences
- Faculty of Dentistry
- Health Sciences Center
- Kuwait University
| | - Rayees Ahmad Shiekh
- Department of Chemistry
- Faculty of Science
- Taibah University
- Al Madinah Al Munawarrah
- Saudi Arabia
| | | | - Ehtesham Jameel
- Department of Chemistry
- B. R. Ambedkar Bihar University
- Muzaffarpur
- India
| | - Akil Ahmad
- Center of Lipids Engineering and Applied Research
- Ibnu Sina Institute for Industrial and Scientific Research
- Universiti Teknologi Malaysia
- 81310 UTM Skudai
- Malaysia
| | - Siti Hamidah Mohd-Setapar
- Center of Lipids Engineering and Applied Research
- Ibnu Sina Institute for Industrial and Scientific Research
- Universiti Teknologi Malaysia
- 81310 UTM Skudai
- Malaysia
| | - Md. Mushtaque
- Department of Physical and Molecular Sciences (Chemistry)
- Al-Falah University
- Faridabad
- India
| | - Lee Ting Hun
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- 81310 UTM Skudai
- Malaysia
| |
Collapse
|
10
|
Silva CG, Santos Júnior HM, Barbosa JP, Costa GL, Rodrigues FAR, Oliveira DF, Costa-Lotufo LV, Alves RJV, Eleutherio ECA, Rezende CM. Structure Elucidation, Antimicrobial and Cytotoxic Activities of a Halimane Isolated fromVellozia kolbekiiAlves(Velloziaceae). Chem Biodivers 2015; 12:1891-901. [DOI: 10.1002/cbdv.201500071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Indexed: 11/09/2022]
|
11
|
Souza NBD, Aguiar ACC, Oliveira ACD, Top S, Pigeon P, Jaouen G, Goulart MOF, Krettli AU. Antiplasmodial activity of iron(II) and ruthenium(II) organometallic complexes against Plasmodium falciparum blood parasites. Mem Inst Oswaldo Cruz 2015; 110:981-8. [PMID: 26602875 PMCID: PMC4708017 DOI: 10.1590/0074-02760150163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/14/2015] [Indexed: 11/27/2022] Open
Abstract
This work reports the in vitro activity against Plasmodium
falciparumblood forms (W2 clone, chloroquine-resistant) of
tamoxifen-based compounds and their ferrocenyl (ferrocifens) and ruthenocenyl
(ruthenocifens) derivatives, as well as their cytotoxicity against HepG2 human
hepatoma cells. Surprisingly with these series, results indicate that the biological
activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like
compounds. The synthesis of a new metal-based compound is also described. It was
shown, for the first time, that ruthenocifens are good antiplasmodial prototypes.
Further studies will be conducted aiming at a better understanding of their mechanism
of action and at obtaining new compounds with better therapeutic profile.
Collapse
Affiliation(s)
| | | | | | - Siden Top
- Université Pierre-et-Marie-Curie, Sorbonne Universités, Paris, France
| | - Pascal Pigeon
- Université Pierre-et-Marie-Curie, Sorbonne Universités, Paris, France
| | - Gérard Jaouen
- Université Pierre-et-Marie-Curie, Sorbonne Universités, Paris, France
| | | | | |
Collapse
|
12
|
Abstract
The mechanisms of action of ferrocifens depend on several features: chemical structures, used concentrations, nature of cancer cells.
Collapse
Affiliation(s)
- Gérard Jaouen
- Sorbonne Universités
- UPMC Univ Paris 06
- IPCM
- F-75005 Paris
- France
| | - Anne Vessières
- Sorbonne Universités
- UPMC Univ Paris 06
- IPCM
- F-75005 Paris
- France
| | - Siden Top
- Sorbonne Universités
- UPMC Univ Paris 06
- IPCM
- F-75005 Paris
- France
| |
Collapse
|