1
|
Peng J, Quan DL, Yang G, Wei LT, Yang Z, Dong ZY, Zou YM, Hou YK, Chen JX, Lv L, Sun B. Multifunctional nanocomposites utilizing ruthenium (II) complex/manganese (IV) dioxide nanoparticle for synergistic reinforcing radioimmunotherapy. J Nanobiotechnology 2024; 22:735. [PMID: 39593029 PMCID: PMC11600833 DOI: 10.1186/s12951-024-03013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Radiotherapy (RT) stands as a frontline treatment modality in clinical breast oncology, yet challenges like ROS reduction, high toxicity, non-selectivity, and hypoxia hinder efficacy. Additionally, RT administered at different doses can induce varying degrees of radioimmunotherapy. High doses of radiation (>10 Gy) may result in immune suppression, while moderate doses (4-10 Gy), although capable of mitigating the immune suppression caused by high-dose radiation, are often insufficient in effectively killing tumor cells. Therefore, enhancing the generation of ROS and ameliorating the tumor hypoxic immune-suppressive microenvironment at moderate radiation doses could potentially drive radiation-induced immune responses, offering a fundamental solution to the limitations of RT. In this study, a novel multifunctional nanoplatform, RMLF, integrating a Ru (II) complex into folate-functionalized liposomes with BSA-MnO2 nanoparticles was proposed. Orthogonal experimental optimization enhances radiosensitization via increasing accumulation in cancer cells, elevating ROS, and contributing to a dual enhancement of the cGAS-STING-dependent type I IFN signaling pathway, aimed to overcome the insufficient DAMPs typically seen in the conventional RT at 4 Gy. Such a strategy effectively activated cytotoxic T lymphocytes for infiltration into tumor tissues and promoted the polarization of tumor-associated macrophages from the M2 to M1 phenotype, substantially bolstering immune memory responses. This pioneering approach represents the first use of a ruthenium complex in radioimmunotherapy, activating the cGAS-STING pathway to amplify immune responses, overcome RT resistance, and extend immunotherapeutic potential.
Collapse
Affiliation(s)
- Jian Peng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, P.R. China
| | - Dong-Ling Quan
- Shenzhen Hospital of Southern Medical University, 1333 Xinhu Road, Bao'an District, Shenzhen, Guangdong Province, 518101, P.R. China
| | - Guang Yang
- Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, 519000, P.R. China
| | - Lin-Tao Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Zhuan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Zhi-Ying Dong
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Yi-Ming Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Ying-Ke Hou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Lin Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China.
| | - Bin Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China.
| |
Collapse
|
2
|
Chen L, Tang H, Hu T, Wang J, Ouyang Q, Zhu X, Wang R, Huang W, Huang Z, Chen J. Three Ru(II) complexes modulate the antioxidant transcription factor Nrf2 to overcome cisplatin resistance. J Inorg Biochem 2024; 259:112666. [PMID: 39029397 DOI: 10.1016/j.jinorgbio.2024.112666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Here, we designed, synthesized and characterized three new cyclometalated Ru(II) complexes, [Ru(phen)2(1-(4-Ph-Ph)-IQ)]+ (phen = 1,10-phenanthroline, IQ = isoquinoline, RuIQ9), [Ru(phen)2(1-(4-Ph-Ph)-7-OCH3-IQ)]+ (RuIQ10), and [Ru(phen)2(1-(4-Ph-Ph)-6,7-(OCH3)2-IQ)]+ (RuIQ11). The cytotoxicity experiments conducted on both 2D and 3D multicellular tumor spheroids (MCTSs) indicated that complexes RuIQ9-11 exhibited notably higher cytotoxicity against A549 and A549/DDP cells when compared to the ligands and precursor compounds as well as clinical cisplatin. Moreover, the Ru(II) complexes displayed low toxicity when tested on normal HBE cells in vitro and exposed to zebrafish embryos in vivo. In addition, complexes RuIQ9-11 could inhibit A549 and A549/DDP cell migration and proliferation by causing cell cycle arrest, mitochondrial dysfunction, and elevating ROS levels to induce apoptosis in these cells. Mechanistic studies revealed that RuIQ9-11 could suppress the expression of Nrf2 and its downstream antioxidant protein HO-1 by inhibiting Nrf2 gene transcription in drug-resistant A549/DDP cells. Simultaneously, they inhibited the expression of efflux proteins MRP1 and p-gp in drug-resistant cells, ensuring the accumulation of the complexes within the cells. This led to an increase in intracellular ROS levels in drug-resistant cells, ultimately causing damage and cell death, thus overcoming cisplatin resistance. More importantly, RuIQ11 could effectively inhibit the migration and proliferation of drug-resistant cells within zebrafish, addressing the issue of cisplatin resistance. Accordingly, the prepared Ru(II) complexes possess significant potential for development as highly effective and low-toxicity lung cancer therapeutic agents to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Lanmei Chen
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China
| | - Hong Tang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Tianling Hu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jie Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Qianqian Ouyang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Xufeng Zhu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Rui Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wenyong Huang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zunnan Huang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China.
