1
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
2
|
Shaikh S, Basu S, Bag S, Chatterjee A, Datta S, Banerjee D, Manikantan K, Arun I, Arun P, Biswas NK, Maitra A, Mishra DK, Majumder PP, Dhar H, Mukherjee G. Uracil as a biomarker for spatial pyrimidine metabolism in the development of gingivobuccal oral squamous cell carcinoma. Sci Rep 2024; 14:11609. [PMID: 38773214 PMCID: PMC11109148 DOI: 10.1038/s41598-024-62434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
No biomarker has yet been identified that allows accurate diagnosis and prognosis of oral cancers. In this study, we investigated the presence of key metabolites in oral cancer using proton nuclear magnetic resonance (NMR) spectroscopy to identify metabolic biomarkers of gingivobuccal oral squamous cell carcinoma (GB-OSCC). NMR spectroscopy revealed that uracil was expressed in 83.09% of tumor tissues and pyrimidine metabolism was active in GB-OSCC; these results correlated well with immunohistochemistry (IHC) and RNA sequencing data. Based on further gene and protein analyses, we proposed a pathway for the production of uracil in GB-OSCC tissues. Uridinetriphosphate (UTP) is hydrolyzed to uridine diphosphate (UDP) by CD39 in the tumor microenvironment (TME). We hypothesized that UDP enters the cell with the help of the UDP-specific P2Y6 receptor for further processing by ENTPD4/5 to produce uracil. As the ATP reserves diminish, the weakened immune cells in the TME utilize pyrimidine metabolism as fuel for antitumor activity, and the same mechanism is hijacked by the tumor cells to promote their survival. Correspondingly, the differential expression of ENTPD4 and ENTPD5 in immune and tumor cells, respectively, indicatedtheir involvement in disease progression. Furthermore, higher uracil levels were detected in patients with lymph node metastasis, indicating that metastatic potential is increased in the presence of uracil. The presence of uracil and/or expression patterns of intermediate molecules in purine and pyrimidine pathways, such asCD39, CD73, and P2Y6 receptors together with ENTPD4 and ENTPD5, hold promise as biomarker(s) for oral cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Soni Shaikh
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
- Tata Consultancy Services (TCS), Kolkata, WB, India
| | - Sangramjit Basu
- Tata Translational Cancer Research Centre (TTCRC), 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Swarnendu Bag
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, New Delhi, 110007, India
| | - Ankita Chatterjee
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
| | - Sourav Datta
- Narayana Superspeciality Hospital, 120, 1, Andul Rd, Shibpur, Howrah, WB, 711103, India
- Medica Superspecialty Hospital, 127, Eastern Metropolitan Bypass, Nitai Nagar, Mukundapur, Kolkata, WB, 700099, India
| | - Devmalya Banerjee
- Narayana Superspeciality Hospital, 120, 1, Andul Rd, Shibpur, Howrah, WB, 711103, India
| | - Kapila Manikantan
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Indu Arun
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Pattatheyil Arun
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
| | - Deepak Kumar Mishra
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
- John C. Martin Centre for Liver Research and Innovations, Sitala East, IILDS, Hospital Road, Rajpur Sonarpur, Kolkata, WB, 700150, India
| | - Harsh Dhar
- Narayana Superspeciality Hospital, 120, 1, Andul Rd, Shibpur, Howrah, WB, 711103, India.
- Medica Superspecialty Hospital, 127, Eastern Metropolitan Bypass, Nitai Nagar, Mukundapur, Kolkata, WB, 700099, India.
| | - Geetashree Mukherjee
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India.
