1
|
Satbayeva E, Zhumakova S, Khaiitova M, Kemelbekov U, Tursunkhodzhaeva F, Azamatov A, Tursymbek S, Sabirov V, Nurgozhin T, Yu V, Seilkhanov T. Experimental study of local anesthetic and antiarrhythmic activities of fluorinated ethynylpiperidine derivatives. Braz J Med Biol Res 2024; 57:e13429. [PMID: 39082579 PMCID: PMC11290815 DOI: 10.1590/1414-431x2024e13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/02/2024] [Indexed: 08/02/2024] Open
Abstract
The chemical structure of piperidine has a unique ability to combine with other molecular fragments. This fact makes it possible to actively use it as an effective basis for the creation of new drug-like substances. Thus, the aim of the current investigation was to study the acute toxicity, local anesthetic potency, and antiarrhythmic activity of the two new synthesized piperidine derivatives under laboratory codes LAS-286 and LAS-294 (local anesthetic substances). The Bulbring & Wajda animal model and method of determining the nociception threshold during electrical stimulation was used to investigate the action of the substance during infiltration anesthesia. An antiarrhythmic activity was observed by the aconitine-induced rat arrhythmia model. Additionally, these compounds were studied in relation to molecular docking to delineate the structure-activity relationships. The tested piperidine derivatives had a low toxicity in the subcutaneous and intravenous administration routes. The experimental results showed a higher prolonged and pronounced local anesthetic activity for LAS-286 at a 0.5% concentration, compared to the reference preparations. The low dosage of 0.1 mg/kg of LAS-294 demonstrated a pronounced preventive antiarrhythmic effect in 90% of cases on the development of mixed arrhythmia, caused by aconitine. The results of molecular docking confirmed a higher binding affinity of the tested piperidines with the Nav1.4 and Nav1.5 macromolecules. The results of the present study are very promising, because these piperidines have shown a high biological activity, which can suggest a potential therapeutic application in the future.
Collapse
Affiliation(s)
- E.M. Satbayeva
- Department of Pharmacology, School of General Medicine-1, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan
| | - S.S. Zhumakova
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, Almaty, Republic of Kazakhstan
| | - M.D. Khaiitova
- Department of Pharmacology, School of General Medicine-1, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan
| | - U.S. Kemelbekov
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, Almaty, Republic of Kazakhstan
- Research Laboratory of Medicinal Plants, South Kazakhstan Medical Academy, Shymkent, Republic of Kazakhstan
| | - F.M. Tursunkhodzhaeva
- Department of Pharmacology and Toxicology, S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - A.A. Azamatov
- Department of Pharmacology and Toxicology, S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Sh.N. Tursymbek
- Department of Pharmacology, School of General Medicine-1, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan
| | - V.Kh. Sabirov
- Laboratory of Structural Chemistry, Tashkent State Technical University, Tashkent, Republic of Uzbekistan
| | - T.S. Nurgozhin
- Department of Pharmacology, School of General Medicine-1, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan
| | - V.K. Yu
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, Almaty, Republic of Kazakhstan
| | - T.M. Seilkhanov
- Laboratory of Engineering Profile NMR Spectroscopy, Shokan Ualikhanov Kokshetau University, Kokshetau, Republic of Kazakhstan
| |
Collapse
|
2
|
Bora SK, Biswas S, Behera BK, Saikia AK. Stereoselective synthesis of gem-dihalopiperidines via the halo-aza-Prins cyclization reaction: access to piperidin-4-ones and pyridines. Org Biomol Chem 2024; 22:3893-3903. [PMID: 38654601 DOI: 10.1039/d4ob00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
An efficient methodology for the synthesis of 4,4-dihalopiperidine derivatives in excellent yields has been developed using N-(3-halobut-3-en-1-yl)-4-methylbenzenesulfonamide and an aldehyde catalyzed by In(OTf)3. The reaction involves an initial formation of a six-membered carbocation via the aza-Prins cyclization reaction followed by a nucleophilic attack by a halide ion to give 4,4-dihalopiperidine. The dihalopiperidine is converted to tetrahydropiperidinone using Ac2O/Et3N in DCM/H2O (1 : 1). It is also utilized for the synthesis of pyridine scaffolds by treatment with DBU. Furthermore, the dihalopiperidine is transformed to its enol ether derivatives using KOH in alcohol.
