1
|
González-Montero MC, Andrés-Rodríguez J, García-Fernández N, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, García-Estrada C. Targeting Trypanothione Metabolism in Trypanosomatids. Molecules 2024; 29:2214. [PMID: 38792079 PMCID: PMC11124245 DOI: 10.3390/molecules29102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Infectious diseases caused by trypanosomatids, including African trypanosomiasis (sleeping sickness), Chagas disease, and different forms of leishmaniasis, are Neglected Tropical Diseases affecting millions of people worldwide, mainly in vulnerable territories of tropical and subtropical areas. In general, current treatments against these diseases are old-fashioned, showing adverse effects and loss of efficacy due to misuse or overuse, thus leading to the emergence of resistance. For these reasons, searching for new antitrypanosomatid drugs has become an urgent necessity, and different metabolic pathways have been studied as potential drug targets against these parasites. Considering that trypanosomatids possess a unique redox pathway based on the trypanothione molecule absent in the mammalian host, the key enzymes involved in trypanothione metabolism, trypanothione reductase and trypanothione synthetase, have been studied in detail as druggable targets. In this review, we summarize some of the recent findings on the molecules inhibiting these two essential enzymes for Trypanosoma and Leishmania viability.
Collapse
Affiliation(s)
- María-Cristina González-Montero
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Julia Andrés-Rodríguez
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Nerea García-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
2
|
Barrera-Téllez FJ, Prieto-Martínez FD, Hernández-Campos A, Martínez-Mayorga K, Castillo-Bocanegra R. In Silico Exploration of the Trypanothione Reductase (TryR) of L. mexicana. Int J Mol Sci 2023; 24:16046. [PMID: 38003236 PMCID: PMC10671491 DOI: 10.3390/ijms242216046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Human leishmaniasis is a neglected tropical disease which affects nearly 1.5 million people every year, with Mexico being an important endemic region. One of the major defense mechanisms of these parasites is based in the polyamine metabolic pathway, as it provides the necessary compounds for its survival. Among the enzymes in this route, trypanothione reductase (TryR), an oxidoreductase enzyme, is crucial for the Leishmania genus' survival against oxidative stress. Thus, it poses as an attractive drug target, yet due to the size and features of its catalytic pocket, modeling techniques such as molecular docking focusing on that region is not convenient. Herein, we present a computational study using several structure-based approaches to assess the druggability of TryR from L. mexicana, the predominant Leishmania species in Mexico, beyond its catalytic site. Using this consensus methodology, three relevant pockets were found, of which the one we call σ-site promises to be the most favorable one. These findings may help the design of new drugs of trypanothione-related diseases.
Collapse
Affiliation(s)
- Francisco J. Barrera-Téllez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Fernando D. Prieto-Martínez
- Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz, Km. 4.5, Ucú 97357, Mexico
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Karina Martínez-Mayorga
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacal, Mérida 97302, Mexico
| | - Rafael Castillo-Bocanegra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
3
|
de Lucio H, Revuelto A, Carriles AA, de Castro S, García-González S, García-Soriano JC, Alcón-Calderón M, Sánchez-Murcia PA, Hermoso JA, Gago F, Camarasa MJ, Jiménez-Ruiz A, Velázquez S. Identification of 1,2,3-triazolium salt-based inhibitors of Leishmania infantum trypanothione disulfide reductase with enhanced antileishmanial potency in cellulo and increased selectivity. Eur J Med Chem 2022; 244:114878. [DOI: 10.1016/j.ejmech.2022.114878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2022]
|
4
|
Fiorillo A, Colotti G, Exertier C, Liuzzi A, Seghetti F, Salerno A, Caciolla J, Ilari A. Innovative Approach for a Classic Target: Fragment Screening on Trypanothione Reductase Reveals New Opportunities for Drug Design. Front Mol Biosci 2022; 9:900882. [PMID: 35860359 PMCID: PMC9289546 DOI: 10.3389/fmolb.2022.900882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanothione reductase (TR) is a key factor in the redox homeostasis of trypanosomatid parasites, critical for survival in the hostile oxidative environment generated by the host to fight infection. TR is considered an attractive target for the development of new trypanocidal agents as it is essential for parasite survival but has no close homolog in humans. However, the high efficiency and turnover of TR challenging targets since only potent inhibitors, with nanomolar IC50, can significantly affect parasite redox state and viability. To aid the design of effective compounds targeting TR, we performed a fragment-based crystal screening at the Diamond Light Source XChem facility using a library optimized for follow-up synthesis steps. The experiment, allowing for testing over 300 compounds, resulted in the identification of 12 new ligands binding five different sites. Interestingly, the screening revealed the existence of an allosteric pocket close to the NADPH binding site, named the “doorstop pocket” since ligands binding at this site interfere with TR activity by hampering the “opening movement” needed to allow cofactor binding. The second remarkable site, known as the Z-site, identified by the screening, is located within the large trypanothione cavity but corresponds to a region not yet exploited for inhibition. The fragments binding to this site are close to each other and have some remarkable features making them ideal for follow-up optimization as a piperazine moiety in three out of five fragments.
