1
|
Michalczyk E, Hommernick K, Behroz I, Kulike M, Pakosz-Stępień Z, Mazurek L, Seidel M, Kunert M, Santos K, von Moeller H, Loll B, Weston JB, Mainz A, Heddle JG, Süssmuth RD, Ghilarov D. Molecular mechanism of topoisomerase poisoning by the peptide antibiotic albicidin. Nat Catal 2023; 6:52-67. [PMID: 36741192 PMCID: PMC9886550 DOI: 10.1038/s41929-022-00904-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/30/2022] [Indexed: 01/24/2023]
Abstract
The peptide antibiotic albicidin is a DNA topoisomerase inhibitor with low-nanomolar bactericidal activity towards fluoroquinolone-resistant Gram-negative pathogens. However, its mode of action is poorly understood. We determined a 2.6 Å resolution cryoelectron microscopy structure of a ternary complex between Escherichia coli topoisomerase DNA gyrase, a 217 bp double-stranded DNA fragment and albicidin. Albicidin employs a dual binding mechanism where one end of the molecule obstructs the crucial gyrase dimer interface, while the other intercalates between the fragments of cleaved DNA substrate. Thus, albicidin efficiently locks DNA gyrase, preventing it from religating DNA and completing its catalytic cycle. Two additional structures of this trapped state were determined using synthetic albicidin analogues that demonstrate improved solubility, and activity against a range of gyrase variants and E. coli topoisomerase IV. The extraordinary promiscuity of the DNA-intercalating region of albicidins and their excellent performance against fluoroquinolone-resistant bacteria holds great promise for the development of last-resort antibiotics.
Collapse
Affiliation(s)
| | - Kay Hommernick
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Iraj Behroz
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Marcel Kulike
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Zuzanna Pakosz-Stępień
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Lukasz Mazurek
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Maria Seidel
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Maria Kunert
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | | | - Bernhard Loll
- moloX GmbH, Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - John B Weston
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Andi Mainz
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Dmitry Ghilarov
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
2
|
Zborovsky L, Kleebauer L, Seidel M, Kostenko A, von Eckardstein L, Gombert FO, Weston J, Süssmuth RD. Improvement of the antimicrobial potency, pharmacokinetic and pharmacodynamic properties of albicidin by incorporation of nitrogen atoms. Chem Sci 2021; 12:14606-14617. [PMID: 34881013 PMCID: PMC8580050 DOI: 10.1039/d1sc04019g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/17/2021] [Indexed: 01/22/2023] Open
Abstract
The worrisome development and spread of multidrug-resistant bacteria demands new antibacterial agents with strong bioactivities particularly against Gram-negative bacteria. Albicidins were recently structurally characterized as highly active antibacterial natural products from the bacterium Xanthomonas albilineans. Albicidin, which effectively targets the bacterial DNA-gyrase, is a lipophilic hexapeptide mostly consisting of para amino benzoic acid units and only one α-amino acid. In this study, we report on the design and synthesis of new albicidins, containing N-atoms on each of the 5 different phenyl rings. We systematically introduced N-atoms into the aromatic backbone to monitor intramolecular H-bonds and for one derivative correlated them with a significant enhancement of the antibacterial activity and activity spectrum, particularly also towards Gram-positive bacteria. In parallel we conducted DFT calculations to find the most stable conformation of each derivative. A drastic angle-change was observed for the lead compound and shows a preferred planarity through H-bonding with the introduced N-atom at the D-fragment of albicidin. Finally, we went to the next level and conducted the first in vivo experiments with an albicidin analogue. Our lead compound was evaluated in two different mouse experiments: In the first we show a promising PK profile and the absence of toxicity and in the second very good efficiency and reduction of the bacterial titre in an E. coli infection model with FQ-resistant clinically relevant strains. These results qualify albicidins as active antibacterial substances with the potential to be developed as a drug for treatment of infections caused by Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Lieby Zborovsky
- Institut für Organische Chemie, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Leonardo Kleebauer
- Institut für Organische Chemie, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Maria Seidel