Collapse
Affiliation(s)
- Surjya Kumar Bora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Subhamoy Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Bipin Kumar Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
3
|
Ludwig FA, Laurini E, Schmidt J, Pricl S, Deuther-Conrad W, Wünsch B. [ 18F]Fluspidine-A PET Tracer for Imaging of σ 1 Receptors in the Central Nervous System. Pharmaceuticals (Basel) 2024; 17:166. [PMID: 38399380 PMCID: PMC10892410 DOI: 10.3390/ph17020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
σ1 receptors play a crucial role in various neurological and neurodegenerative diseases including pain, psychosis, Alzheimer's disease, and depression. Spirocyclic piperidines represent a promising class of potent σ1 receptor ligands. The relationship between structural modifications and σ1 receptor affinity and selectivity over σ2 receptors led to the 2-fluoroethyl derivative fluspidine (2, Ki = 0.59 nM). Enantiomerically pure (S)-configured fluspidine ((S)-2) was prepared by the enantioselective reduction of the α,β-unsaturated ester 23 with NaBH4 and the enantiomerically pure co-catalyst (S,S)-24. The pharmacokinetic properties of both fluspidine enantiomers (R)-2 and (S)-2 were analyzed in vitro. Molecular dynamics simulations revealed very similar interactions of both fluspidine enantiomers with the σ1 receptor protein, with a strong ionic interaction between the protonated amino moiety of the piperidine ring and the COO- moiety of glutamate 172. The 18F-labeled radiotracers (S)-[18F]2 and (R)-[18F]2 were synthesized in automated syntheses using a TRACERlab FX FN synthesis module. High radiochemical yields and radiochemical purity were achieved. Radiometabolites were not found in the brains of mice, piglets, and rhesus monkeys. While both enantiomers revealed similar initial brain uptake, the slow washout of (R)-[18F]2 indicated a kind of irreversible binding. In the first clinical trial, (S)-[18F]2 was used to visualize σ1 receptors in the brains of patients with major depressive disorder (MDD). This study revealed an increased density of σ1 receptors in cortico-striato-(para)limbic brain regions of MDD patients. The increased density of σ1 receptors correlated with the severity of the depressive symptoms. In an occupancy study with the PET tracer (S)-[18F]2, the selective binding of pridopidine at σ1 receptors in the brain of healthy volunteers and HD patients was shown.
Collapse
Affiliation(s)
- Friedrich-Alexander Ludwig
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, D-04318 Leipzig, Germany; (F.-A.L.); (W.D.-C.)
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy; (E.L.); (S.P.)
| | - Judith Schmidt
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany;
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy; (E.L.); (S.P.)
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, D-04318 Leipzig, Germany; (F.-A.L.); (W.D.-C.)
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany;
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
4
|
Blicker L, González-Cano R, Laurini E, Nieto FR, Schmidt J, Schepmann D, Pricl S, Wünsch B. Conformationally Restricted σ 1 Receptor Antagonists from (-)-Isopulegol. J Med Chem 2023; 66:4999-5020. [PMID: 36946301 DOI: 10.1021/acs.jmedchem.2c02081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Antagonists at σ1 receptors have great potential for the treatment of neuropathic pain. Starting from monoterpene (-)-isopulegol (1), aminodiols 8-11 were obtained and transformed into bicyclic 13-16 and tricyclic ligands 19-22. Aminodiols 8-11 showed higher σ1 affinity than the corresponding bicyclic 13-16 and tricyclic derivatives 19-22. (R)-configuration in the side chain of aminodiols (8 and 10) led to higher σ1 affinity than (S)-configuration (9 and 11). 4-Benzylpiperidines (b-series) revealed higher σ1 affinity than 4-phenylbutylamines (a-series). Aminodiol 8b showed very high σ1 affinity (Ki = 1.2 nM), excellent selectivity over σ2 receptors, and promising logD7.4 (3.05) and lipophilic ligand efficiency (5.87) values. Molecular dynamics simulations were conducted to analyze the σ1 affinity and selectivity on an atomistic level. In the capsaicin assay, 8b exhibited similar antiallodynic activity to the prototypical σ1 antagonist S1RA. The antiallodynic activity of 8b was removed by co-application of the σ1 agonist PRE-084, proving σ1 antagonism being involved in the antiallodynic effect.
