3
|
Ramos L, Henriksson M, Helleday T, Green AC. Targeting MTHFD2 to Exploit Cancer-Specific Metabolism and the DNA Damage Response. Cancer Res 2024; 84:9-16. [PMID: 37922465 DOI: 10.1158/0008-5472.can-23-1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/05/2023]
Abstract
The one-carbon folate enzyme methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2 (MTHFD2) is a promising therapeutic target in cancer. MTHFD2 is upregulated across numerous cancer types, promotes growth and metastasis of cancer, and correlates with poorer survival. Recent studies have developed small-molecule inhibitors to the isozymes MTHFD2 and MTHFD1 that show promise as anticancer agents through different mechanisms. This review discusses the current understanding of the function of MTHFD2 in cancer and the status of inhibitors for treating MTHFD2-overexpressing cancers.
Collapse
Affiliation(s)
- Louise Ramos
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Vancouver Prostate Centre and Department of Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Thomas Helleday
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Alanna C Green
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Jha V, Holmelin FL, Eriksson LA. Binding Analysis and Structure-Based Design of Tricyclic Coumarin-Derived MTHFD2 Inhibitors as Anticancer Agents: Insights from Computational Modeling. ACS OMEGA 2023; 8:14440-14458. [PMID: 37125100 PMCID: PMC10134251 DOI: 10.1021/acsomega.2c08025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Unfolded protein response (UPR)-dependent metabolic reprogramming diverts metabolites from glycolysis to mitochondrial 1C metabolism, highlighting pharmacological resistance to folate drugs and overexpression of certain enzymes. Methylenetetrahydrofolate dehydrogenase (MTHFD2) is a mitochondrial enzyme that plays a key role in 1C metabolism in purine and thymidine synthesis and is exclusively overexpressed in cancer cells but absent in most healthy adult human tissues. To the best of our knowledge, tricyclic coumarin-based compounds (substrate site binders) and xanthine derivatives (allosteric site binders) are the only selective inhibitors of MTHFD2 reported until the present date. The current study aims at the investigation of the available structural data of MTHFD2 in complex with potent and selective inhibitors that occupy the substrate binding site, further providing insights into binding mode, key protein-ligand interactions, and conformational dynamics, that correspond to the experimental binding affinities and biological activities. In addition, we carried out structure-based drug design on the substrate binding site of MTHFD2, by exploiting the cocrystal structure of MTHFD2 with the tricyclic coumarin-based inhibitor. The structure-based drug design campaign involves R-group enumeration, bioisostere replacement, molecular docking, ADME prediction, MM-GBSA binding free energy calculations, and molecular dynamics simulations, that led to a small library of new and potential compounds, capable of selectively inhibiting MTHFD2. The results reported herein are expected to benefit medicinal chemists working on the development of selective MTHFD2 inhibitors for cancer treatment, although experimental validation by biochemical and/or pharmacokinetic assays is required to substantiate the outcomes of the study.
Collapse
|
6
|
Green AC, Marttila P, Kiweler N, Chalkiadaki C, Wiita E, Cookson V, Lesur A, Eiden K, Bernardin F, Vallin KSA, Borhade S, Long M, Ghahe EK, Jiménez-Alonso JJ, Jemth AS, Loseva O, Mortusewicz O, Meyers M, Viry E, Johansson AI, Hodek O, Homan E, Bonagas N, Ramos L, Sandberg L, Frödin M, Moussay E, Slipicevic A, Letellier E, Paggetti J, Sørensen CS, Helleday T, Henriksson M, Meiser J. Formate overflow drives toxic folate trapping in MTHFD1 inhibited cancer cells. Nat Metab 2023; 5:642-659. [PMID: 37012496 PMCID: PMC10132981 DOI: 10.1038/s42255-023-00771-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/28/2023] [Indexed: 04/05/2023]
Abstract
Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase-cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a 'folate trap'. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.
Collapse
Affiliation(s)
- Alanna C Green
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Petra Marttila
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Nicole Kiweler
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Christina Chalkiadaki
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Elisée Wiita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Victoria Cookson
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Antoine Lesur
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Kim Eiden
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - François Bernardin
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Karl S A Vallin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- RISE Research Institutes of Sweden, Södertälje, Sweden
| | - Sanjay Borhade
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- RedGlead Discover, Lund, Sweden
| | - Maeve Long
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Elahe Kamali Ghahe
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Julio J Jiménez-Alonso
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Oliver Mortusewicz
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Marianne Meyers
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Molecular Disease Mechanisms Group, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elodie Viry
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Annika I Johansson
- Swedish Metabolomics Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Ondřej Hodek
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Evert Homan
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Nadilly Bonagas
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Louise Ramos
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Lars Sandberg
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden
| | - Morten Frödin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ana Slipicevic
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- One-carbon Therapeutics AB, Stockholm, Sweden
| | - Elisabeth Letellier
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Molecular Disease Mechanisms Group, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jérôme Paggetti
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Thomas Helleday
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK.
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
7
|
Li D, Yu H, Hu J, Li S, Yan Y, Li S, Sun L, Jiang G, Hou L, Zhang L, Zhang P. Comparative profiling of single-cell transcriptome reveals heterogeneity of tumor microenvironment between solid and acinar lung adenocarcinoma. J Transl Med 2022; 20:423. [PMID: 36138435 PMCID: PMC9502652 DOI: 10.1186/s12967-022-03620-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The diversity of histologic composition reflects the inter- and intra-tumor heterogeneity of lung adenocarcinomas (LUADs) macroscopically. Insights into the oncological characteristics and tumor microenvironment (TME) of different histologic subtypes of LUAD at the single-cell level can help identify potential therapeutic vulnerabilities and combinational approaches to improve the survival of LUAD patients. METHODS Through comparative profiling of cell communities defined by scRNA-seq data, we characterized the TME of LUAD samples of distinct histologic subtypes, with relevant results further confirmed in multiple bulk transcriptomic, proteomic datasets and an independent immunohistochemical validation cohort. RESULTS We find that the hypoxic and acidic situation is the worst in the TME of solid LUADs compared to other histologic subtypes. Besides, the tumor metabolic preferences vary across histologic subtypes and may correspondingly impinge on the metabolism and function of immune cells. Remarkably, tumor cells from solid LUADs upregulate energy and substance metabolic activities, particularly the folate-mediated one-carbon metabolism and the key gene MTHFD2, which could serve as a potential therapeutic target. Additionally, ubiquitination modifications may also be involved in the progression of histologic patterns. Immunologically, solid LUADs are characterized by a predominance of exhausted T cells and immunosuppressive myeloid cells, where the hypoxic, acidified and nutrient-deprived TME has a non-negligible impact. Discrepancies in stromal cell function, evidenced by varying degrees of stromal remodeling and fibrosis, may also contribute to the specific immune phenotype of solid LUADs. CONCLUSIONS Overall, our research proposes several potential entry points to improve the immunosuppressive TME of solid LUADs, thereby synergistically potentiating their immunotherapeutic efficacy, and may provide precise therapeutic strategies for LUAD patients of distinct histologic subtype constitution.
Collapse
Affiliation(s)
- Dianke Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Huansha Yu
- Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Junjie Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Yilv Yan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Shuangyi Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Liangdong Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China. .,Department of Thoracic Surgery, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|