- Institut für Organische Chemie, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Arseni Kostenko
- Institut für Organische Chemie, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Leonard von Eckardstein
- Institut für Organische Chemie, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Frank Otto Gombert
- Gombert Pharma Research Solutions (GPRS) Dornacherstrasse 120 CH 4053 Basel Switzerland
| | - John Weston
- Institut für Organische Chemie, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Roderich D Süssmuth
- Institut für Organische Chemie, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
3
|
Wang Z, Kasper A, Mehmood R, Ternei M, Li S, Freundlich JS, Brady SF. Metagenome-Guided Analogue Synthesis Yields Improved Gram-Negative-Active Albicidin- and Cystobactamid-Type Antibiotics. Angew Chem Int Ed Engl 2021; 60:22172-22177. [PMID: 34355488 DOI: 10.1002/anie.202104874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/05/2021] [Indexed: 11/11/2022]
Abstract
Natural products are a major source of new antibiotics. Here we utilize biosynthetic instructions contained within metagenome-derived congener biosynthetic gene clusters (BGCs) to guide the synthesis of improved antibiotic analogues. Albicidin and cystobactamid are the first members of a new class of broad-spectrum ρ-aminobenzoic acid (PABA)-based antibiotics. Our search for PABA-specific adenylation domain sequences in soil metagenomes revealed that BGCs in this family are common in nature. Twelve BGCs that were bio-informatically predicted to encode six new congeners were recovered from soil metagenomic libraries. Synthesis of these six predicted structures led to the identification of potent antibiotics with changes in their spectrum of activity and the ability to circumvent resistance conferred by endopeptidase cleavage enzymes.
Collapse
Affiliation(s)
- Zongqiang Wang
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Amanda Kasper
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Rabia Mehmood
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Melinda Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Shaogang Li
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Joel S Freundlich
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
4
|
Wang Z, Kasper A, Mehmood R, Ternei M, Li S, Freundlich JS, Brady SF. Metagenome‐Guided Analogue Synthesis Yields Improved Gram‐Negative‐Active Albicidin‐ and Cystobactamid‐Type Antibiotics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zongqiang Wang
- Laboratory of Genetically Encoded Small Molecules The Rockefeller University 1230 York Avenue New York NY 10065 USA
| | - Amanda Kasper
- Laboratory of Genetically Encoded Small Molecules The Rockefeller University 1230 York Avenue New York NY 10065 USA
| | - Rabia Mehmood
- Laboratory of Genetically Encoded Small Molecules The Rockefeller University 1230 York Avenue New York NY 10065 USA
| | - Melinda Ternei
- Laboratory of Genetically Encoded Small Molecules The Rockefeller University 1230 York Avenue New York NY 10065 USA
| | - Shaogang Li
- Department of Medicine, Center for Emerging and Re-emerging Pathogens Rutgers University—New Jersey Medical School Newark NJ 07103 USA
| | - Joel S. Freundlich
- Department of Medicine, Center for Emerging and Re-emerging Pathogens Rutgers University—New Jersey Medical School Newark NJ 07103 USA
| | - Sean F. Brady
- Laboratory of Genetically Encoded Small Molecules The Rockefeller University 1230 York Avenue New York NY 10065 USA
| |
Collapse
|
5
|
Behroz I, Kleebauer L, Hommernick K, Seidel M, Grätz S, Mainz A, Weston JB, Süssmuth RD. Acetylenic Replacement of Albicidin's Methacrylamide Residue Circumvents Detrimental E/Z Photoisomerization and Preserves Antibacterial Activity. Chemistry 2021; 27:9077-9086. [PMID: 33769627 PMCID: PMC8362182 DOI: 10.1002/chem.202100523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 01/07/2023]
Abstract
The natural product albicidin is a highly potent inhibitor of bacterial DNA gyrase. Its outstanding activity, particularly against Gram-negative pathogens, qualifies it as a promising lead structure in the search for new antibacterial drugs. However, as we show here, the N-terminal cinnamoyl moiety of albicidin is susceptible to photochemical E/Z isomerization. Moreover, the newly formed Z isomer exhibits significantly reduced antibacterial activity, which hampers the development and biological evaluation of albicidin and potent derivatives thereof. Hence, we synthesized 13 different variants of albicidin in which the vulnerable para-coumaric acid moiety was replaced; this yielded photostable analogues. Biological activity assays revealed that diaryl alkyne analogues exhibited virtually undiminished antibacterial efficacy. This promising scaffold will therefore serve as a blueprint for the design of a potent albicidin-based drug.