Collapse
Affiliation(s)
- Annarita Fiorillo
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, Rome, Italy
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
- *Correspondence: Annarita Fiorillo,
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, Rome, Italy
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Cécile Exertier
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, Rome, Italy
| | - Anastasia Liuzzi
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, Rome, Italy
| | - Francesca Seghetti
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alessandra Salerno
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Jessica Caciolla
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, Rome, Italy
| |
Collapse
|
5
|
Examination of multiple Trypanosoma cruzi targets in a new drug discovery approach for Chagas disease. Bioorg Med Chem 2022; 58:116577. [DOI: 10.1016/j.bmc.2021.116577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
|
6
|
Revuelto A, López-Martín I, de Lucio H, García-Soriano JC, Zanda N, de Castro S, Gago F, Jiménez-Ruiz A, Velázquez S, Camarasa MJ. Small Molecule-Peptide Conjugates as Dimerization Inhibitors of Leishmania infantum Trypanothione Disulfide Reductase. Pharmaceuticals (Basel) 2021; 14:ph14070689. [PMID: 34358115 PMCID: PMC8308777 DOI: 10.3390/ph14070689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Trypanothione disulfide reductase (TryR) is an essential homodimeric enzyme of trypanosomatid parasites that has been validated as a drug target to fight human infections. Using peptides and peptidomimetics, we previously obtained proof of concept that disrupting protein-protein interactions at the dimer interface of Leishmania infantum TryR (LiTryR) offered an innovative and so far unexploited opportunity for the development of novel antileishmanial agents. Now, we show that linking our previous peptide prototype TRL38 to selected hydrophobic moieties provides a novel series of small-molecule-peptide conjugates that behave as good inhibitors of both LiTryR activity and dimerization.
Collapse
Affiliation(s)
- Alejandro Revuelto
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
| | - Isabel López-Martín
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
| | - Héctor de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805 Alcalá de Henares, Spain; (H.d.L.); (J.C.G.-S.); (A.J.-R.)
| | - Juan Carlos García-Soriano
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805 Alcalá de Henares, Spain; (H.d.L.); (J.C.G.-S.); (A.J.-R.)
| | - Nicola Zanda
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
| | - Sonia de Castro
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
| | - Federico Gago
- Unidad Asociada al IQM-CSIC, Área de Farmacología, Departamento de Ciencias Biomédicas, Universidad de Alcalá, E-28805 Alcalá de Henares, Spain;
| | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805 Alcalá de Henares, Spain; (H.d.L.); (J.C.G.-S.); (A.J.-R.)
| | - Sonsoles Velázquez
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
- Correspondence: (S.V.); (M.-J.C.); Tel.: +34-912-587-458 (M.-J.C.)
| | - María-José Camarasa
- Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain; (A.R.); (I.L.-M.); (N.Z.); (S.d.C.)
- Correspondence: (S.V.); (M.-J.C.); Tel.: +34-912-587-458 (M.-J.C.)
| |
Collapse
|
7
|
Revuelto A, de Lucio H, García-Soriano JC, Sánchez-Murcia PA, Gago F, Jiménez-Ruiz A, Camarasa MJ, Velázquez S. Efficient Dimerization Disruption of Leishmania infantum Trypanothione Reductase by Triazole-phenyl-thiazoles. J Med Chem 2021; 64:6137-6160. [PMID: 33945281 PMCID: PMC8480782 DOI: 10.1021/acs.jmedchem.1c00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 01/06/2023]
Abstract
Inhibition of Leishmania infantum trypanothione disulfide reductase (LiTryR) by disruption of its homodimeric interface has proved to be an alternative and unexploited strategy in the search for novel antileishmanial agents. Proof of concept was first obtained by peptides and peptidomimetics. Building on previously reported dimerization disruptors containing an imidazole-phenyl-thiazole scaffold, we now report a new 1,2,3-triazole-based chemotype that yields noncompetitive, slow-binding inhibitors of LiTryR. Several compounds bearing (poly)aromatic substituents dramatically improve the ability to disrupt LiTryR dimerization relative to reference imidazoles. Molecular modeling studies identified an almost unexplored hydrophobic region at the interfacial domain as the putative binding site for these compounds. A subsequent structure-based design led to a symmetrical triazole analogue that displayed even more potent inhibitory activity over LiTryR and enhanced leishmanicidal activity. Remarkably, several of these novel triazole-bearing compounds were able to kill both extracellular and intracellular parasites in cell cultures.
