1
|
Liu Q, Liu Y, Liu T, Fan J, Xia Z, Zhou Y, Deng X. Expanding horizons of iminosugars as broad-spectrum anti-virals: mechanism, efficacy and novel developments. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:55. [PMID: 39325109 PMCID: PMC11427655 DOI: 10.1007/s13659-024-00477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Iminosugars, a class of polyhydroxylated cyclic alkaloids with intriguing properties, hold promising therapeutic potentials against a broad spectrum of enveloped viruses, including DENV, HCV, HIV, and influenza viruses. Mechanistically, iminosugars act as the competitive inhibitors of host endoplasmic reticular α-glucosidases I and II to disrupt the proper folding of viral nascent glycoproteins, which thereby exerts antiviral effects. Remarkably, the glycoproteins of many enveloped viruses are significantly more dependent on the calnexin pathway of the protein folding than most host glycoproteins. Therefore, extensive interests and efforts have been devoted to exploit iminosugars as broad-spectrum antiviral agents. This review provides the summary and insights into the recent advancements in the development of novel iminosugars as effective and selective antiviral agents against a variety of enveloped viruses, as well as the understandings of their antiviral mechanisms.
Collapse
Affiliation(s)
- Qiantong Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yanyun Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Tingting Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Jinbao Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zanxian Xia
- School of Life Science, Central South University, Changsha, 410013, Hunan, China
| | - Yingjun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
3
|
Herrera-González I, González-Cuesta M, García-Moreno MI, García Fernández JM, Ortiz Mellet C. Stereoselective Synthesis of Nojirimycin α- C-Glycosides from a Bicyclic Acyliminium Intermediate: A Convenient Entry to N, C-Biantennary Glycomimetics. ACS OMEGA 2022; 7:22394-22405. [PMID: 35811898 PMCID: PMC9260894 DOI: 10.1021/acsomega.2c01469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
A simple and efficient method for the stereoselective synthesis of nojirimycin α-C-glycoside derivatives has been developed using a bicyclic carbamate-type sp2-iminosugar, whose preparation on a gram scale has been optimized, as the starting material. sp2-iminosugar O-glycosides or anomeric esters serve as excellent precursors of acyliminium cations, which can add nucleophiles, including C-nucleophiles. The stereochemical outcome of the reaction is governed by stereoelectronic effects, affording the target α-anomer with total stereoselectivity. Thus, the judicious combination of C-allylation, carbamate hydrolysis, cross-metathesis, and hydrogenation reactions provides a very convenient entry to iminosugar α-C-glycosides, which have been transformed into N,C-biantennary derivatives by reductive amination or thiourea-forming reactions. The thiourea adducts undergo intramolecular cyclization to bicyclic iminooxazolidine iminosugar α-C-glycosides upon acid treatment, broadening the opportunities for molecular diversity. A preliminary evaluation against a panel of commercial glycosidases validates the approach for finely tuning the inhibitory profile of glycomimetics.
Collapse
Affiliation(s)
- Irene Herrera-González
- Department
of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Sevilla, Spain
| | - Manuel González-Cuesta
- Department
of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Sevilla, Spain
| | - M. Isabel García-Moreno
- Department
of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Sevilla, Spain
| | - José Manuel García Fernández
- Instituto
de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, C/Américo Vespucio 49,
Isla de la Cartuja, 41092 Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department
of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Sevilla, Spain
| |
Collapse
|
4
|
Carboranes in drug discovery, chemical biology and molecular imaging. Nat Rev Chem 2022; 6:486-504. [PMID: 37117309 DOI: 10.1038/s41570-022-00400-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
There exists a paucity of structural innovation and limited molecular diversity associated with molecular frameworks in drug discovery and biomolecular imaging/chemical probe design. The discovery and exploitation of new molecular entities for medical and biological applications will necessarily involve voyaging into previously unexplored regions of chemical space. Boron clusters, notably the carboranes, offer an alternative to conventional (poly)cyclic organic frameworks that may address some of the limitations associated with the use of novel molecular frameworks in chemical biology or medicine. The high thermal stability, unique 3D structure and aromaticity, kinetic inertness to metabolism and ability to engage in unusual types of intermolecular interactions, such as dihydrogen bonds, with biological receptors make carboranes exquisite frameworks in the design of probes for chemical biology, novel drug candidates and biomolecular imaging agents. This Review highlights the key developments of carborane derivatives made over the last decade as new design tools in medicinal chemistry and chemical biology, showcasing the versatility of this unique family of boron compounds.