Collapse
Affiliation(s)
- Iraj Behroz
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Leonardo Kleebauer
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Kay Hommernick
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Maria Seidel
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Stefan Grätz
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Andi Mainz
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - John B. Weston
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Roderich D. Süssmuth
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| |
Collapse
|
6
|
Seedorf T, Kirschning A, Solga D. Natural and Synthetic Oligoarylamides: Privileged Structures for Medical Applications. Chemistry 2021; 27:7321-7339. [PMID: 33481284 PMCID: PMC8251530 DOI: 10.1002/chem.202005086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
The term "privileged structure" refers to a single molecular substructure or scaffold that can serve as a starting point for high-affinity ligands for more than one receptor type. In this report, a hitherto overlooked group of privileged substructures is addressed, namely aromatic oligoamides, for which there are natural models in the form of cystobactamids, albicidin, distamycin A, netropsin, and others. The aromatic and heteroaromatic core, together with a flexible selection of substituents, form conformationally well-defined scaffolds capable of specifically binding to conformationally well-defined regions of biomacromolecules such as helices in proteins or DNA often by acting as helices mimics themselves. As such, these aromatic oligoamides have already been employed to inhibit protein-protein and nucleic acid-protein interactions. This article is the first to bring together the scattered knowledge about aromatic oligoamides in connection with biomedical applications.
Collapse
Affiliation(s)
- Tim Seedorf
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum, (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| | - Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum, (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| | - Danny Solga
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum, (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
7
|
Maglangit F, Yu Y, Deng H. Bacterial pathogens: threat or treat (a review on bioactive natural products from bacterial pathogens). Nat Prod Rep 2021; 38:782-821. [PMID: 33119013 DOI: 10.1039/d0np00061b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to the second quarter of 2020 Threat or treat? While pathogenic bacteria pose significant threats, they also represent a huge reservoir of potential pharmaceuticals to treat various diseases. The alarming antimicrobial resistance crisis and the dwindling clinical pipeline urgently call for the discovery and development of new antibiotics. Pathogenic bacteria have an enormous potential for natural products drug discovery, yet they remained untapped and understudied. Herein, we review the specialised metabolites isolated from entomopathogenic, phytopathogenic, and human pathogenic bacteria with antibacterial and antifungal activities, highlighting those currently in pre-clinical trials or with potential for drug development. Selected unusual biosynthetic pathways, the key roles they play (where known) in various ecological niches are described. We also provide an overview of the mode of action (molecular target), activity, and minimum inhibitory concentration (MIC) towards bacteria and fungi. The exploitation of pathogenic bacteria as a rich source of antimicrobials, combined with the recent advances in genomics and natural products research methodology, could pave the way for a new golden age of antibiotic discovery. This review should serve as a compendium to communities of medicinal chemists, organic chemists, natural product chemists, biochemists, clinical researchers, and many others interested in the subject.
Collapse
Affiliation(s)
- Fleurdeliz Maglangit
- Department of Biology and Environmental Science, College of Science, University of the Philippines Cebu, Lahug, Cebu City, 6000, Philippines. and Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Centre for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| |
Collapse
|
8
|
Recent advances in DNA gyrase-targeted antimicrobial agents. Eur J Med Chem 2020; 199:112326. [DOI: 10.1016/j.ejmech.2020.112326] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
|
9
|
Planke T, Cirnski K, Herrmann J, Müller R, Kirschning A. Synthetic and Biological Studies on New Urea and Triazole Containing Cystobactamid Derivatives. Chemistry 2020; 26:4289-4296. [PMID: 31834653 PMCID: PMC7186842 DOI: 10.1002/chem.201904073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/02/2022]
Abstract
Cystobactamids belong to the group of arene-based oligoamides that effectively inhibit bacterial type IIa topoisomerases. Cystobactamid 861-2 is the most active member of these antibiotics. Most amide bonds present in the cystobactamids link benzoic acids with anilines and it was found that some of these amide bonds undergo chemical and enzymatic hydrolysis, especially the one linking ring C with ring D. This work reports on the chemical synthesis and biological evaluation of thirteen new cystobactamids that still contain the methoxyaspartate hinge. However, we exchanged selected amide bonds either by the urea or the triazole groups and modified ring A in the latter case. While hydrolytic stability could be improved with these structural substitutes, the high antibacterial potency of cystobactamid 861-2 could only be preserved in selected cases. This includes derivatives, in which the urea group is positioned between rings A and B and where the triazole is found between rings C and D.