Collapse
Affiliation(s)
- Alejandro Revuelto
- Instituto
de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Héctor de Lucio
- Departamento
de Biología de Sistemas, Universidad
de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | | | - Pedro A. Sánchez-Murcia
- Área
de Farmacología, Departamento de Ciencias Biomédicas,
Unidad Asociada al IQM-CSIC, Universidad
de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Federico Gago
- Área
de Farmacología, Departamento de Ciencias Biomédicas,
Unidad Asociada al IQM-CSIC, Universidad
de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Antonio Jiménez-Ruiz
- Departamento
de Biología de Sistemas, Universidad
de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - María-José Camarasa
- Instituto
de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Sonsoles Velázquez
- Instituto
de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
8
|
Saccoliti F, Di Santo R, Costi R. Recent Advancement in the Search of Innovative Antiprotozoal Agents Targeting Trypanothione Metabolism. ChemMedChem 2020; 15:2420-2435. [PMID: 32805075 DOI: 10.1002/cmdc.202000325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/13/2020] [Indexed: 01/28/2023]
Abstract
Leishmania and Trypanosoma parasites are responsible for the challenging neglected tropical diseases leishmaniases, Chagas disease, and human African trypanosomiasis, which account for up to 40,000 deaths annually mainly in developing countries. Current chemotherapy relies on drugs with significant limitations in efficacy and safety, prompting the urgent need to explore innovative approaches to improve the drug discovery pipeline. The unique trypanothione-based redox pathway, which is absent in human hosts, is vital for all trypanosomatids and offers valuable opportunities to guide the rational development of specific, broad-spectrum and innovative anti-trypanosomatid agents. Major efforts focused on the key metabolic enzymes trypanothione synthetase-amidase and trypanothione reductase, whose inhibition should affect the entire pathway and, finally, parasite survival. Herein, we will report and comment on the most recent studies in the search for enzyme inhibitors, underlining the promising opportunities that have emerged so far to drive the exploration of future successful therapeutic approaches.
Collapse
Affiliation(s)
- Francesco Saccoliti
- D3 PharmaChemistry, Italian Institute of Technology, Via Morego 30, 16163, Genova, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185, Roma, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
9
|
Battista T, Colotti G, Ilari A, Fiorillo A. Targeting Trypanothione Reductase, a Key Enzyme in the Redox Trypanosomatid Metabolism, to Develop New Drugs against Leishmaniasis and Trypanosomiases. Molecules 2020; 25:E1924. [PMID: 32326257 PMCID: PMC7221613 DOI: 10.3390/molecules25081924] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/21/2023] Open
Abstract
The protozoans Leishmania and Trypanosoma, belonging to the same Trypanosomatidae family, are the causative agents of Leishmaniasis, Chagas disease, and human African trypanosomiasis. Overall, these infections affect millions of people worldwide, posing a serious health issue as well as socio-economical concern. Current treatments are inadequate, mainly due to poor efficacy, toxicity, and emerging resistance; therefore, there is an urgent need for new drugs.
Collapse
Affiliation(s)
- Theo Battista
- Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy;
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, c/o Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy; (G.C.); (A.I.)
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, c/o Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy; (G.C.); (A.I.)
| | - Annarita Fiorillo
- Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy;
| |
Collapse
|
10
|
Raghunathan S, Jaganade T, Priyakumar UD. Urea-aromatic interactions in biology. Biophys Rev 2020; 12:65-84. [PMID: 32067192 PMCID: PMC7040157 DOI: 10.1007/s12551-020-00620-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Noncovalent interactions are key determinants in both chemical and biological processes. Among such processes, the hydrophobic interactions play an eminent role in folding of proteins, nucleic acids, formation of membranes, protein-ligand recognition, etc.. Though this interaction is mediated through the aqueous solvent, the stability of the above biomolecules can be highly sensitive to any small external perturbations, such as temperature, pressure, pH, or even cosolvent additives, like, urea-a highly soluble small organic molecule utilized by various living organisms to regulate osmotic pressure. A plethora of detailed studies exist covering both experimental and theoretical regimes, to understand how urea modulates the stability of biological macromolecules. While experimentalists have been primarily focusing on the thermodynamic and kinetic aspects, theoretical modeling predominantly involves mechanistic information at the molecular level, calculating atomistic details applying the force field approach to the high level electronic details using the quantum mechanical methods. The review focuses mainly on examples with biological relevance, such as (1) urea-assisted protein unfolding, (2) urea-assisted RNA unfolding, (3) urea lesion interaction within damaged DNA, (4) urea conduction through membrane proteins, and (5) protein-ligand interactions those explicitly address the vitality of hydrophobic interactions involving exclusively the urea-aromatic moiety.
