1
|
Shao WB, Luo RS, Meng J, Lv XK, Xiang HM, Xiao WL, Zhou X, Liu LW, Wu ZB, Yang S. Engineering Phenothiazine-Based Functional Mimics of Host Defense Peptides as New Agrochemical Candidates: Design, Synthesis, and Antibacterial Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37906428 DOI: 10.1021/acs.jafc.3c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In the protracted "arms race" between host and plant pathogenic bacteria, host organisms have evolved powerful weapons known as host defense peptides (HDPs). However, natural HDPs are not suitable for large-scale applications; therefore, researchers have chosen to develop bespoke small-molecule functional mimics. Phenothiazine derivatives were developed as functional HDPs mimics, owing to their broad biological activity and high lipophilicity. The phenothiazine analogues designed in this study exhibited excellent in vitro bioactivity against the three Gram-negative bacteria Xanthomonas oryzae pv oryzae, Xanthomonas axonopodis pv citri, and Pseudomonas syringae pv actinidiae, with optimal EC50 values of 0.80, 0.31, and 1.91 μg/mL, respectively. Preliminary evidence suggests that compound C2 may act on bacterial cell membranes and interact with bacterial Deoxyribonucleic acid in the groove binding mode. In vivo trials showed that compound C2 was highly effective against rice leaf blight (51.97-56.69%), with activity superior to those of bismerthiazol (40.7-43.4%) and thiodiazole copper (30.2-37.1%). Our study provides strong evidence to support the development of phenothiazine derivatives into pesticide candidates.
Collapse
Affiliation(s)
- Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Rong-Shuang Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiao-Kang Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong-Mei Xiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wan-Lin Xiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhi-Bing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Zhou M, Cui R, Luo Z, Cong Z, Shao N, Yuan L, Gu J, He H, Liu R. Convenient and Controllable Synthesis of Poly(2-oxazoline)-Conjugated Doxorubicin for Regulating Anti-Tumor Selectivity. J Funct Biomater 2023; 14:382. [PMID: 37504877 PMCID: PMC10381835 DOI: 10.3390/jfb14070382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Polyethylene glycol (PEG)-doxorubicin (DOX) conjugation is an important strategy to improve toxicity and enhance clinically therapeutic efficacy. However, with the frequent use of PEG-modified drugs, the accumulation of anti-PEG antibodies has become a tough issue, which limits the application of PEG-drug conjugation. As an alternative solution, poly(2-oxazoline) (POX)-DOX conjugation has shown great potential in the anti-tumor field, but the reported conjugation process of POX with DOX has drawbacks such as complex synthetic steps and purification. Herein, we propose a convenient and controllable strategy for the synthesis of POX-DOX conjugation with different chain lengths and narrow dispersity by N-boc-2-bromoacetohydrazide-initiated 2-ethyl-oxazoline polymerization and the subsequent deprotection of the N-Boc group and direct reaction with DOX. The DOX-PEtOx conjugates were firstly purified, and the successful conjugations were confirmed through various characterization methods. The synthetic DOX-PEtOxn conjugates reduce the toxicity of DOX and increase the selectivity to tumor cells, reflecting the promising application of this POX-DOX conjugation strategy in drug modification and development.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ruxin Cui
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhengjie Luo
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Cong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ling Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiawei Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shenzhen Research Institute, East China University of Science and Technology, Shenzhen 518063, China
| |
Collapse
|
3
|
Zhang H, Chen Q, Xie J, Cong Z, Cao C, Zhang W, Zhang D, Chen S, Gu J, Deng S, Qiao Z, Zhang X, Li M, Lu Z, Liu R. Switching from membrane disrupting to membrane crossing, an effective strategy in designing antibacterial polypeptide. SCIENCE ADVANCES 2023; 9:eabn0771. [PMID: 36696494 PMCID: PMC9876554 DOI: 10.1126/sciadv.abn0771] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Drug-resistant bacterial infections have caused serious threats to human health and call for effective antibacterial agents that have low propensity to induce antimicrobial resistance. Host defense peptide-mimicking peptides are actively explored, among which poly-β-l-lysine displays potent antibacterial activity but high cytotoxicity due to the helical structure and strong membrane disruption effect. Here, we report an effective strategy to optimize antimicrobial peptides by switching membrane disrupting to membrane penetrating and intracellular targeting by breaking the helical structure using racemic residues. Introducing β-homo-glycine into poly-β-lysine effectively reduces the toxicity of resulting poly-β-peptides and affords the optimal poly-β-peptide, βLys50HG50, which shows potent antibacterial activity against clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) and MRSA persister cells, excellent biosafety, no antimicrobial resistance, and strong therapeutic potential in both local and systemic MRSA infections. The optimal poly-β-peptide demonstrates strong therapeutic potential and implies the success of our approach as a generalizable strategy in designing promising antibacterial polypeptides.