Collapse
Affiliation(s)
- Therese Planke
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Katarina Cirnski
- Abteilung Mikrobielle Naturstoffe, Helmholtz Institut für Pharmazeutische Forschung Saarland, Helmholtz Zentrum für Infektionsforschung und Universität des Saarlandes, Campus E8.1, 66123, Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Jennifer Herrmann
- Abteilung Mikrobielle Naturstoffe, Helmholtz Institut für Pharmazeutische Forschung Saarland, Helmholtz Zentrum für Infektionsforschung und Universität des Saarlandes, Campus E8.1, 66123, Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Rolf Müller
- Abteilung Mikrobielle Naturstoffe, Helmholtz Institut für Pharmazeutische Forschung Saarland, Helmholtz Zentrum für Infektionsforschung und Universität des Saarlandes, Campus E8.1, 66123, Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| |
Collapse
|
10
|
Behroz I, Durkin P, Grätz S, Seidel M, Rostock L, Spinczyk M, Weston JB, Süssmuth RD. Extensive Structure-Activity Relationship Study of Albicidin's C-Terminal Dipeptidic p-Aminobenzoic Acid Moiety. Chemistry 2019; 25:16538-16543. [PMID: 31642561 PMCID: PMC6972991 DOI: 10.1002/chem.201904752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 01/24/2023]
Abstract
Albicidin is a recently described natural product that strongly inhibits bacterial DNA gyrase. The pronounced activity, particularly against Gram-negative bacteria, turns it into a promising lead structure for an antibacterial drug. Hence, structure-activity relationship studies are key for the in-depth understanding of structural features/moieties affecting gyrase inhibition, antibacterial activity and overcoming resistance. The 27 newly synthesized albicidins give profound insights into possibilities for variations of the C-terminus. Furthermore, in the present study, a novel derivative has been identified as overcoming resistance posed by the Klebsiella-protease AlbD. Structural modifications include, for example, azahistidine replacing the previous instable cyanoalanine as the central amino acid, as well as a triazole amide bond isostere between building blocks D and E.
Collapse
Affiliation(s)
- Iraj Behroz
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Patrick Durkin
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Stefan Grätz
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Maria Seidel
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Lida Rostock
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Marcello Spinczyk
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - John B. Weston
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Roderich D. Süssmuth
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| |
Collapse
|
11
|
Testolin G, Cirnski K, Rox K, Prochnow H, Fetz V, Grandclaudon C, Mollner T, Baiyoumy A, Ritter A, Leitner C, Krull J, van den Heuvel J, Vassort A, Sordello S, Hamed MM, Elgaher WAM, Herrmann J, Hartmann RW, Müller R, Brönstrup M. Synthetic studies of cystobactamids as antibiotics and bacterial imaging carriers lead to compounds with high in vivo efficacy. Chem Sci 2019; 11:1316-1334. [PMID: 34123255 PMCID: PMC8148378 DOI: 10.1039/c9sc04769g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is an alarming scarcity of novel chemical matter with bioactivity against multidrug-resistant Gram-negative bacterial pathogens. Cystobactamids, recently discovered natural products from myxobacteria, are an exception to this trend. Their unusual chemical structure, composed of oligomeric para-aminobenzoic acid moieties, is associated with a high antibiotic activity through the inhibition of gyrase. In this study, structural determinants of cystobactamid's antibacterial potency were defined at five positions, which were varied using three different synthetic routes to the cystobactamid scaffold. The potency against Acinetobacter baumannii could be increased ten-fold to an MIC (minimum inhibitory concentration) of 0.06 μg mL-1, and the previously identified spectrum gap of Klebsiella pneumoniae could be closed compared to the natural products (MIC of 0.5 μg mL-1). Proteolytic degradation of cystobactamids by the resistance factor AlbD was prevented by an amide-triazole replacement. Conjugation of cystobactamid's N-terminal tetrapeptide to a Bodipy moiety induced the selective localization of the fluorophore for bacterial imaging purposes. Finally, a first in vivo proof of concept was obtained in an E. coli infection mouse model, where derivative 22 led to the reduction of bacterial loads (cfu, colony-forming units) in muscle, lung and kidneys by five orders of magnitude compared to vehicle-treated mice. These findings qualify cystobactamids as highly promising lead structures against infections caused by Gram-positive and Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Giambattista Testolin
