1
|
Imhof D, Hänggeli KPA, De Sousa MCF, Vigneswaran A, Hofmann L, Amdouni Y, Boubaker G, Müller J, Hemphill A. Working towards the development of vaccines and chemotherapeutics against neosporosis-With all of its ups and downs-Looking ahead. ADVANCES IN PARASITOLOGY 2024; 124:91-154. [PMID: 38754928 DOI: 10.1016/bs.apar.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.
Collapse
Affiliation(s)
- Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maria Cristina Ferreira De Sousa
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Larissa Hofmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Müller J, Hemphill A. In vitro screening technologies for the discovery and development of novel drugs against Toxoplasma gondii. Expert Opin Drug Discov 2024; 19:97-109. [PMID: 37921660 DOI: 10.1080/17460441.2023.2276349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Toxoplasmosis constitutes a challenge for public health, animal production and welfare. Since more than 60 years, only a limited panel of drugs has been in use for clinical applications. AREAS COVERED Herein, the authors describe the methodology and the results of library screening approaches to identify inhibitors of Toxoplasma gondii and related strains. The authors then provide the reader with their expert perspectives for the future. EXPERT OPINION Various library screening projects, in particular those using reporter strains, have led to the identification of numerous compounds with good efficacy and specificity in vitro. However, only few compounds are effective in suitable animal models such as rodents. Whereas no novel compound has cleared the hurdle to applications in humans, the few compounds with known indication and application profiles in human patients are of interest for further investigations. Taken together, drug repurposing as well as high-throughput screening of novel compound libraries may shorten the way to novel drugs against toxoplasmosis.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Imhof D, Pownall WR, Schlange C, Monney C, Ortega-Mora LM, Ojo KK, Van Voorhis WC, Oevermann A, Hemphill A. Vaccine-Linked Chemotherapy Approach: Additive Effects of Combining the Listeria monocytogenes-Based Vaccine Lm3Dx_NcSAG1 With the Bumped Kinase Inhibitor BKI-1748 Against Neospora caninum Infection in Mice. Front Vet Sci 2022; 9:901056. [PMID: 35832325 PMCID: PMC9272043 DOI: 10.3389/fvets.2022.901056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022] Open
Abstract
The apicomplexan parasite Neospora (N.) caninum causes neosporosis in numerous host species. There is no marketed vaccine and no licensed drug for the prevention and/or treatment of neosporosis. Vaccine development against this parasite has encountered significant obstacles, probably due to pregnancy-induced immunomodulation hampering efficacy, which has stimulated the search for potential drug therapies that could be applied to limit the effects of neosporosis in dams as well as in offspring. We here investigated, in a pregnant neosporosis mouse model, the safety and efficacy of a combined vaccination-drug treatment approach. Mice were vaccinated intramuscularly with 1 × 107 CFU of our recently generated Listeria (L.) monocytogenes vaccine vector expressing the major N. caninum tachyzoite surface antigen NcSAG1 (Lm3Dx_SAG1). Following mating and experimental subcutaneous infection with 1 × 105 N. caninum (NcSpain-7) tachyzoites on day 7 of pregnancy, drug treatments were initiated using the bumped kinase inhibitor BKI-1748 at 20 mg/kg/day for 5 days. In parallel, other experimental groups were either just vaccinated or only treated. Dams and offspring were followed-up until day 25 post-partum, after which all mice were euthanized. None of the treatments induced adverse effects and neither of the treatments affected fertility or litter sizes. Cerebral infection in dams as assessed by real-time PCR was significantly reduced in the vaccinated and BKI-1748 treated groups, but was not reduced significantly in the group receiving the combination. However, in non-pregnant mice, all three treatment groups exhibited significantly reduced parasite burdens. Both, vaccination as well BKI-1748 as single treatment increased pup survival to 44 and 48%, respectively, while the combination treatment led to survival of 86% of all pups. Vertical transmission in the combination group was 23% compared to 46 and 50% in the groups receiving only BKI-treatment or the vaccine, respectively. In the dams, IgG titers were significantly reduced in all treatment groups compared to the untreated control, while in non-pregnant mice, IgG titers were reduced only in the group receiving the vaccine. Overall, vaccine-linked chemotherapy was more efficacious than vaccination or drug treatment alone and should be considered for further evaluation in a more relevant experimental model.