Collapse
Affiliation(s)
- Haodong Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayang Xie
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Cong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chuntao Cao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjing Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Donghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiawei Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Deng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhongqian Qiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyue Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ziyi Lu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Antibacterial Thin Films Deposited from Propane-Butane Mixture in Atmospheric Pressure Discharge. Int J Mol Sci 2023; 24:ijms24021706. [PMID: 36675219 PMCID: PMC9864540 DOI: 10.3390/ijms24021706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antibacterial coatings on biomedical instruments are of great interest because they can suppress bacterial colonization on these instruments. In this study, antibacterial polymeric thin coatings were deposited on teflon substrates using atmospheric pressure plasma polymerization from a propane-butane mixture. The plasma polymerization was performed by means of surface dielectric barrier discharge burning in nitrogen at atmospheric pressure. The chemical composition of plasma polymerized propane-butane films was studied by energy-dispersive X-ray spectroscopy (EDX) and FTIR. The film surface properties were studied by SEM and by surface energy measurement. The EDX analysis showed that the films consisted of carbon, nitrogen and oxygen from ambient air. The FTIR analysis confirmed, in particular, the presence of alkyl, nitrile, acetylene, imide and amine groups. The deposited films were hydrophilic with a water contact angle in the range of 13-23°. The thin film deposited samples were highly active against both S. aureus and E. coli strains in general. On the other hand, the films were cytocompatible, reaching more than 80% of the cell viability threshold compared to reference polystyrene tissue.
Collapse
|
5
|
Cheng W, Xu T, Cui L, Xue Z, Liu J, Yang R, Qin S, Guo Y. Discovery of Amphiphilic Xanthohumol Derivatives as Membrane-Targeting Antimicrobials against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2023; 66:962-975. [PMID: 36584344 DOI: 10.1021/acs.jmedchem.2c01793] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are increasing worldwide, and with limited clinically available antibiotics, it is urgent to develop new antimicrobials to combat these MDR bacteria. Here, a class of novel amphiphilic xanthohumol derivatives were prepared using a building-block approach. Bioactivity assays showed that the molecule IV15 not only exhibited a remarkable antibacterial effect against clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates (MICs: 1-2 μg/mL) but also had the advantages of rapid bactericidal properties, low toxicity, good plasma stability, and not readily inducing bacterial resistance. Mechanistic studies indicated that IV15 has good membrane-targeting ability and can bind to phosphatidylglycerol and cardiolipin in bacterial membranes, thus disrupting the bacterial cell membranes and causing increased intracellular reactive oxygen species and leakage of proteins and DNA, eventually resulting in bacterial death. Notably, IV15 exhibited remarkable in vivo anti-MRSA efficacy, superior to vancomycin, making it a potential candidate to combat MRSA infections.
Collapse
Affiliation(s)
- Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ting Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liping Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zihan Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ruige Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China
| |
Collapse
|
6
|
Li W, Xiao X, Qi Y, Lin X, Hu H, Shi M, Zhou M, Jiang W, Liu L, Chen K, Wang K, Liu R, Zhou M. Host-Defense-Peptide-Mimicking β-Peptide Polymer Acting as a Dual-Modal Antibacterial Agent by Interfering Quorum Sensing and Killing Individual Bacteria Simultaneously. RESEARCH (WASHINGTON, D.C.) 2023; 6:0051. [PMID: 36930779 PMCID: PMC10014070 DOI: 10.34133/research.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
Host defense peptides (HDPs) are one of the potentially promising agents for infection diseases due to their broad spectrum and low resistance rate, but their clinical applications are limited by proteolytic instability, high-cost, and complicated synthesis process. Here, we report a host-defense-peptide-mimicking β-peptide polymer that resists proteolysis to have enhanced the activity under physiological conditions, excellent antimicrobial efficiency even at high density of bacteria, and low cost for preparation. The β-peptide polymer demonstrated quorum sensing (QS) interference and bactericidal effect against both bacterial communities and individual bacterium to simultaneously block bacterial communication and disrupt bacterial membranes. The hierarchical QS network was suppressed, and main QS signaling systems showed considerably down-regulated gene expression, resulting in excellent biofilm eradication and virulence reduction effects. The dual-modal antibacterial ability possessed excellent therapeutic effects in Pseudomonas aeruginosa pneumonia, which could inhibit biofilm formation and exhibit better antibacterial and anti-inflammatory efficiency than clinically used antibiotics, levofloxacin. Furthermore, the β-peptide polymer also showed excellent therapeutic effect Escherichia coli pyogenic liver abscess. Together, we believed that the β-peptide polymer had a feasible clinical potential to treat bacterial infection diseases.