| | - Jincan Chen
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China.
| |
Collapse
|
3
|
Zhu X, Sun Q, Guo X, Liang C, Zhang Y, Huang W, Pei W, Huang Z, Chen L, Chen J. Cyclometalated ruthenium (II) complexes induced HeLa cell apoptosis through intracellular reductive injury. J Inorg Biochem 2023; 247:112333. [PMID: 37480763 DOI: 10.1016/j.jinorgbio.2023.112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/29/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
The main challenge of cancer chemotherapy is the resistance of tumor cells to oxidative damage. Herein, we proposed a novel antitumor strategy: cyclic metal‑ruthenium (Ru) complexes mediate reductive damage to kill tumor cells. We designed and synthesized Ru(II) complexes with β-carboline as ligands: [Ru (phen)2(NO2-Ph-βC)](PF6) (RuβC-7) and [Ru(phen)2(1-Ph-βC)](PF6) (RuβC-8). In vitro experimental results showed that RuβC-7 and RuβC-8 can inhibit cell proliferation, promote mitochondrial abnormalities, and induce DNA damage. Interestingly, RuβC-7 with SOD activity could reduce intracellular reactive oxygen species (ROS) levels, while RuβC-8 has the opposite effect. Accordingly, this study identified the reductive damage mechanism of tumor apoptosis, and may provide a new ideas for the design of novel metal complexes.
Collapse
Affiliation(s)
- Xufeng Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Qiang Sun
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Xinhua Guo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Chunmei Liang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yao Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wenyong Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wenliang Pei
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zunnan Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Lanmei Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jincan Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.
| |
Collapse
|
4
|
Alfadul SM, Matnurov EM, Varakutin AE, Babak MV. Metal-Based Anticancer Complexes and p53: How Much Do We Know? Cancers (Basel) 2023; 15:2834. [PMID: 37345171 DOI: 10.3390/cancers15102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
P53 plays a key role in protecting the human genome from DNA-related mutations; however, it is one of the most frequently mutated genes in cancer. The P53 family members p63 and p73 were also shown to play important roles in cancer development and progression. Currently, there are various organic molecules from different structural classes of compounds that could reactivate the function of wild-type p53, degrade or inhibit mutant p53, etc. It was shown that: (1) the function of the wild-type p53 protein was dependent on the presence of Zn atoms, and (2) Zn supplementation restored the altered conformation of the mutant p53 protein. This prompted us to question whether the dependence of p53 on Zn and other metals might be used as a cancer vulnerability. This review article focuses on the role of different metals in the structure and function of p53, as well as discusses the effects of metal complexes based on Zn, Cu, Fe, Ru, Au, Ag, Pd, Pt, Ir, V, Mo, Bi and Sn on the p53 protein and p53-associated signaling.