Collapse
Affiliation(s)
- Dennis Imhof
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - William Robert Pownall
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Division of Small Animal Surgery, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Carling Schlange
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Camille Monney
- Department of Clinical Research and Veterinary Public Health, Division of Neurological Sciences, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Kayode K. Ojo
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Anna Oevermann
- Department of Clinical Research and Veterinary Public Health, Division of Neurological Sciences, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Zhang S, Yi C, Li WW, Luo Y, Wu YZ, Ling HB. The current scenario on anticancer activity of artemisinin metal complexes, hybrids, and dimers. Arch Pharm (Weinheim) 2022; 355:e2200086. [PMID: 35484335 DOI: 10.1002/ardp.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
Cancer, the most significant cause of morbidity and mortality, has already posed a heavy burden on health care systems globally. In recent years, cancer treatment has made a significant breakthrough, but cancer cells inevitably acquire resistance, and the efficacy of the treatment is greatly reduced as the tumor progresses. To overcome the above issues, novel chemotherapeutics are needed urgently. Artemisinin and its derivatives-sesquiterpene lactone compounds possessing a unique peroxy bridge moiety-exhibit excellent safety and tolerability profiles. Mechanistically, artemisinin derivatives can promote cancer cell apoptosis, induce cell cycle arrest and autophagy, and inhibit cancer cell invasion and migration. Accordingly, artemisinin derivatives demonstrate promising anticancer efficacy both in vitro and in vivo, and even in clinical Phase I/II trials. The purpose of the present review article is to provide an emphasis on the current scenario (January 2017-January 2022) of artemisinin derivatives with potential anticancer activity, inclusive of artemisinin metal complexes, hybrids, and dimers. The structure-activity relationships and mechanisms of action are also discussed to facilitate the further rational design of more effective candidates.
Collapse
Affiliation(s)
- Shu Zhang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Chuan Yi
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Wei-Wei Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Yang Luo
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Yi-Zhe Wu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Hai-Bo Ling
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
5
|
Yaremenko IA, Belyakova YY, Radulov PS, Novikov RA, Medvedev MG, Krivoshchapov NV, Korlyukov AA, Alabugin IV, Terent Ev AO. Inverse α-Effect as the Ariadne's Thread on the Way to Tricyclic Aminoperoxides: Avoiding Thermodynamic Traps in the Labyrinth of Possibilities. J Am Chem Soc 2022; 144:7264-7282. [PMID: 35418230 DOI: 10.1021/jacs.2c00406] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stable tricyclic aminoperoxides can be selectively assembled via a catalyst-free three-component condensation of β,δ'-triketones, H2O2, and an NH-group source such as aqueous ammonia or ammonium salts. This procedure is scalable and can produce gram quantities of tricyclic heterocycles, containing peroxide, nitrogen, and oxygen cycles in one molecule. Amazingly, such complex tricyclic molecules are selectively formed despite the multitude of alternative reaction routes, via equilibration of peroxide, hemiaminal, monoperoxyacetal, and peroxyhemiaminal functionalities! The reaction is initiated by the "stereoelectronic frustration" of H2O2 and combines elements of thermodynamic and kinetic control with a variety of mono-, bi-, and tricyclic structures evolving under the conditions of thermodynamic control until they reach a kinetic wall created by the inverse α-effect, that is, the stereoelectronic penalty for the formation of peroxycarbenium ions and related transition states. Under these conditions, the reaction stops before reaching the most thermodynamically stable products at a stage where three different heterocycles are assembled and fused at the acyclic precursor frame.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation.,Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow 119991, Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, Moscow 119991, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| | - Alexander O Terent Ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| |
Collapse
|
6
|