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Katarina Cirnski
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany.,Helmholtz Institute for Pharmaceutical Research Saarland Universitätscampus E8.1 66123 Saarbrücken Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany .,German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Hans Prochnow
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Verena Fetz
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Charlotte Grandclaudon
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany .,German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Tim Mollner
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Alain Baiyoumy
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Antje Ritter
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Christian Leitner
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany .,German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Jana Krull
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Joop van den Heuvel
- Group Recombinant Protein Expression, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Aurelie Vassort
- Evotec ID 1541 Avenue Marcel Merieux 69289 Marcy l'Etoile France
| | | | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland Universitätscampus E8.1 66123 Saarbrücken Germany
| | - Walid A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland Universitätscampus E8.1 66123 Saarbrücken Germany
| | - Jennifer Herrmann
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany.,Helmholtz Institute for Pharmaceutical Research Saarland Universitätscampus E8.1 66123 Saarbrücken Germany
| | - Rolf W Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland Universitätscampus E8.1 66123 Saarbrücken Germany
| | - Rolf Müller
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany.,Helmholtz Institute for Pharmaceutical Research Saarland Universitätscampus E8.1 66123 Saarbrücken Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany .,German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany.,Center of Biomolecular Drug Research (BMWZ), Leibniz Universität 30167 Hannover Germany
| |
Collapse
|
12
|
Moeller M, Norris MD, Planke T, Cirnski K, Herrmann J, Müller R, Kirschning A. Scalable Syntheses of Methoxyaspartate and Preparation of the Antibiotic Cystobactamid 861-2 and Highly Potent Derivatives. Org Lett 2019; 21:8369-8372. [DOI: 10.1021/acs.orglett.9b03143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Malte Moeller
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Matthew D. Norris
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Therese Planke
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Katarina Cirnski
- Abteilung Mikrobielle Naturstoffe, Helmholtz Institut für Pharmazeutische Forschung Saarland, Helmholtz Zentrum für Infektionsforschung und Universität des Saarlandes, Campus E8.1, 66123 Saarbrücken, Germany
| | - Jennifer Herrmann
- Abteilung Mikrobielle Naturstoffe, Helmholtz Institut für Pharmazeutische Forschung Saarland, Helmholtz Zentrum für Infektionsforschung und Universität des Saarlandes, Campus E8.1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Abteilung Mikrobielle Naturstoffe, Helmholtz Institut für Pharmazeutische Forschung Saarland, Helmholtz Zentrum für Infektionsforschung und Universität des Saarlandes, Campus E8.1, 66123 Saarbrücken, Germany
| | - Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
13
|
Hashimi SM. Albicidin, a potent DNA gyrase inhibitor with clinical potential. J Antibiot (Tokyo) 2019; 72:785-792. [PMID: 31451755 DOI: 10.1038/s41429-019-0228-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/23/2019] [Accepted: 08/14/2019] [Indexed: 11/09/2022]
Abstract
The emergence of multiple antibiotic-resistant bacteria is a serious global problem which requires the development of new effective antimicrobial therapeutics. Albicidin produced by the sugarcane pathogen Xanthomonas albilineans is a potent DNA gyrase inhibitor with inhibitory effects significantly better than most DNA gyrase inhibitors. Albicidin acts primarily by inhibiting the religation of the cleaved DNA intermediate during the gyrase catalytic sequence similar to quinolones. The clinical realization of albicidin has been hampered by limited production and its unsolved structure. In this review, the relationship between albicidin and sugarcane leaf-scald disease is described. Furthermore, the biosynthesis and resistance mechanisms of albicidin are discussed. Finally, recent efforts to solve the structure and produce albicidin in a heterologous host and chemically are summarized.