Collapse
Affiliation(s)
- Wanlin Li
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 223300, China.,University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Xiuhui Lin
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huiqun Hu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Minqi Shi
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weinan Jiang
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Longqiang Liu
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kang Chen
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Wang
- University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 223300, China.,University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.,State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
|
8
|
Jiang W, Wu Y, Zhou M, Song G, Liu R. Advance and Designing Strategies in Polymeric Antifungal Agents Inspired by Membrane‐Active Peptides. Chemistry 2022; 28:e202202226. [DOI: 10.1002/chem.202202226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Weinan Jiang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yueming Wu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism Research Center for Biomedical Materials of Ministry of Education Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Min Zhou
- Shanghai Key Laboratory of Chemical Biology East China University of Science and Technology Shanghai 200237 P. R. China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemical Biology East China University of Science and Technology Shanghai 200237 P. R. China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism Research Center for Biomedical Materials of Ministry of Education Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
9
|
Zou J, Zhou M, Xiao X, Liu R. Advance in Hybrid Peptides Synthesis. Macromol Rapid Commun 2022; 43:e2200575. [PMID: 35978269 DOI: 10.1002/marc.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/24/2022] [Indexed: 11/08/2022]
Abstract
Hybrid peptides with heterogeneous backbone are a class of peptide mimics with adjustable proteolytic stability obtained from incorporating unnatural amino acid residues into peptide backbone. α/β-peptides and peptide/peptoid hybrids are two types of hybrid peptides that are widely studied for diverse applications, and several synthetic methods have been developed. In this mini review, the advance in hybrid peptide synthesis is summarized, including solution-phase method, solid-phase method, and novel polymerization method. Conventional solution-phase method and solid-phase method generally result in oligomers with defined sequences, while polymerization methods have advantages in preparing peptide hybrid polymers with high molecular weight with simple operation and low cost. In addition, the future development of polymerization method to realize the control of the peptide hybrid polymer sequence is discussed.
Collapse
Affiliation(s)
- Jingcheng Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
10
|
Krajewska J, Nowicki K, Durka K, Marek-Urban PH, Wińska P, Stępniewski T, Woźniak K, Laudy AE, Luliński S. Oxazoline scaffold in synthesis of benzosiloxaboroles and related ring-expanded heterocycles: diverse reactivity, structural peculiarities and antimicrobial activity. RSC Adv 2022; 12:23099-23117. [PMID: 36090419 PMCID: PMC9379557 DOI: 10.1039/d2ra03910a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/07/2022] [Indexed: 11/21/2022] Open
Abstract
Two isomeric benzosiloxaborole derivatives 3a and 5a bearing fluorine and 4,4-dimethyl-2-oxazolin-2-yl substituents attached to the aromatic rings were obtained. Both compounds were prone to hydrolytic cleavage of the oxazoline ring after initial protonation or methylation of the nitrogen atom. The derivative 3c featuring N-methylammoniumalkyl ester functionality was successfully subjected to N-sulfonylation and N-acylation reactions to give respective derivatives which demonstrates its potential for modular synthesis of structurally extended benzosiloxaboroles. Compound 5c bearing N-ammoniumalkyl ester underwent conversion to a unique macrocyclic dimer due to siloxaborole ring opening. Furthermore, an unexpected 4-electron reduction of the oxazoline ring occurred during an attempted synthesis of 5a. The reaction gave rise to an unprecedented 7-membered heterocyclic system 4a comprising a relatively stable B-O-B-O-Si linkage and stabilized by an intramolecular N-B coordination. It could be cleaved to derivative 4c bearing BOH and SiMe2OH groups which acts as a pseudo-diol as demonstrated by formation of an adduct with Tavaborole. Apart from the multinuclear NMR spectroscopy characterization, crystal structures of the obtained products were determined in many cases by X-ray diffraction. Investigation of biological activity of the obtained compounds revealed that derivatives 3e and 3f with pendant N-methyl arylsulfonamide groups exhibit high activity against Gram-positive cocci such as methicillin-sensitive Staphylococcus aureus ATCC 6538P, methicillin-resistant S. aureus (MRSA) ATCC 43300 as well as the MRSA clinical strains, with MIC values in the range of 3.12-6.25 mg L-1. These two compounds also showed activity against Enterococcus faecalis ATCC 29212 and Enterococcus faecium ATCC 6057 (with MICs of 25-50 mg L-1). The results of the antimicrobial activity and cytotoxicity studies indicate that 3e and 3f can be considered as potential antibacterial agents, especially against S. aureus MRSA.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of Pharmaceutical Microbiology, Medical University of Warsaw Banacha 1 b 02-097 Warsaw Poland