Müller J, Anghel N, Imhof D, Hänggeli K, Uldry AC, Braga-Lagache S, Heller M, Ojo KK, Ortega-Mora LM, Van Voorhis WC, Hemphill A. Common Molecular Targets of a Quinolone Based Bumped Kinase Inhibitor in Neospora caninum and Danio rerio. Int J Mol Sci 2022; 23:2381. [PMID: 35216497 PMCID: PMC8879773 DOI: 10.3390/ijms23042381] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/30/2022] Open
Abstract
Neospora caninum is an apicomplexan parasite closely related to Toxoplasma gondii, and causes abortions, stillbirths and/or fetal malformations in livestock. Target-based drug development has led to the synthesis of calcium-dependent protein kinase 1 inhibitors, collectively named bumped kinase inhibitors (BKIs). Previous studies have shown that several BKIs have excellent efficacy against neosporosis in vitro and in vivo. However, several members of this class of compounds impair fertility in pregnant mouse models and cause embryonic malformation in a zebrafish (Danio rerio) model. Similar to the first-generation antiprotozoal drug quinine, some BKIs have a quinoline core structure. To identify common targets in both organisms, we performed differential affinity chromatography with cell-free extracts from N. caninum tachyzoites and D. rerio embryos using the 5-aminopyrazole-4-carboxamide (AC) compound BKI-1748 and quinine columns coupled to epoxy-activated sepharose followed by mass spectrometry. BKI-binding proteins of interest were identified in eluates from columns coupled to BKI-1748, or in eluates from BKI-1748 as well as quinine columns. In N. caninum, 12 proteins were bound specifically to BKI-1748 alone, and 105 proteins, including NcCDPK1, were bound to both BKI-1748 and quinine. For D. rerio, the corresponding numbers were 13 and 98 binding proteins, respectively. In both organisms, a majority of BKI-1748 binding proteins was involved in RNA binding and modification, in particular, splicing. Moreover, both datasets contained proteins involved in DNA binding or modification and key steps of intermediate metabolism. These results suggest that BKI-1748 interacts with not only specific targets in apicomplexans, such as CDPK1, but also with targets in other eukaryotes, which are involved in common, essential pathways.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Kai Hänggeli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Kayode K. Ojo
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (K.K.O.); (W.C.V.V.)
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (K.K.O.); (W.C.V.V.)
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
| |
Collapse
|
7
|
Watson DJ, Laing L, Gibhard L, Wong HN, Haynes RK, Wiesner L. Toward New Transmission-Blocking Combination Therapies: Pharmacokinetics of 10-Amino-Artemisinins and 11-Aza-Artemisinin and Comparison with Dihydroartemisinin and Artemether. Antimicrob Agents Chemother 2021; 65:e0099021. [PMID: 34097488 PMCID: PMC8284440 DOI: 10.1128/aac.00990-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
As artemisinin combination therapies (ACTs) are compromised by resistance, we are evaluating triple combination therapies (TACTs) comprising an amino-artemisinin, a redox drug, and a third drug with a different mode of action. Thus, here we briefly review efficacy data on artemisone, artemiside, other amino-artemisinins, and 11-aza-artemisinin and conduct absorption, distribution, and metabolism and excretion (ADME) profiling in vitro and pharmacokinetic (PK) profiling in vivo via intravenous (i.v.) and oral (p.o.) administration to mice. The sulfamide derivative has a notably long murine microsomal half-life (t1/2 > 150 min), low intrinsic liver clearance and total plasma clearance rates (CLint 189.4, CLtot 32.2 ml/min/kg), and high relative bioavailability (F = 59%). Kinetics are somewhat similar for 11-aza-artemisinin (t1/2 > 150 min, CLint = 576.9, CLtot = 75.0 ml/min/kg), although bioavailability is lower (F = 14%). In contrast, artemether is rapidly metabolized to dihydroartemisinin (DHA) (t1/2 = 17.4 min) and eliminated (CLint = 855.0, CLtot = 119.7 ml/min/kg) and has low oral bioavailability (F) of 2%. While artemisone displays low t1/2 of <10 min and high CLint of 302.1, it displays a low CLtot of 42.3 ml/min/kg and moderate bioavailability (F) of 32%. Its active metabolite M1 displays a much-improved t1/2 of >150 min and a reduced CLint of 37.4 ml/min/kg. Artemiside has t1/2 of 12.4 min, CLint of 673.9, and CLtot of 129.7 ml/kg/min, likely a reflection of its surprisingly rapid metabolism to artemisone, reported here for the first time. DHA is not formed from any amino-artemisinin. Overall, the efficacy and PK data strongly support the development of selected amino-artemisinins as components of new TACTs.