Collapse
Affiliation(s)
- Shampa Raghunathan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Tanashree Jaganade
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
11
|
De Gasparo R, Halgas O, Harangozo D, Kaiser M, Pai EF, Krauth‐Siegel RL, Diederich F. Targeting a Large Active Site: Structure‐Based Design of Nanomolar Inhibitors of
Trypanosoma brucei
Trypanothione Reductase. Chemistry 2019; 25:11416-11421. [DOI: 10.1002/chem.201901664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Raoul De Gasparo
- Laboratorium für Organische ChemieETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Ondrej Halgas
- Departments of Biochemistry and Medical BiophysicsUniversity of Toronto Medical Sciences Building, 5318, 1 King's College Circle Toronto ON M5S 1A8 Canada
- The Campbell Family Institute for Cancer ResearchUniversity Health Network 101 College Street Toronto ON M5G 1L7 Canada
| | - Dora Harangozo
- Laboratorium für Organische ChemieETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute Socinstrasse 57 4002 Basel Switzerland
- University of Basel Petersplatz 1 4003 Basel Switzerland
| | - Emil F. Pai
- Departments of Biochemistry and Medical BiophysicsUniversity of Toronto Medical Sciences Building, 5318, 1 King's College Circle Toronto ON M5S 1A8 Canada
- The Campbell Family Institute for Cancer ResearchUniversity Health Network 101 College Street Toronto ON M5G 1L7 Canada
| | - R. Luise Krauth‐Siegel
- Biochemie-Zentrum Heidelberg (BZH)Universität Heidelberg Im Neuenheimer Feld 328 69120 Heidelberg Germany
| | - François Diederich
- Laboratorium für Organische ChemieETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
12
|
Revuelto A, Ruiz-Santaquiteria M, de Lucio H, Gamo A, Carriles AA, Gutiérrez KJ, Sánchez-Murcia PA, Hermoso JA, Gago F, Camarasa MJ, Jiménez-Ruiz A, Velázquez S. Pyrrolopyrimidine vs Imidazole-Phenyl-Thiazole Scaffolds in Nonpeptidic Dimerization Inhibitors of Leishmania infantum Trypanothione Reductase. ACS Infect Dis 2019; 5:873-891. [PMID: 30983322 DOI: 10.1021/acsinfecdis.8b00355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Disruption of protein-protein interactions of essential oligomeric enzymes by small molecules represents a significant challenge. We recently reported some linear and cyclic peptides derived from an α-helical region present in the homodimeric interface of Leishmania infantum trypanothione reductase ( Li-TryR) that showed potent effects on both dimerization and redox activity of this essential enzyme. Here, we describe our first steps toward the design of nonpeptidic small-molecule Li-TryR dimerization disruptors using a proteomimetic approach. The pyrrolopyrimidine and the 5-6-5 imidazole-phenyl-thiazole α-helix-mimetic scaffolds were suitably decorated with substituents that could mimic three key residues (K, Q, and I) of the linear peptide prototype (PKIIQSVGIS-Nle-K-Nle). Extensive optimization of previously described synthetic methodologies was required. A library of 15 compounds bearing different hydrophobic alkyl and aromatic substituents was synthesized. The imidazole-phenyl-thiazole-based analogues outperformed the pyrrolopyrimidine-based derivatives in both inhibiting the enzyme and killing extracellular and intracellular parasites in cell culture. The most active imidazole-phenyl-thiazole compounds 3e and 3f inhibit Li-TryR and prevent growth of the parasites at low micromolar concentrations similar to those required by the peptide prototype. The intrinsic fluorescence of these compounds inside the parasites visually demonstrates their good permeability in comparison with previous peptide-based Li-TryR dimerization disruptors.
Collapse
Affiliation(s)
| | | | - Héctor de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá
de Henares, Madrid E-28805, Spain
| | - Ana Gamo
- Instituto de Química Médica (IQM-CSIC), Madrid E-28006, Spain
| | - Alejandra A. Carriles
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry “Rocasolano” (IQFR-CSIC), Madrid E-28006, Spain
| | - Kilian Jesús Gutiérrez
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá
de Henares, Madrid E-28805, Spain
| | - Pedro A. Sánchez-Murcia
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Alcalá de Henares, Madrid E-28805, Spain
| | - Juan A. Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry “Rocasolano” (IQFR-CSIC), Madrid E-28006, Spain
| | - Federico Gago
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Alcalá de Henares, Madrid E-28805, Spain
| | | | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá
de Henares, Madrid E-28805, Spain
| | | |
Collapse
|