Collapse
Affiliation(s)
- Luca Blicker
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), Biosanitary Research Institute ibs. GRANADA, University of Granada, Avenida de la Investigación 11, Granada 18016, Spain
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), Biosanitary Research Institute ibs. GRANADA, University of Granada, Avenida de la Investigación 11, Granada 18016, Spain
| | - Judith Schmidt
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
5
|
Keuler T, Lemke C, Elsinghorst PW, Iriepa I, Chioua M, Martínez-Grau MA, Beadle CD, Vetman T, López-Muñoz F, Wille T, Bartz U, Deuther-Conrad W, Marco-Contelles J, Gütschow M. The Chemotype of Chromanones as a Privileged Scaffold for Multineurotarget Anti-Alzheimer Agents. ACS Pharmacol Transl Sci 2022; 5:1097-1108. [PMID: 36407962 PMCID: PMC9667544 DOI: 10.1021/acsptsci.2c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/28/2022]
Abstract
The multifactorial nature of Alzheimer's disease necessitates the development of agents able to interfere with different relevant targets. A series of 22 tailored chromanones was conceptualized, synthesized, and subjected to biological evaluation. We identified one representative bearing a linker-connected azepane moiety (compound 19) with balanced pharmacological properties. Compound 19 exhibited inhibitory activities against human acetyl-, butyrylcholinesterase and monoamine oxidase-B, as well as high affinity to both the σ1 and σ2 receptors. Our study provides a framework for the development of further chromanone-based multineurotarget agents.
Collapse
Affiliation(s)
- Tim Keuler
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Carina Lemke
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Paul W. Elsinghorst
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Central
Institute of the Bundeswehr Medical Service Munich, Ingolstädter Landstraße 102, 85748 Garching Germany
| | - Isabel Iriepa
- Universidad
de Alcalá, Departamento de Química
Orgánica y Química Inorgánica, Ctra. Madrid-Barcelona, 28871 Alcalá de Henares, Madrid España
| | - Mourad Chioua
- Laboratory
of Medicinal Chemistry, IQOG, CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Christopher D. Beadle
- Lilly Research
Centre, Eli Lilly & Company, Erl Wood Manor, Windlesham, Surrey GU20
6PH, United Kingdom
| | - Tatiana Vetman
- Lilly
Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana 46285, United States
| | - Francisco López-Muñoz
- Faculty
of Health, Camilo José Cela University of Madrid (UCJC), Neuropsychopharmacology Unit, “Hospital 12 de Octubre” Research
Institute, 28692 Madrid, Spain
| | - Timo Wille
- Bundeswehr
Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 München, Germany
| | - Ulrike Bartz
- Department
of Natural Sciences, University of Applied
Sciences Bonn-Rhein-Sieg, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - José Marco-Contelles
- Laboratory
of Medicinal Chemistry, IQOG, CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Michael Gütschow
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
6
|
Fallica AN, Ciaffaglione V, Modica MN, Pittalà V, Salerno L, Amata E, Marrazzo A, Romeo G, Intagliata S. Structure-activity relationships of mixed σ1R/σ2R ligands with antiproliferative and anticancer effects. Bioorg Med Chem 2022; 73:117032. [DOI: 10.1016/j.bmc.2022.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
|