| | - Krzysztof Nowicki
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Krzysztof Durka
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Paulina H Marek-Urban
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Patrycja Wińska
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Tomasz Stępniewski
- GPCR Drug Discovery Lab, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Department of Experimental and Health Sciences of Pompeu Fabra University (UPF) Carrer del Dr Aiguader, 88 08003 Barcelona Spain
| | - Krzysztof Woźniak
- University of Warsaw, Faculty of Chemistry Pasteura 1 02-093 Warsaw Poland
| | - Agnieszka E Laudy
- Department of Pharmaceutical Microbiology, Medical University of Warsaw Banacha 1 b 02-097 Warsaw Poland
| | - Sergiusz Luliński
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
11
|
Jiang W, Zhou M, Cong Z, Xie J, Zhang W, Chen S, Zou J, Ji Z, Shao N, Chen X, Li M, Liu R. Short Guanidinium-Functionalized Poly(2-oxazoline)s Displaying Potent Therapeutic Efficacy on Drug-Resistant Fungal Infections. Angew Chem Int Ed Engl 2022; 61:e202200778. [PMID: 35182092 DOI: 10.1002/anie.202200778] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 12/22/2022]
Abstract
New antifungals are urgently needed to combat invasive fungal infections, due to limited types of available antifungal drugs and frequently encountered side effects, as well as the quick emergence of drug-resistance. We previously developed amine-pendent poly(2-oxazoline)s (POXs) as synthetic mimics of host defense peptides (HDPs) to have antibacterial properties, but with poor antifungal activity. Hereby, we report the finding of short guanidinium-pendent POXs, inspired by cell-penetrating peptides, as synthetic mimics of HDPs to display potent antifungal activity, superior mammalian cells versus fungi selectivity, and strong therapeutic efficacy in treating local and systemic fungal infections. Moreover, the unique antifungal mechanism of fungal cell membrane penetration and organelle disruption explains the insusceptibility of POXs to antifungal resistance. The easy synthesis and structural diversity of POXs imply their potential as a class of promising antifungal agents.
Collapse
Affiliation(s)
- Weinan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihao Cong
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiayang Xie
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjing Zhang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Sheng Chen
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingcheng Zou
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhemin Ji
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ning Shao
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
12
|
Jiang W, Zhou M, Cong Z, Xie J, Zhang W, Chen S, Zou J, Ji Z, Shao N, Chen X, Li M, Liu R. Short Guanidinium‐Functionalized Poly(2‐oxazoline)s Displaying Potent Therapeutic Efficacy on Drug‐Resistant Fungal Infections. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Weinan Jiang
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Min Zhou
- ECUST: East China University of Science and Technology School of Pharmacy CHINA
| | - Zihao Cong
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Jiayang Xie
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Wenjing Zhang
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Sheng Chen
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Jingcheng Zou
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Zhemin Ji
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Ning Shao
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Xin Chen
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Maoquan Li
- Tongji University Tenth People's Hospital: Shanghai Tenth People's Hospital School of medicine CHINA
| | - Runhui Liu
- East China University of Science and Technology Materials Science and Engineering 130 Meilong Road 200237 Shanghai CHINA
| |
Collapse
|
13
|
Zou J, Zhou M, Ji Z, Xiao X, Wu Y, Cui R, Deng S, Liu R. Controlled copolymerization of α-NCAs and α-NNTAs for preparing peptide/peptoid hybrid polymers with adjustable proteolysis. Polym Chem 2022. [DOI: 10.1039/d1py01413g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The living and controlled copolymerization of α-NCAs and α-NNTAs enables the facile synthesis of peptide/peptoid hybrid polymers with an alternating-like distribution of residues and adjustable proteolysis by varying the proportion of peptoid residues.