Collapse
Affiliation(s)
- Daniel J. Watson
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lizahn Laing
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Liezl Gibhard
- H3D, Department of Chemistry, University of Cape Town, Cape Town, South Africa
| | - Ho Ning Wong
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Yaremenko IA, Belyakova YY, Radulov PS, Novikov RA, Medvedev MG, Krivoshchapov NV, Korlyukov AA, Alabugin IV, Terent'ev AO. Marriage of Peroxides and Nitrogen Heterocycles: Selective Three-Component Assembly, Peroxide-Preserving Rearrangement, and Stereoelectronic Source of Unusual Stability of Bridged Azaozonides. J Am Chem Soc 2021; 143:6634-6648. [PMID: 33877842 DOI: 10.1021/jacs.1c02249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stable bridged azaozonides can be selectively assembled via a catalyst-free three-component condensation of 1,5-diketones, hydrogen peroxide, and an NH-group source such as aqueous ammonia or ammonium salts. This procedure is scalable and can produce gram quantities of bicyclic stereochemically rich heterocycles. The new azaozonides are thermally stable and can be stored at room temperature for several months without decomposition and for at least 1 year at -10 °C. The chemical stability of azaozonides was explored for their subsequent selective transformations including the first example of an aminoperoxide rearrangement that preserves the peroxide group. The amino group in aminoperoxides has remarkably low nucleophilicity and does not participate in the usual amine alkylation and acylation reactions. These observations and the 15 pKa units decrease in basicity in comparison with a typical dialkyl amine are attributed to the strong hyperconjugative nN→σ*C-O interaction with the two antiperiplanar C-O bonds. Due to the weakness of the complementary nO→σ*C-N donation from the peroxide oxygens (a consequence of "inverse α-effect"), this interaction depletes electron density from the NH moiety, protects it from oxidation, and makes it similar in properties to an amide.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, 119991 Moscow, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| |
Collapse
|
9
|
Pereira LM, de Luca G, Abichabki NDLM, Brochi JCV, Baroni L, Abreu-Filho PG, Yatsuda AP. Atovaquone, chloroquine, primaquine, quinine and tetracycline: antiproliferative effects of relevant antimalarials on Neospora caninum. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2021; 30:e022120. [PMID: 33787719 DOI: 10.1590/s1984-29612021006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/20/2021] [Indexed: 01/21/2023]
Abstract
Neospora caninum is an apicomplexan parasite that causes abortion in cattle, resulting in significant economic losses. There is no commercial treatment for neosporosis, and drug repositioning is a fast strategy to test possible candidates against N. caninum. In this article, we describe the effects of atovaquone, chloroquine, quinine, primaquine and tetracycline on N. caninum proliferation. The IC50 concentrations in N. caninum were compared to the current information based on previous studies for Plasmodium and Toxoplasma gondii, correlating to the described mechanisms of action of each tested drug. The inhibitory patterns indicate similarities and differences among N. caninum, Plasmodium and T. gondii. For example, atovaquone demonstrates high antiparasitic activity in all the analyzed models, while chloroquine does not inhibit N. caninum. On the other hand, tetracycline is effective against Plasmodium and N. caninum, despite its low activity in T. gondii models. The repurposing of antimalarial drugs in N. caninum is a fast and inexpensive way to develop novel formulations using well-established compounds.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Gabriela de Luca
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Nathália de Lima Martins Abichabki
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Jade Cabestre Venancio Brochi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Luciana Baroni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Péricles Gama Abreu-Filho
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Ana Patrícia Yatsuda
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| |