Collapse
Affiliation(s)
- Saeed Mujahid Hashimi
- Department of Basic Science, Biology Unit, Deanship of Preparatory Year and Supporting Studies, and Department of Stem Cell Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia.
| |
Collapse
|
14
|
Planke T, Moreno M, Hüttel S, Fohrer J, Gille F, Norris MD, Siebke M, Wang L, Müller R, Kirschning A. Cystobactamids 920-1 and 920-2: Assignment of the Constitution and Relative Configuration by Total Synthesis. Org Lett 2019; 21:1359-1363. [DOI: 10.1021/acs.orglett.9b00058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Therese Planke
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - María Moreno
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Stephan Hüttel
- Abteilung Mikrobielle Naturstoffe, Helmholtz Institut für Pharmazeutische Forschung Saarland, Helmholtz Zentrum für Infektionsforschung und Universität des Saarlandes, Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Fohrer
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Franziska Gille
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Matthew D. Norris
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Maik Siebke
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Liangliang Wang
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Rolf Müller
- Abteilung Mikrobielle Naturstoffe, Helmholtz Institut für Pharmazeutische Forschung Saarland, Helmholtz Zentrum für Infektionsforschung und Universität des Saarlandes, Campus E8.1, 66123 Saarbrücken, Germany
| | - Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
15
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
16
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
17
|
Molecular insights into antibiotic resistance - how a binding protein traps albicidin. Nat Commun 2018; 9:3095. [PMID: 30082794 PMCID: PMC6078987 DOI: 10.1038/s41467-018-05551-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/13/2018] [Indexed: 11/08/2022] Open
Abstract
The worldwide emergence of antibiotic resistance poses a serious threat to human health. A molecular understanding of resistance strategies employed by bacteria is obligatory to generate less-susceptible antibiotics. Albicidin is a highly potent antibacterial compound synthesized by the plant-pathogenic bacterium Xanthomonas albilineans. The drug-binding protein AlbA confers albicidin resistance to Klebsiella oxytoca. Here we show that AlbA binds albicidin with low nanomolar affinity resulting in full inhibition of its antibacterial activity. We report on the crystal structure of the drug-binding domain of AlbA (AlbAS) in complex with albicidin. Both α-helical repeat domains of AlbAS are required to cooperatively clamp albicidin, which is unusual for drug-binding proteins of the MerR family. Structure-guided NMR binding studies employing synthetic albicidin derivatives give valuable information about ligand promiscuity of AlbAS. Our findings thus expand the general understanding of antibiotic resistance mechanisms and support current drug-design efforts directed at more effective albicidin analogs.