Collapse
|
5
|
Fernández F, Fernández AG, Balo R, Sánchez-Pedregal VM, Royo M, Soengas RG, Estévez RJ, Estévez JC. Polyhydroxylated Cyclopentane β-Amino Acids Derived from d-Mannose and d-Galactose: Synthesis and Protocol for Incorporation into Peptides. ACS OMEGA 2022; 7:2002-2014. [PMID: 35071888 PMCID: PMC8772316 DOI: 10.1021/acsomega.1c05468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
A stereoselective synthesis of polyhydroxylated cyclopentane β-amino acids from hexoses is reported. The reaction sequence comprises, as key steps, ring-closing metathesis of a polysubstituted diene intermediate followed by the stereoselective aza-Michael functionalization of the resulting cyclopent-1-ene-1-carboxylic acid ester. Examples of synthesis of polysubstituted 2-aminocyclopentanecarboxylic acid derivatives starting from protected d-mannose and d-galactose are presented. A general protocol for the incorporation of these highly functionalized alicyclic β-amino acids into peptides is also reported.
Collapse
Affiliation(s)
- Fernando Fernández
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade
de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Alberto G. Fernández
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade
de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Rosalino Balo
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade
de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Víctor M. Sánchez-Pedregal
- Departamento
de Química Orgánica, Universidade
de Santiago de Compostela, Avda. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Miriam Royo
- Centro
de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), c/ Jordi Girona 18-26, 08034 Barcelona, Spain
- Instituto
de Química Avanzada de Cataluña (IQAC-CSIC), c/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Raquel G. Soengas
- Departamento
de Química Orgánica e Inorgánica, Universidad de Oviedo, c/ Julián Clavería s/n, 33006 Oviedo, Spain
| | - Ramón J. Estévez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade
de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
- Departamento
de Química Orgánica, Universidade
de Santiago de Compostela, Avda. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Juan C. Estévez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade
de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
- Departamento
de Química Orgánica, Universidade
de Santiago de Compostela, Avda. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Lu TT, Shimadate Y, Cheng B, Kanekiyo U, Kato A, Wang JZ, Li YX, Jia YM, Fleet GWJ, Yu CY. Synthesis and glycosidase inhibition of 5-C-alkyl-DNJ and 5-C-alkyl-l-ido-DNJ derivatives. Eur J Med Chem 2021; 224:113716. [PMID: 34340042 DOI: 10.1016/j.ejmech.2021.113716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022]
Abstract
5-C-Alkyl-DNJ and 5-C-alkyl-l-ido-DNJ derivatives have been designed and synthesized efficiently from an l-sorbose-derived cyclic nitrone. The DNJ and l-ido-DNJ derivatives with C-5 alkyl chains ranging from methyl to dodecyl were assayed against various glycosidases to study the effect of chain length on enzyme inhibition. Glycosidase inhibition study of DNJ derivatives showed potent and selective inhibitions of α-glucosidase; DNJ derivatives with methyl, pentyl to octyl, undecyl and dodecyl as C-5 branched chains showed significantly improved rat intestinal maltase inhibition. In contrast, most 5-C-alkyl-l-ido-DNJ derivatives were weak or moderate inhibitors of the enzymes tested, with only three compounds found to be potent α-glucosidase inhibitors. Docking studies showed different interaction modes of 5-C-ethyl-DNJ and 5-C-octyl-DNJ with ntMGAM and also different binding modes of 5-C-alkyl-DNJ and 5-C-alkyl-l-ido-DNJ derivatives; the importance of the degree of accommodation of the C-5 substituent in the hydrophobic groove and pocket may account for the variation of glycosidase inhibition in the two series of derivatives. The results reported herein are helpful in the design and development of α-glucosidase inhibitors; this may lead to novel agents for the treatment of viral infection and type II diabetes.