| |
Collapse
|
3
|
Jung YH, Shah Q, Lewicki SA, Pramanik A, Gopinatth V, Pelletier J, Sévigny J, Iqbal J, Jacobson KA. Synthesis and pharmacological characterization of multiply substituted 2H-chromene derivatives as P2Y 6 receptor antagonists. Bioorg Med Chem Lett 2022; 75:128981. [PMID: 36089113 PMCID: PMC9555146 DOI: 10.1016/j.bmcl.2022.128981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
P2Y6 receptor (P2Y6R) antagonists represent potential drugs for treating cancer, pain, neurodegeneration, asthma, diabetes, colitis and other disorders. However, there are few chemical classes of known competitive antagonists. We recently explored the structure activity relationship (SAR) of 2H-chromene derivatives as P2Y6R antagonists of moderate affinity. New analogues in this series modified at five positions were synthesized and shown to antagonize Ca2+ transients induced by the native agonist UDP in human (h) P2Y6R-expressing (but not turkey P2Y1R-, hP2Y2R- or hP2Y4R-expressing) astrocytoma cells. Alternatives to the reported 2-(trifluoromethyl)- and 3-nitro- substitutions of this scaffold were not identified. However, 6‑fluoro 11 and 6‑chloro 12 analogues displayed enhanced potency compared to other halogens, although still in the 1 - 2 µM range. Similar halogen substitution at 5, 7 or 8 positions reduced affinity. 5- or 8‑Triethylsilylethynyl extension maintained hP2Y6R affinity, with IC50 0.46 µM for 26 (MRS4853). The 6,8‑difluoro analogue 27 (IC50 2.99 µM) lacked off-target activities among 45 sites examined, unlike earlier analogues that bound to biogenic amine receptors. 11 displayed only one weak off-target activity (σ2). Mouse P2Y6R IC50s of 5, 25, 26 and 27 were 4.94, 17.6, 6.15 and 17.8 µM, respectively, but most other analogues had reduced affinity (>20 µM) compared to the hP2Y6R. These analogues are suitable for evaluation in in vivo inflammation and cancer models, which will be performed in the future studies.
Collapse
Affiliation(s)
- Young-Hwan Jung
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qasim Shah
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Centre for Advanced Drug Research, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sarah A Lewicki
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Asmita Pramanik
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Varun Gopinatth
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie Pelletier
- Department of Microbiology and Immunology, Faculty of Medicine, Université Laval CHUL, Québec, Québec G1V 4G2, Canada
| | - Jean Sévigny
- Department of Microbiology and Immunology, Faculty of Medicine, Université Laval CHUL, Québec, Québec G1V 4G2, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Simard M, Archambault AS, Lavoie JPC, Dumais É, Di Marzo V, Flamand N. Biosynthesis and metabolism of endocannabinoids and their congeners from the monoacylglycerol andN-acyl-ethanolamine families. Biochem Pharmacol 2022; 205:115261. [PMID: 36152677 DOI: 10.1016/j.bcp.2022.115261] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022]
Abstract
The endocannabinoids 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA) are eicosanoids implicated in numerous physiological processes like appetite, adipogenesis, inflammatory pain and inflammation. They mediate most of their physiological effect by activating the cannabinoid (CB) receptors 1 and 2. Other than directly binding to the CB receptors, 2-AG and AEA are also metabolized by most eicosanoid biosynthetic enzymes, yielding many metabolites that are part of the oxyendocannabinoidome. Some of these metabolites have been found in vivo, have the ability to modulate specific receptors and thus potentially influence physiological processes. In this review, we discuss the biosynthesis and metabolism of 2-AG and AEA, as well as their congeners from the monoacyl-glycerol and N-acyl-ethanolamine families, with a special focus on the metabolism by oxygenases involved in arachidonic acid metabolism. We highlight the knowledge gaps in our understanding of the regulation and roles the oxyendocannabinoidome mediators.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Anne-Sophie Archambault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada; Present address: Department of Pathology and Laboratory Medicine, University of British Columbia / BC Children's Hospital Research Institute, Vancouver, British Colombia, Canada
| | - Jean-Philippe C Lavoie
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Élizabeth Dumais
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC G1V 0A6, Canada; Joint International Unit between the Consiglio Nazionale delle Ricerche (Italy) and Université Laval (Canada) on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu)
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|