Collapse
|
18
|
von Eckardstein L, Petras D, Dang T, Cociancich S, Sabri S, Grätz S, Kerwat D, Seidel M, Pesic A, Dorrestein PC, Royer M, Weston JB, Süssmuth RD. Total Synthesis and Biological Assessment of Novel Albicidins Discovered by Mass Spectrometric Networking. Chemistry 2017; 23:15316-15321. [DOI: 10.1002/chem.201704074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Leonard von Eckardstein
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Daniel Petras
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093 USA
| | - Tam Dang
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Stéphane Cociancich
- CIRAD; UMR BGPI; 34398 Montpellier France
- BGPI; Univ. Montpellier, CIRAD, INRA; Montpellier SupAgro; 34398 Montpellier France
| | - Souhir Sabri
- CIRAD; UMR BGPI; 34398 Montpellier France
- BGPI; Univ. Montpellier, CIRAD, INRA; Montpellier SupAgro; 34398 Montpellier France
| | - Stefan Grätz
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Dennis Kerwat
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Maria Seidel
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Alexander Pesic
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093 USA
| | - Monique Royer
- CIRAD; UMR BGPI; 34398 Montpellier France
- BGPI; Univ. Montpellier, CIRAD, INRA; Montpellier SupAgro; 34398 Montpellier France
| | - John B. Weston
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Roderich D. Süssmuth
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
19
|
Hüttel S, Testolin G, Herrmann J, Planke T, Gille F, Moreno M, Stadler M, Brönstrup M, Kirschning A, Müller R. Entdeckung und Totalsynthese von natürlichen Cystobactamid‐Derivaten mit herausragender Aktivität gegen Gram‐negative Pathogene. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705913] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Stephan Hüttel
- Abteilung Mikrobielle Naturstoffe Helmholtz-Institut für Pharmazeutische Forschung Saarland, Helmholtz-Zentrum für Infektionsforschung Universitätscampus E8 1 66123 Saarbrücken Deutschland
- Abteilung Mikrobielle Wirkstoffe Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
- Deutsches Zentrum für Infektionsforschung, DZIF Standort Hannover-Braunschweig Deutschland
| | - Giambattista Testolin
- Abteilung Chemische Biologie Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
| | - Jennifer Herrmann
- Abteilung Mikrobielle Naturstoffe Helmholtz-Institut für Pharmazeutische Forschung Saarland, Helmholtz-Zentrum für Infektionsforschung Universitätscampus E8 1 66123 Saarbrücken Deutschland
- Deutsches Zentrum für Infektionsforschung, DZIF Standort Hannover-Braunschweig Deutschland
| | - Therese Planke
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| | - Franziska Gille
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| | - Maria Moreno
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| | - Marc Stadler
- Abteilung Mikrobielle Wirkstoffe Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
- Deutsches Zentrum für Infektionsforschung, DZIF Standort Hannover-Braunschweig Deutschland
| | - Mark Brönstrup
- Deutsches Zentrum für Infektionsforschung, DZIF Standort Hannover-Braunschweig Deutschland
- Abteilung Chemische Biologie Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
| | - Andreas Kirschning
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| | - Rolf Müller
- Abteilung Mikrobielle Naturstoffe Helmholtz-Institut für Pharmazeutische Forschung Saarland, Helmholtz-Zentrum für Infektionsforschung Universitätscampus E8 1 66123 Saarbrücken Deutschland
- Deutsches Zentrum für Infektionsforschung, DZIF Standort Hannover-Braunschweig Deutschland
| |
Collapse
|
20
|
Hüttel S, Testolin G, Herrmann J, Planke T, Gille F, Moreno M, Stadler M, Brönstrup M, Kirschning A, Müller R. Discovery and Total Synthesis of Natural Cystobactamid Derivatives with Superior Activity against Gram-Negative Pathogens. Angew Chem Int Ed Engl 2017; 56:12760-12764. [PMID: 28730677 DOI: 10.1002/anie.201705913] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Indexed: 11/07/2022]
Abstract
Antibiotic discovery and development is challenging as chemical scaffolds of synthetic origin often lack the required pharmaceutical properties, and the discovery of novel ones from natural sources is tedious. Herein, we report the discovery of new cystobactamids with a significantly improved antibacterial profile in a detailed screening of myxobacterial producer strains. Some of these new derivatives display antibacterial activities in the low-μg mL-1 range against Gram-negative pathogens, including clinical isolates of Klebsiella oxytoca, Pseudomonas aeruginosa, and fluoroquinolone-resistant Enterobacteriaceae, which were not observed for previously reported cystobactamids. Our findings provide structure-activity relationships and show how pathogen resistance can be overcome by natural scaffold diversity. The most promising derivative 861-2 was prepared by total synthesis, enabling further chemical optimization of this privileged scaffold.