Collapse
|
10
|
Veale CGL, Müller R. Recent Highlights in Anti-infective Medicinal Chemistry from South Africa. ChemMedChem 2020; 15:809-826. [PMID: 32149446 DOI: 10.1002/cmdc.202000086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Global advancements in biological technologies have vastly increased the variety of and accessibility to bioassay platforms, while simultaneously improving our understanding of druggable chemical space. In the South African context, this has resulted in a rapid expansion in the number of medicinal chemistry programmes currently operating, particularly on university campuses. Furthermore, the modern medicinal chemist has the advantage of being able to incorporate data from numerous related disciplines into the medicinal chemistry process, allowing for informed molecular design to play a far greater role than previously possible. Accordingly, this review focusses on recent highlights in drug-discovery programmes, in which South African medicinal chemistry groups have played a substantive role in the design and optimisation of biologically active compounds which contribute to the search for promising agents for infectious disease.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Ronel Müller
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
11
|
Gao F, Sun Z, Kong F, Xiao J. Artemisinin-derived hybrids and their anticancer activity. Eur J Med Chem 2020; 188:112044. [PMID: 31945642 DOI: 10.1016/j.ejmech.2020.112044] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
The emergence of drug-resistance and the low specificity of anticancer agents are the major challenges in the treatment of cancer and can result in many side effects, creating an urgent demand to develop novel anticancer agents. Artemisinin-derived compounds, bearing a peroxide-containing sesquiterpene lactone moiety, could form free radicals with high reactivity and possess diverse pharmaceutical properties including in vitro and in vivo anticancer activity besides their typical antimalarial activity. Hybrid molecules have the potential to improve the specificity and overcome the drug resistance, therefore hybridization of artemisinin skeleton with other anticancer pharmacophores may provide novel anticancer candidates with high specificity and great potency against drug-resistant cancers. The review outlines the recent advances of artemisinin-derived hybrids as potential anticancer agents, and the structure-activity relationships are also discussed to provide an insight for rational designs of novel hybrids with high activity.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| | - Zhou Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| |
Collapse
|
12
|
Anghel N, Balmer V, Müller J, Winzer P, Aguado-Martinez A, Roozbehani M, Pou S, Nilsen A, Riscoe M, Doggett JS, Hemphill A. Endochin-Like Quinolones Exhibit Promising Efficacy Against Neospora Caninum in vitro and in Experimentally Infected Pregnant Mice. Front Vet Sci 2018; 5:285. [PMID: 30510935 PMCID: PMC6252379 DOI: 10.3389/fvets.2018.00285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
We report on the efficacy of selected endochin-like quinolones (ELQs) against N. caninum tachyzoites grown in human foreskin fibroblasts (HFF), and in a pregnant BALB/c mouse model. Fourteen ELQs were screened against transgenic N. caninum tachyzoites expressing β-galactosidase (Nc-βgal). Drugs were added concomitantly to infection and the values for 50% proliferation inhibition (IC50) were determined after 3 days. Three compounds exhibited IC50 values below 0.1 nM, 3 ELQs had IC50s between 0.1 and 1 nM, for 7 compounds values between 1 and 10 nM were noted, and one compound had an IC50 of 22.4 nM. Two compounds, namely ELQ-316 and its prodrug ELQ-334 with IC50s of 0.66 and 3.33 nM, respectively, were previously shown to display promising activities against experimental toxoplasmosis and babesiosis caused by Babesia microti in mice, and were thus further studied. They were assessed in long-term treatment assays by exposure of infected HFF to ELQs at 0.5 μM concentration, starting 3 h after infection and lasting for up to 17 days followed by release of drug pressure. Results showed that the compounds substantially delayed