Collapse
Affiliation(s)
- Samah Mutasim Alfadul
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Egor M Matnurov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Alexander E Varakutin
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Heptacoordinated lanthanide(III) complexes based on 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine ligands (bbp, bmbp and bdmbp): Computational calculations, luminescent properties and cytotoxic evaluation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
6
|
Second and third-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumour activity. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Alfonso‐Herrera LA, Rosete‐Luna S, Hernández‐Romero D, Rivera‐Villanueva JM, Olivares‐Romero JL, Cruz‐Navarro JA, Soto‐Contreras A, Arenaza‐Corona A, Morales‐Morales D, Colorado‐Peralta R. Transition Metal Complexes with Tridentate Schiff Bases (O N O and O N N) Derived from Salicylaldehyde: An Analysis of Their Potential Anticancer Activity. ChemMedChem 2022; 17:e202200367. [PMID: 36068174 PMCID: PMC9826236 DOI: 10.1002/cmdc.202200367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Although it is known that the first case of cancer was recorded in ancient Egypt around 1600 BC, it was not until 1917 during the First World War and the development of mustard gas that chemotherapy against cancer became relevant; however, its properties were not recognised until 1946 to later be used in patients. In this sense, the use of metallopharmaceuticals in cancer therapy was extensively explored until the 1960s with the discovery of cisplatin and its anticancer activity. From that date to the present, the search for more effective, more selective metallodrugs with fewer side effects has been an area of continuous exploration. Efforts have led to considering a wide variety of metals from the periodic table, mainly from the d-block, as well as a wide variety of organic ligands, preferably with proven biological activity. In this sense, various research groups have found an ideal binder in Schiff bases, since their raw materials are easily accessible, their synthesis conditions are friendly and their denticity can be manipulated. Therefore, in this review, we have explored the anticancer and antitumor activity reported in the literature for coordination complexes of d-block metals coordinated with tridentate Schiff bases (O N O and O N N) derived from salicylaldehyde. For this work, we have used the main scientific databases CCDC® and SciFinder®.
Collapse
Affiliation(s)
- Luis A. Alfonso‐Herrera
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad Autónoma de Nuevo León Facultad de Ingeniería Civil Departamento de Ecomateriales y Energía Av. Universidad S/N Ciudad Universitaria64455San Nicolás de los GarzaNuevo LeónMéxico
| | - Sharon Rosete‐Luna
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - Delia Hernández‐Romero
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - José M. Rivera‐Villanueva
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - José L. Olivares‐Romero
- Instituto de Ecología A.C. Red de Estudios Moleculares AvanzadosClúster Científico y Tecnológico BioMimic® Carretera Antigua a Coatepec, No. 35191070Xalapa, VeracruzMéxico
| | - J. Antonio Cruz‐Navarro
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad Autónoma del Estado de HidalgoÁrea Académica de Química Km 4.5 Carretera Pachuca-Tulancingo42184, Mineral de la ReformaHidalgoMéxico
| | - Anell Soto‐Contreras
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad VeracruzanaFacultad de Ciencias Biológicas y Agropecuarias Km 177 Camino Peñuela-Amatlán S/N94500, Peñuela, Amatlán de los ReyesVeracruzMéxico
| | - Antonino Arenaza‐Corona
- Universidad Nacional Autónoma de México Instituto de Química, Circuito Exterior S/N04510Ciudad de MéxicoMéxico
| | - David Morales‐Morales
- Universidad Nacional Autónoma de México Instituto de Química, Circuito Exterior S/N04510Ciudad de MéxicoMéxico
| | - Raúl Colorado‐Peralta
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| |
Collapse
|
8
|
Negreti AA, Ferreira-Silva GÁ, Pressete CG, Fonseca R, Candido CC, Graminha AE, Doriguetto AC, Caixeta ES, Hanemann JAC, Castro-Gamero AM, Barbosa MIF, Miyazawa M, Ionta M. Ruthenium( ii) complex containing cinnamic acid derivative inhibits cell cycle progression at G0/G1 and induces apoptosis in melanoma cells. NEW J CHEM 2022. [DOI: 10.1039/d1nj04291b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melanoma is a highly aggressive skin cancer with a limited targeted therapy arsenal.