Collapse
Affiliation(s)
- Stephan Hüttel
- Abteilung Mikrobielle Naturstoffe, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Helmholtz-Zentrum für Infektionsforschung, Universitätscampus E8 1, 66123, Saarbrücken, Germany.,Abteilung Mikrobielle Wirkstoffe, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Deutsches Zentrum für Infektionsforschung, DZIF, Standort Hannover-Braunschweig, Germany
| | - Giambattista Testolin
- Abteilung Chemische Biologie, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Jennifer Herrmann
- Abteilung Mikrobielle Naturstoffe, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Helmholtz-Zentrum für Infektionsforschung, Universitätscampus E8 1, 66123, Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung, DZIF, Standort Hannover-Braunschweig, Germany
| | - Therese Planke
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Franziska Gille
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Maria Moreno
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Marc Stadler
- Abteilung Mikrobielle Wirkstoffe, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Deutsches Zentrum für Infektionsforschung, DZIF, Standort Hannover-Braunschweig, Germany
| | - Mark Brönstrup
- Deutsches Zentrum für Infektionsforschung, DZIF, Standort Hannover-Braunschweig, Germany.,Abteilung Chemische Biologie, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Andreas Kirschning
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Rolf Müller
- Abteilung Mikrobielle Naturstoffe, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Helmholtz-Zentrum für Infektionsforschung, Universitätscampus E8 1, 66123, Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung, DZIF, Standort Hannover-Braunschweig, Germany
| |
Collapse
|
21
|
Abstract
The need for new drugs for the treatment of various diseases is enormous. From the previous century until the present, numerous peptide and peptide-derived natural products have been isolated from bacteria and fungi. Hence, microorganisms play a pivotal role as sources for novel drugs with an emphasis on anti-infective agents. Various disciplines from biology, chemistry, and medicine are involved in early stages of the search for peptide natural products including taxonomy, microbiology, bioanalytics, bioinformatics, and medicinal chemistry. Under biochemical aspects, small peptide drugs are basically either ribosomally synthesized and post-translationally modified (RiPPs) or synthesized by multimodular nonribosomal peptide synthetases (NRPSs). Within the context of current developments on bioactive peptide natural products, this Account predominantly highlights recent discoveries, approaches, and research from our laboratory on RiPPs and NRPSs from bacteria and fungi. In our search for peptides showing bioactivities of interest, different approaches were applied: classical screening, in silico prediction, in vitro reconstitution, site-directed mutagenesis, chemoenzymatics, heterologous expression, and total synthesis including structure-activity relationship (SAR) studies in the research on the labyrinthopeptins, albicidin, and the cyclodepsipeptides (CDPs). The ribosomally synthesized labyrinthopeptins, class III lanthipeptides, which have been discovered in a classical screening campaign, display highly attractive antiallodynic (against neuropathic pain caused by dysfunction of the nervous system) and antiviral activities. Therefore, the biosynthetic assembly was investigated by extensive enzymatic studies of the modifying enzymes, and site-directed mutagenesis was performed for the generation of analogs. By genome mining, other class III lanthipeptides have been uncovered, while synthetic access proved to be an unmet challenge for the labyrinthopeptins. In contrast, for the gyrase inhibitor albicidin, the establishment of a chemical synthesis followed by medicinal chemistry studies was the only viable option to gain access to derivatives. Albicidin, which has been discovered investigating plant host-pathogen interactions, has a strong activity against Gram-negative bacteria, for example, Escherichia coli and Pseudomonas aeruginosa, and a future synthetic derivative may become a lead structure for development of an anti-Gram-negative drug. The compound class of the cyclodepsipeptides contributes already two marketed drugs, enniatin (fusafungine) and emodepside. Cyclodepsipeptides show general antibacterial and antifungal effects, whereas specific insecticidal and anthelmintic activities provide lead structures for drug development. Hence, exploiting the chances of reprogramming NRPSs, the generation of chimeric or otherwise designed synthetases could render a new untapped structural space and thus novel bioactivities. While current developments in the fields of genomics, bioinformatics, and molecular biology facilitate the search for new natural products and the design of new peptide structures, the next decade will show which compounds have been carried on further applications and whether current developments have led to an increase in drug candidates.
Collapse
Affiliation(s)
- Tam Dang
- Technische Universität Berlin, Institut für Chemie, Fachgebiet Biologische
Chemie, Strasse des 17.
Juni 124, 10623 Berlin, Germany
| | - Roderich D. Süssmuth
- Technische Universität Berlin, Institut für Chemie, Fachgebiet Biologische
Chemie, Strasse des 17.
Juni 124, 10623 Berlin, Germany
| |
Collapse
|