Collapse
Affiliation(s)
- Tian-Tian Lu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Bin Cheng
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Uta Kanekiyo
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Jun-Zhe Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX13TA, UK; National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
7
|
Iftikhar M, Lu Y, Zhou M. An overview of therapeutic potential of N-alkylated 1-deoxynojirimycin congeners. Carbohydr Res 2021; 504:108317. [PMID: 33932806 DOI: 10.1016/j.carres.2021.108317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/13/2023]
Abstract
Polyhydroxylated alkaloids display a wide range of biological activities, suggesting their use in the treatment of various diseases. Their most famous representative, 1-deoxynojirimycin (DNJ), is a natural product that shows α- and β-glucosidase inhibition. This molecule has been since converted into two clinically approved drugs i.e., Zavesca® and Glyset®, targeting type I Gaucher's disease and type II diabetes mellitus, respectively. This review examines the therapeutic potential of important DNJ congeners reported in last decade and presents concise mechanism of glycosidase inhibition. A brief overview of substituents conjugation's impact on DNJ scaffold (including N-alkylated DNJ derivatives, mono-valent, di-valent and multivalent DNJ congeners, N-[5-(adamantan-1-yl-methoxy)-pentyl]-1-deoxynojirimycin (AMP-DNM) look alike DNJ based lipophilic derivatives, AMP-DNM based neoglycoconjugates, DNJ click derivatives with varying carboxylic acids and aromatic moieties, conjugates of DNJ and glucose, and N-bridged DNJ analogues) towards various enzymes such as α/β glucosidase, porcine trehalase, as F508del-CFTR correctors, α-mannosidase, human placental β-glucocerebrosidase, N370S β-GCase, α-amylase and insect trehalase as potent and selective inhibitors have been discussed with potential bioactivities, which can provide inspiration for future studies.
Collapse
Affiliation(s)
- Mehwish Iftikhar
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, PR China
| | - Yinghong Lu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, PR China
| | - Min Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, PR China.
| |
Collapse
|
8
|
|
9
|
Karavaizoglu UN, Salamci E. An efficient synthesis of chloro-aminocyclooctanediol and aminocyclooctanetriol: an unexpected acetolysis product. NEW J CHEM 2020. [DOI: 10.1039/d0nj02697b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A concise and efficient synthesis of 2-amino-4-chlorocyclooctanediol, aminocyclooctanetriols and unusual 1,3-hydride shift during the ring opening reaction of epoxide is described.
Collapse
Affiliation(s)
| | - Emine Salamci
- Department of Chemistry
- Faculty of Sciences
- Atatürk University
- Erzurum 25240
- Turkey
| |
Collapse
|
10
|
Hevey R. Bioisosteres of Carbohydrate Functional Groups in Glycomimetic Design. Biomimetics (Basel) 2019; 4:E53. [PMID: 31357673 PMCID: PMC6784292 DOI: 10.3390/biomimetics4030053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The aberrant presentation of carbohydrates has been linked to a number of diseases, such as cancer metastasis and immune dysregulation. These altered glycan structures represent a target for novel therapies by modulating their associated interactions with neighboring cells and molecules. Although these interactions are highly specific, native carbohydrates are characterized by very low affinities and inherently poor pharmacokinetic properties. Glycomimetic compounds, which mimic the structure and function of native glycans, have been successful in producing molecules with improved pharmacokinetic (PK) and pharmacodynamic (PD) features. Several strategies have been developed for glycomimetic design such as ligand pre-organization or reducing polar surface area. A related approach to developing glycomimetics relies on the bioisosteric replacement of carbohydrate functional groups. These changes can offer improvements to both binding affinity (e.g., reduced desolvation costs, enhanced metal chelation) and pharmacokinetic parameters (e.g., improved oral bioavailability). Several examples of bioisosteric modifications to carbohydrates have been reported; this review aims to consolidate them and presents different possibilities for enhancing core interactions in glycomimetics.