Collapse
Affiliation(s)
- Amanda Alvim Negreti
- Institute of Biomedical Sciences, Federal University of Alfenas, zip-code 37130-001, Alfenas, MG, Brazil
| | | | - Carolina Girotto Pressete
- Institute of Biomedical Sciences, Federal University of Alfenas, zip-code 37130-001, Alfenas, MG, Brazil
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas, zip-code 37130-001, Alfenas, MG, Brazil
| | - Caio C. Candido
- Institute of Chemistry, Federal University of Alfenas, zip-code 37130-001, Alfenas, MG, Brazil
| | - Angelica E. Graminha
- Departament of Chemistry, Federal University of São Carlos, zip code 13565-905, São Carlos, SP, Brazil
| | | | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas, zip-code 37130-001, Alfenas, MG, Brazil
| | - João Adolfo Costa Hanemann
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, zip-code 37130-001, Alfenas, MG, Brazil
| | - Angel Mauricio Castro-Gamero
- Human Genetics Laboratory, Institute of Natural Science, Federal University of Alfenas, zip-code 37130-001, Alfenas, MG, Brazil
| | - Marilia I. F. Barbosa
- Institute of Chemistry, Federal University of Alfenas, zip-code 37130-001, Alfenas, MG, Brazil
| | - Marta Miyazawa
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, zip-code 37130-001, Alfenas, MG, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, zip-code 37130-001, Alfenas, MG, Brazil
| |
Collapse
|
9
|
Structural diversity and luminescent properties of coordination complexes obtained from trivalent lanthanide ions with the ligands: tris((1H-benzo[d]imidazol-2-yl)methyl)amine and 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Li J, Chen T. Transition metal complexes as photosensitizers for integrated cancer theranostic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213355] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Zhao Z, Gao P, Ma L, Chen T. A highly X-ray sensitive iridium prodrug for visualized tumor radiochemotherapy. Chem Sci 2020; 11:3780-3789. [PMID: 34122847 PMCID: PMC8152633 DOI: 10.1039/d0sc00862a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Concomitant treatment of radiotherapy and chemotherapy is widely used in cancer therapy. The search for highly efficient radiochemotherapy drugs for tumor targeting therapy under image-guiding is of considerable interest. Herein we report an Ir-based prodrug Ir-NB with high sensitization efficiency for in vivo tumor microenvironment responsive cancer-targeted bioimaging radiochemotherapy. To the best of our knowledge, the sensitivity enhancement ratio (SER) of the Ir-NB prodrug is the highest among those reported for radiotherapy metal complex drugs. From detailed action mechanism study, we provide evidence that the prodrug is effectively suppresses the tumor growth through inducing mitochondrial dysfunction, and eventually amplifies the apoptotic signal pathway. This study provides an approach for the development of cancer theranostic agents for tumor radiotherapy. A highly X-ray sensitive molecular prodrug, Ir-NB, was reported for visualized tumor radiochemotherapy. To our knowledge, the sensitivity enhancement ratio of the prodrug is the highest among the reported radiotherapy metal complexes drugs.![]()
Collapse
Affiliation(s)
- Zhennan Zhao
- Department of Chemistry, Jinan University Guangzhou 510632 China
| | - Pan Gao
- Department of Chemistry, Jinan University Guangzhou 510632 China
| | - Li Ma
- Department of Chemistry, Jinan University Guangzhou 510632 China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University Guangzhou 510632 China
| |
Collapse
|
12
|
Xiong Z, Zhong JX, Zhao Z, Chen T. Biocompatible ruthenium polypyridyl complexes as efficient radiosensitizers. Dalton Trans 2019; 48:4114-4118. [PMID: 30839038 DOI: 10.1039/c9dt00333a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A biocompatible ruthenium polypyridyl complex has been rationally designed, which could self-assemble into nanoparticles in aqueous solution to enhance the solubility and biocompatibility, and could synergistically realize simultaneous cancer chemo-radiotherapy.
Collapse
Affiliation(s)
- Zushuang Xiong
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Jing-Xiang Zhong
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Zhennan Zhao
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
13
|
Abstract
Combining metallo-drugs with ionising radiation for synergistic cancer cell killing: chemical design principles, mechanisms of action and emerging applications.