Collapse
Affiliation(s)
- Jingcheng Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhemin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yueming Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ruxin Cui
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Deng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
|
15
|
Kaur D, Patiyal S, Arora C, Singh R, Lodhi G, Raghava GPS. In-Silico Tool for Predicting, Scanning, and Designing Defensins. Front Immunol 2021; 12:780610. [PMID: 34880873 PMCID: PMC8645896 DOI: 10.3389/fimmu.2021.780610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Defensins are host defense peptides present in nearly all living species, which play a crucial role in innate immunity. These peptides provide protection to the host, either by killing microbes directly or indirectly by activating the immune system. In the era of antibiotic resistance, there is a need to develop a fast and accurate method for predicting defensins. In this study, a systematic attempt has been made to develop models for predicting defensins from available information on defensins. We created a dataset of defensins and non-defensins called the main dataset that contains 1,036 defensins and 1,035 AMPs (antimicrobial peptides, or non-defensins) to understand the difference between defensins and AMPs. Our analysis indicates that certain residues like Cys, Arg, and Tyr are more abundant in defensins in comparison to AMPs. We developed machine learning technique-based models on the main dataset using a wide range of peptide features. Our SVM (support vector machine)-based model discriminates defensins and AMPs with MCC of 0.88 and AUC of 0.98 on the validation set of the main dataset. In addition, we created an alternate dataset that consists of 1,036 defensins and 1,054 non-defensins obtained from Swiss-Prot. Models were also developed on the alternate dataset to predict defensins. Our SVM-based model achieved maximum MCC of 0.96 with AUC of 0.99 on the validation set of the alternate dataset. All models were trained, tested, and validated using standard protocols. Finally, we developed a web-based service "DefPred" to predict defensins, scan defensins in proteins, and design the best defensins from their analogs. The stand-alone software and web server of DefPred are available at https://webs.iiitd.edu.in/raghava/defpred.
Collapse
Affiliation(s)
- Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Chakit Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Ritesh Singh
- Department of Computer Science, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gaurav Lodhi
- Department of Computer Science, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
16
|
Rima M, Rima M, Fajloun Z, Sabatier JM, Bechinger B, Naas T. Antimicrobial Peptides: A Potent Alternative to Antibiotics. Antibiotics (Basel) 2021; 10:1095. [PMID: 34572678 PMCID: PMC8466391 DOI: 10.3390/antibiotics10091095] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial peptides constitute one of the most promising alternatives to antibiotics since they could be used to treat bacterial infections, especially those caused by multidrug-resistant pathogens. Many antimicrobial peptides, with various activity spectra and mechanisms of actions, have been described. This review focuses on their use against ESKAPE bacteria, especially in biofilm treatments, their synergistic activity, and their application as prophylactic agents. Limitations and challenges restricting therapeutic applications are highlighted, and solutions for each challenge are evaluated to analyze whether antimicrobial peptides could replace antibiotics in the near future.
Collapse
Affiliation(s)
- Mariam Rima
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, 94270 Le Kremlin-Bicetre, France;
| | - Mohamad Rima
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (M.R.); (Z.F.)
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (M.R.); (Z.F.)