Collapse
Affiliation(s)
- Rachel Hevey
- Molecular Pharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstr. 50, 4056 Basel, Switzerland.
| |
Collapse
|
11
|
Bieberich E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem Phys Lipids 2018; 216:114-131. [PMID: 30194926 PMCID: PMC6196108 DOI: 10.1016/j.chemphyslip.2018.08.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
About twenty years ago, the functional lipid raft model of the plasma membrane was published. It took into account decades of research showing that cellular membranes are not just homogenous mixtures of lipids and proteins. Lateral anisotropy leads to assembly of membrane domains with specific lipid and protein composition regulating vesicular traffic, cell polarity, and cell signaling pathways in a plethora of biological processes. However, what appeared to be a clearly defined entity of clustered raft lipids and proteins became increasingly fluid over the years, and many of the fundamental questions about biogenesis and structure of lipid rafts remained unanswered. Experimental obstacles in visualizing lipids and their interactions hampered progress in understanding just how big rafts are, where and when they are formed, and with which proteins raft lipids interact. In recent years, we have begun to answer some of these questions and sphingolipids may take center stage in re-defining the meaning and functional significance of lipid rafts. In addition to the archetypical cholesterol-sphingomyelin raft with liquid ordered (Lo) phase and the liquid-disordered (Ld) non-raft regions of cellular membranes, a third type of microdomains termed ceramide-rich platforms (CRPs) with gel-like structure has been identified. CRPs are "ceramide rafts" that may offer some fresh view on the membrane mesostructure and answer several critical questions for our understanding of lipid rafts.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology at the University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
12
|
Gu X, Gupta V, Yang Y, Zhu JY, Carlson EJ, Kingsley C, Tash JS, Schönbrunn E, Hawkinson J, Georg GI. Structure-Activity Studies of N-Butyl-1-deoxynojirimycin (NB-DNJ) Analogues: Discovery of Potent and Selective Aminocyclopentitol Inhibitors of GBA1 and GBA2. ChemMedChem 2017; 12:1977-1984. [PMID: 28975712 PMCID: PMC5725710 DOI: 10.1002/cmdc.201700558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 12/26/2022]
Abstract
Analogues of N‐butyl‐1‐deoxynojirimycin (NB‐DNJ) were prepared and assayed for inhibition of ceramide‐specific glucosyltransferase (CGT), non‐lysosomal β‐glucosidase 2 (GBA2) and the lysosomal β‐glucosidase 1 (GBA1). Compounds 5 a–6 f, which carry sterically demanding nitrogen substituents, and compound 13, devoid of the C3 and C5 hydroxy groups present in DNJ/NB‐DGJ (N‐butyldeoxygalactojirimycin) showed no inhibitory activity for CGT or GBA2. Inversion of stereochemistry at C4 of N‐(n‐butyl)‐ and N‐(n‐nonyl)‐DGJ (compounds 24) also led to a loss of activity in these assays. The aminocyclopentitols N‐(n‐butyl)‐ (35 a), N‐(n‐nonyl)‐4‐amino‐5‐(hydroxymethyl)cyclopentane‐ (35 b), and N‐(1‐(pentyloxy)methyl)adamantan‐1‐yl)‐1,2,3‐triol (35 f), were found to be selective inhibitors of GBA1 and GBA2 that did not inhibit CGT (>1 mm), with the exception of 35 f, which inhibited CGT with an IC50 value of 1 mm. The N‐butyl analogue 35 a was 100‐fold selective for inhibiting GBA1 over GBA2 (Ki values of 32 nm and 3.3 μm for GBA1 and GBA2, respectively). The N‐nonyl analogue 35 b displayed a Ki value of ≪14 nm for GBA1 inhibition and a Ki of 43 nm for GBA2. The N‐(1‐(pentyloxy)methyl)adamantan‐1‐yl) derivative 35 f had Ki values of ≈16 and 14 nm for GBA1 and GBA2, respectively. The related N‐bis‐substituted aminocyclopentitols were found to be significantly less potent inhibitors than their mono‐substituted analogues. The aminocyclopentitol scaffold should hold promise for further inhibitor development.
Collapse
Affiliation(s)
- Xingxian Gu
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, 66045, USA.,Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | | | - Yan Yang
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jin-Yi Zhu
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Erick J Carlson
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Carolyn Kingsley
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Joseph S Tash
- University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ernst Schönbrunn
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jon Hawkinson
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| |
Collapse
|