Collapse
Affiliation(s)
- Martin R. Gill
- CRUK/MRC Oxford Institute for Radiation Oncology
- Department of Oncology
- University of Oxford
- Oxford
- UK
| | - Katherine A. Vallis
- CRUK/MRC Oxford Institute for Radiation Oncology
- Department of Oncology
- University of Oxford
- Oxford
- UK
| |
Collapse
|
14
|
Zhou Y, Xu Y, Lu L, Ni J, Nie J, Cao J, Jiao Y, Zhang Q. Luminescent ruthenium(II) polypyridyl complexes acted as radiosensitizer for pancreatic cancer by enhancing radiation-induced DNA damage. Theranostics 2019; 9:6665-6675. [PMID: 31588242 PMCID: PMC6771246 DOI: 10.7150/thno.34015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Pancreatic cancer is a highly lethal malignancy which ranks 4th most common cause of cancer death in US and 6th in China. Novel drugs are required to improve the survival and prognosis of patients. Methods: Ruthenium(II) complexes with variation number of DIP ligand were synthesized and further adopted as radiosensitizer for pancreatic cancer. The influence of ruthenium(II) complexes on cell behaviors and tumor growth were investigated. The DNA binding affinity of ruthenium(II) complexes and plasmid was measured by using agarose gel electrophoresis. Results: Luminescent ruthenium(II) complex can rapidly enter into cell nuclei and consequently combine with DNA, resulting in the enhanced DNA damage induced by X-ray irradiation. Upon intratumoral injection of ruthenium(II) complex, excellent tumor growth inhibition was accomplished under ionizing radiation of human pancreatic cancer xenograft nude mice. Conclusions: Taken together, our study suggest that the ruthenium(II) polypyridyl complexes can effectively enhance radiation-induced DNA damage, which is likely to benefit the imaging-guided cancer radio-chemotherapy.
Collapse
Affiliation(s)
- Yuyang Zhou
- School of Chemistry, Biology and Materials Engineering, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
- ✉ Corresponding authors: Prof. Yuyang Zhou, E-mail: . Prof. Yang Jiao, Tel: +86 0512-65883941, E-mail: . Prof. Qi Zhang, Tel: +86 0512-65883941,
| | - Ying Xu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Lunjie Lu
- Department of Radiation Physics, Qingdao Central Hospital, Qingdao, Shandong, 266000, P. R. China
| | - Jingyang Ni
- School of Chemistry, Biology and Materials Engineering, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Jihua Nie
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jianping Cao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yang Jiao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
- ✉ Corresponding authors: Prof. Yuyang Zhou, E-mail: . Prof. Yang Jiao, Tel: +86 0512-65883941, E-mail: . Prof. Qi Zhang, Tel: +86 0512-65883941,
| | - Qi Zhang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
- ✉ Corresponding authors: Prof. Yuyang Zhou, E-mail: . Prof. Yang Jiao, Tel: +86 0512-65883941, E-mail: . Prof. Qi Zhang, Tel: +86 0512-65883941,
| |
Collapse
|
15
|
Ruthenium coordination compounds of biological and biomedical significance. DNA binding agents. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Cruz-Navarro A, Rivera JM, Durán-Hernández J, Castillo-Blum S, Flores-Parra A, Sánchez M, Hernández-Ahuactzi I, Colorado-Peralta R. Luminescence properties and DFT calculations of lanthanide(III) complexes (Ln = La, Nd, Sm, Eu, Gd, Tb, Dy) with 2,6-bis(5-methyl-benzimidazol-2-yl)pyridine. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Zeng D, Deng S, Sang C, Zhao J, Chen T. Rational Design of Cancer-Targeted Selenadiazole Derivative as Efficient Radiosensitizer for Precise Cancer Therapy. Bioconjug Chem 2018; 29:2039-2049. [PMID: 29771500 DOI: 10.1021/acs.bioconjchem.8b00247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Delong Zeng
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shulin Deng
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Chengcheng Sang
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jianfu Zhao
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
18
|
Poynton FE, Bright SA, Blasco S, Williams DC, Kelly JM, Gunnlaugsson T. The development of ruthenium(ii) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem Soc Rev 2018; 46:7706-7756. [PMID: 29177281 DOI: 10.1039/c7cs00680b] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruthenium(ii) [Ru(ii)] polypyridyl complexes have been the focus of intense investigations since work began exploring their supramolecular interactions with DNA. In recent years, there have been considerable efforts to translate this solution-based research into a biological environment with the intention of developing new classes of probes, luminescent imaging agents, therapeutics and theranostics. In only 10 years the field has expanded with diverse applications for these complexes as imaging agents and promising candidates for therapeutics. In light of these efforts this review exclusively focuses on the developments of these complexes in biological systems, both in cells and in vivo, and hopes to communicate to readers the diversity of applications within which these complexes have found use, as well as new insights gained along the way and challenges that researchers in this field still face.