parasite proliferation, but did not exert parasiticidal activities. TEM of drug treated parasites detected distinct alterations within the parasite mitochondria, but not in other parasite organelles. Assessment of safety of ELQ-334 in the pregnant mouse model showed that the compound did not interfere in fertility or pregnancy outcome. In N. caninum infected pregnant mice treated with ELQ-334 at 10 mg/kg/day for 5 days, neonatal mortality (within 2 days post partum) was found in 7 of 44 pups (15.9%), but no postnatal mortality was noted, and vertical transmission was reduced by 49% compared to the placebo group, which exhibited 100% vertical transmission, neonatal mortality in 15 of 34 pups (44%), and postnatal mortality for 18 of the residual 19 pups during the 4 weeks follow-up. These findings encourage more research on the use of ELQs for therapeutic options against N. caninum infection.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Vreni Balmer
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Pablo Winzer
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | | | - Mona Roozbehani
- Department of Parasitology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sovitj Pou
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Aaron Nilsen
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Michael Riscoe
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - J Stone Doggett
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Andrew Hemphill
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Harmse R, Coertzen D, Wong HN, Smit FJ, van der Watt ME, Reader J, Nondaba SH, Birkholtz LM, Haynes RK, N'Da DD. Activities of 11-Azaartemisinin and N-Sulfonyl Derivatives against Asexual and Transmissible Malaria Parasites. ChemMedChem 2017; 12:2086-2093. [PMID: 29219249 DOI: 10.1002/cmdc.201700599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/15/2017] [Indexed: 02/03/2023]
Abstract
Dihydroartemisinin (DHA), either used in its own right or as the active drug generated in vivo from the other artemisinins in current clinical use-artemether and artesunate-induces quiescence in ring-stage parasites of Plasmodium falciparum (Pf). This induction of quiescence is linked to artemisinin resistance. Thus, we have turned to structurally disparate artemisinins that are incapable of providing DHA on metabolism. Accordingly, 11-azaartemisinin 5 and selected N-sulfonyl derivatives were screened against intraerythrocytic asexual stages of drug-sensitive Pf NF54 and drug-resistant K1 and W2 parasites. Most displayed appreciable activities against all three strains, with IC50 values <10.5 nm. The p-trifluoromethylbenzenesulfonyl-11-azaartemisinin derivative 11 [(4'-trifluoromethyl)benzenesulfonylazaartemisinin] was the most active, with IC50 values between 2 and 3 nm. The compounds were screened against Pf NF54 early and transmissible late intraerythrocytic-stage gametocytes using luciferase and parasite lactate dehydrogenase (pLDH) assays. The 2'-thienylsulfonyl derivative 16 (2'-thiophenesulfonylazaartemisinin) was notably active against late-stage (IV-V) gametocytes with an IC50 value of 8.7 nm. All compounds were relatively nontoxic to human fetal lung WI-38 fibroblasts, showing selectivity indices of >2000 toward asexual parasites. Overall, the readily accessible 11-azaartemisinin 5 and the sulfonyl derivatives 11 and 16 represent potential candidates for further development, in particular for transmission blocking of artemisinin-resistant parasites.
Collapse
Affiliation(s)
- Rozanne Harmse
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0002, South Africa
| | - Ho Ning Wong
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Frans J Smit
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Mariette E van der Watt
- Department of Biochemistry, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0002, South Africa
| | - Janette Reader
- Department of Biochemistry, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0002, South Africa
| | - Sindiswe H Nondaba
- Department of Biochemistry, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0002, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0002, South Africa
| | - Richard K Haynes
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|