- Department of Biology, Faculty of Sciences III, Lebanese University, Tripoli 1300, Lebanon
| | - Jean-Marc Sabatier
- Institut de Neuro Physiopathologie, UMR7051, Aix-Marseille Université, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Burkhard Bechinger
- Institut de Chimie de Strasbourg, CNRS, UMR7177, University of Strasbourg, 67008 Strasbourg, France;
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Thierry Naas
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, 94270 Le Kremlin-Bicetre, France;
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicetre, France
- French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, 94270 Le Kremlin-Bicetre, France
| |
Collapse
|
17
|
Dey R, Mukherjee S, Barman S, Haldar J. Macromolecular Nanotherapeutics and Antibiotic Adjuvants to Tackle Bacterial and Fungal Infections. Macromol Biosci 2021; 21:e2100182. [PMID: 34351064 DOI: 10.1002/mabi.202100182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2021] [Indexed: 12/19/2022]
Abstract
The escalating rise in the population of multidrug-resistant (MDR) pathogens coupled with their biofilm forming ability has struck the global health as nightmare. Alongwith the threat of aforementioned menace, the sluggish development of new antibiotics and the continuous deterioration of the antibiotic pipeline has stimulated the scientific community toward the search of smart and innovative alternatives. In near future, membrane targeting antimicrobial polymers, inspired from antimicrobial peptides, can stand out significantly to combat against the MDR superbugs. Many of these amphiphilic polymers can form nanoaggregates through self-assembly with superior and selective antimicrobial efficacy. Additionally, these macromolecular nanoaggregrates can be utilized to engineer smart antibiotic-delivery system for on-demand drug-release, exploiting the infection site's micoenvironment. This strategy substantially increases the local concentration of antibiotics and reduces the associated off-target toxicity. Furthermore, amphiphilc macromolecules can be utilized to rejuvinate obsolete antibiotics to tackle the drug-resistant infections. This review article highlights the recent developments in macromolecular architecture to design numerous nanostructures with broad-spectrum antimicrobial activity, their application in fabricating smart drug delivery systems and their efficacy as antibiotic adjuvants to circumvent antimicrobial resistance. Finally, the current challenges and future prospects are briefly discussed for further exploration and their practical application in clinical settings.
Collapse
Affiliation(s)
- Rajib Dey
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Swagatam Barman
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.,Antimicrobial Research Laboratory, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| |
Collapse
|
18
|
Liu L, Courtney KC, Huth SW, Rank LA, Weisblum B, Chapman ER, Gellman SH. Beyond Amphiphilic Balance: Changing Subunit Stereochemistry Alters the Pore-Forming Activity of Nylon-3 Polymers. J Am Chem Soc 2021; 143:3219-3230. [PMID: 33611913 PMCID: PMC7944571 DOI: 10.1021/jacs.0c12731] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 12/16/2022]
Abstract
Amphiphilic nylon-3 polymers have been reported to mimic the biological activities of natural antimicrobial peptides, with high potency against bacteria and minimal toxicity toward eukaryotic cells. Amphiphilic balance, determined by the proportions of hydrophilic and lipophilic subunits, is considered one of the most important features for achieving this activity profile for nylon-3 polymers and many other antimicrobial polymers. Insufficient hydrophobicity often correlates with weak activities against bacteria, whereas excessive hydrophobicity correlates with high toxicity toward eukaryotic cells. To ask whether factors beyond amphiphilic balance influence polymer activities, we synthesized and evaluated new nylon-3 polymers with two stereoisomeric subunits, each bearing an ethyl side chain and an aminomethyl side chain. Subunits that differ only in stereochemistry are predicted to contribute equally to amphiphilic balance, but we observed that the stereochemical difference correlates with significant changes in biological activity profile. Antibacterial activities were not strongly affected by subunit stereochemistry, but the ability to disrupt eukaryotic cell membranes varied considerably. Experiments with planar lipid bilayers and synthetic liposomes suggested that eukaryotic membrane disruption results from polymer-mediated formation of large pores. Collectively, our results suggest that factors other than amphiphilic balance influence the membrane activity profile of synthetic polymers. Subunits that differ in stereochemistry are likely to have distinct conformational propensities, which could potentially lead to differences in the average shapes of polymer chains, even when the subunits are heterochiral. These findings highlight a dimension of polymer design that should be considered more broadly in efforts to improve specificity and efficacy of antimicrobial polymers.
Collapse
Affiliation(s)
- Lei Liu
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kevin C. Courtney
- Department
of Neuroscience, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Howard
Hughes Medical Institute, University of
Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Sean W. Huth
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Leslie A. Rank
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Bernard Weisblum
- Department
of Pharmacology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Edwin R. Chapman
- Department
of Neuroscience, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Howard
Hughes Medical Institute, University of
Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Samuel H. Gellman
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|