Collapse
Affiliation(s)
- Fergus E Poynton
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
19
|
[Ru(pipe)(dppb)(bipy)]PF 6: A novel ruthenium complex that effectively inhibits ERK activation and cyclin D1 expression in A549 cells. Toxicol In Vitro 2017; 44:382-391. [PMID: 28774850 DOI: 10.1016/j.tiv.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022]
Abstract
Lung cancer is the most frequent type of cancer worldwide. In Brazil, only 14% of the patients diagnosed with lung cancer survived 5years in the last decades. Although improvements in the therapeutic approach, it is relevant to identify new chemotherapeutic agents. In this framework, ruthenium metal compounds emerge as a promising alternative to platinum-based compounds once they displayed lower cytotoxicity and more selectivity for tumor cells. The present study aimed to evaluate the antitumor potential of innovative ruthenium(II) complex, [Ru(pipe)(dppb)(bipy)]PF6 (PIPE) on A549 cells, which is derived from non-small cell lung cancer. Results demonstrated that PIPE effectively reduced the viability and proliferation rate of A549 cells. When PIPE was used at 9μM there was increase in G0/G1 cell population with concomitant reduction in frequency of cells in S-phase, indicating cell cycle arrest in G1/S transition. Antiproliferative activity of PIPE was associated to its ability of reducing cyclin D1 expression and ERK phosphorylation levels. Cytotoxic activity of PIPE on A549 cells was observed when PIPE was used at 18μM, which was associated to its ability of inducing apoptosis by intrinsic pathway. Taken together, the data demonstrated that PIPE is a promising antitumor agent and further in vivo studies should be performed.
Collapse
|
20
|
Deng Z, Gao P, Yu L, Ma B, You Y, Chan L, Mei C, Chen T. Ruthenium complexes with phenylterpyridine derivatives target cell membrane and trigger death receptors-mediated apoptosis in cancer cells. Biomaterials 2017; 129:111-126. [PMID: 28340357 DOI: 10.1016/j.biomaterials.2017.03.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 01/04/2023]
Abstract
Elucidation of the communication between metal complexes and cell membrane may provide useful information for rational design of metal-based anticancer drugs. Herein we synthesized a novel class of ruthenium (Ru) complexes containing phtpy derivatives (phtpy = phenylterpyridine), analyzed their structure-activity relationship and revealed their action mechanisms. The result showed that, the increase in the planarity of hydrophobic Ru complexes significantly enhanced their lipophilicity and cellular uptake. Meanwhile, the introduction of nitro group effectively improved their anticancer efficacy. Further mechanism studies revealed that, complex (2c), firstly accumulated on cell membrane and interacted with death receptors to activate extrinsic apoptosis signaling pathway. The complex was then transported into cell cytoplasm through transferrin receptor-mediated endocytosis. Most of the intracellular 2c accumulated in cell plasma, decreasing the level of cellular ROS, inducing the activation of caspase-9 and thus intensifying the apoptosis. At the same time, the residual 2c can translocate into cell nucleus to interact with DNA, induce DNA damage, activate p53 pathway and enhance apoptosis. Comparing with cisplatin, 2c possesses prolonged circulation time in blood, comparable antitumor ability and importantly, much lower toxicity in vivo. Taken together, this study uncovers the role of membrane receptors in the anticancer actions of Ru complexes, and provides fundamental information for rational design of membrane receptor targeting anticancer drugs.
Collapse
Affiliation(s)
- Zhiqin Deng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Pan Gao
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Lianling Yu
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Bin Ma
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yuanyuan You
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Chaoming Mei
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
21
|
Chow MJ, Babak MV, Wong DYQ, Pastorin G, Gaiddon C, Ang WH. Structural Determinants of p53-Independence in Anticancer Ruthenium-Arene Schiff-Base Complexes. Mol Pharm 2016; 13:2543-54. [PMID: 27174050 DOI: 10.1021/acs.molpharmaceut.6b00348] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
p53 is a key tumor suppressor gene involved in key cellular processes and implicated in cancer therapy. However, it is inactivated in more than 50% of all cancers due to mutation or overexpression of its negative regulators. This leads to drug resistance and poor chemotherapeutic outcome as most clinical drugs act via a p53-dependent mechanism of action. An attractive strategy to circumvent this resistance would be to identify new anticancer drugs that act via p53-independent mode of action. In the present study, we identified 9 Ru (II)-Arene Schiff-base (RAS) complexes able to induce p53-independent cytotoxicity and discuss structural features that are required for their p53-independent activity. Increasing hydrophobicity led to an increase in cellular accumulation in cells with a corresponding increase in efficacy. We further showed that all nine complexes demonstrated p53-independent activity. This was despite significant differences in their physicochemical properties, suggesting that the iminoquinoline ligand, a common structural feature for all the complexes, is required for the p53-independent activity.
Collapse
Affiliation(s)
- Mun Juinn Chow
- Department of Chemistry, National University of Singapore , 3 Science Drive 3, 117543 Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , 28 Medical Drive, 117456 Singapore
| | - Maria V Babak
- Department of Chemistry, National University of Singapore , 3 Science Drive 3, 117543 Singapore
| | - Daniel Yuan Qiang Wong
- Department of Chemistry, National University of Singapore , 3 Science Drive 3, 117543 Singapore
| | - Giorgia Pastorin
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , 28 Medical Drive, 117456 Singapore.,Department of Pharmacy, National University of Singapore , 18 Science Drive 4, 117543 Singapore
| | - Christian Gaiddon
- U1113 INSERM, 3 Avenue Molière, Strasbourg 67200, France.,Oncology Section, FMTS, Université de Strasbourg , F-67081 Strasbourg, France
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore , 3 Science Drive 3, 117543 Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , 28 Medical Drive, 117456 Singapore
| |
Collapse
|
22
|
Radiosensitisation of human colorectal cancer cells by ruthenium(II) arene anticancer complexes. Sci Rep 2016; 6:20596. [PMID: 26867983 PMCID: PMC4751532 DOI: 10.1038/srep20596] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/07/2016] [Indexed: 01/14/2023] Open
Abstract
Some of the largest improvements in clinical outcomes for patients with solid cancers observed over the past 3 decades have been from concurrent treatment with chemotherapy and radiotherapy (RT). The lethal effects of RT on cancer cells arise primarily from damage to DNA. Ruthenium (Ru) is a transition metal of the platinum group, with potentially less toxicity than platinum drugs. We postulated that ruthenium-arene complexes are radiosensitisers when used in combination with RT. We screened 14 ruthenium-arene complexes and identified AH54 and AH63 as supra-additive radiosensitisers by clonogenic survival assays and isobologram analyses. Both complexes displayed facial chirality. At clinically relevant doses of RT, radiosensitisation of cancer cells by AH54 and AH63 was p53-dependent. Radiation enhancement ratios for 5–10 micromolar drug concentrations ranged from 1.19 to 1.82. In p53-wildtype cells, both drugs induced significant G2 cell cycle arrest and apoptosis. Colorectal cancer cells deficient in DNA damage repair proteins, EME1 and MUS81, were significantly more sensitive to both agents. Both drugs were active in cancer cell lines displaying acquired resistance to oxaliplatin or cisplatin. Our findings broaden the potential scope for these drugs for use in cancer therapy, including combination with radiotherapy to treat colorectal cancer.
Collapse
|