1
|
Kola A, Vigni G, Baratto MC, Valensin D. A Combined NMR and UV-Vis Approach to Evaluate Radical Scavenging Activity of Rosmarinic Acid and Other Polyphenols. Molecules 2023; 28:6629. [PMID: 37764405 PMCID: PMC10536562 DOI: 10.3390/molecules28186629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress results from an imbalance between reactive oxygen species (ROS) production and the body's ability to neutralize them. ROS are reactive molecules generated during cellular metabolism and play a crucial role in normal physiological processes. However, excessive ROS production can lead to oxidative damage, contributing to various diseases and aging. This study is focused on rosmarinic acid (RA), a hydroxycinnamic acid (HCA) derivative well known for its antioxidant activity. In addition, RA has also demonstrated prooxidant behavior under specific conditions involving high concentrations of transition metal ions such as iron and copper, high pH, and the presence of oxygen. In this study, we aim to clarify the underlying mechanisms and factors governing the antioxidant and prooxidant activities of RA, and to compare them with other HCA derivatives. UV-Vis, NMR, and EPR techniques were used to explore copper(II)'s binding ability of RA, caffeic acid, and p-coumaric acid. At the same time, UV-Vis and NMR methods were exploited to evaluate the polyphenols' free radical scavenging abilities towards ROS generated by the ascorbic acid-copper(II) system. All the data indicate that RA is the most effective polyphenol both in copper binding abilities and ROS protection.
Collapse
Affiliation(s)
| | | | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (G.V.); (M.C.B.)
| |
Collapse
|
2
|
Lenard AJ, Mulder FAA, Madl T. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:113-139. [PMID: 36496256 DOI: 10.1016/j.pnmrs.2022.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Solvent paramagnetic relaxation enhancement (sPRE) is a versatile nuclear magnetic resonance (NMR)-based method that allows characterization of the structure and dynamics of biomolecular systems through providing quantitative experimental information on solvent accessibility of NMR-active nuclei. Addition of soluble paramagnetic probes to the solution of a biomolecule leads to paramagnetic relaxation enhancement in a concentration-dependent manner. Here we review recent progress in the sPRE-based characterization of structural and dynamic properties of biomolecules and their complexes, and aim to deliver a comprehensive illustration of a growing number of applications of the method to various biological systems. We discuss the physical principles of sPRE measurements and provide an overview of available co-solute paramagnetic probes. We then explore how sPRE, in combination with complementary biophysical techniques, can further advance biomolecular structure determination, identification of interaction surfaces within protein complexes, and probing of conformational changes and low-population transient states, as well as deliver insights into weak, nonspecific, and transient interactions between proteins and co-solutes. In addition, we present examples of how the incorporation of solvent paramagnetic probes can improve the sensitivity of NMR experiments and discuss the prospects of applying sPRE to NMR metabolomics, drug discovery, and the study of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Aneta J Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria.
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center and Department of Chemistry, University of Aarhus, DK-8000 Aarhus, Denmark; Institute of Biochemistry, Johannes Kepler Universität Linz, 4040 Linz, Austria.
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
3
|
Jaworski A, Hedin N. Electron correlation and vibrational effects in predictions of paramagnetic NMR shifts. Phys Chem Chem Phys 2022; 24:15230-15244. [PMID: 35703010 DOI: 10.1039/d2cp01206e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronic structure calculations are fundamentally important for the interpretation of nuclear magnetic resonance (NMR) spectra from paramagnetic systems that include organometallic and inorganic compounds, catalysts, or metal-binding sites in proteins. Prediction of induced paramagnetic NMR shifts requires knowledge of electron paramagnetic resonance (EPR) parameters: the electronic g tensor, zero-field splitting D tensor, and hyperfine A tensor. The isotropic part of A, called the hyperfine coupling constant (HFCC), is one of the most troublesome properties for quantum chemistry calculations. Yet, even relatively small errors in calculations of HFCC tend to propagate into large errors in the predicted NMR shifts. The poor quality of A tensors that are currently calculated using density functional theory (DFT) constitutes a bottleneck in improving the reliability of interpretation of the NMR spectra from paramagnetic systems. In this work, electron correlation effects in calculations of HFCCs with a hierarchy of ab initio methods were assessed, and the applicability of different levels of DFT approximations and the coupled cluster singles and doubles (CCSD) method was tested. These assessments were performed for the set of selected test systems comprising an organic radical, and complexes with transition metal and rare-earth ions, for which experimental data are available. Severe deficiencies of DFT were revealed but the CCSD method was able to deliver good agreement with experimental data for all systems considered, however, at substantial computational costs. We proposed a more computationally tractable alternative, where the A was computed with the coupled cluster theory exploiting locality of electron correlation. This alternative is based on the domain-based local pair natural orbital coupled cluster singles and doubles (DLPNO-CCSD) method. In this way the robustness and reliability of the coupled cluster theory were incorporated into the modern formalism for the prediction of induced paramagnetic NMR shifts, and became applicable to systems of chemical interest. This approach was verified for the bis(cyclopentadienyl)vanadium(II) complex (Cp2V; vanadocene), and the metal-binding site of the Zn2+ → Co2+ substituted superoxide dismutase (SOD) metalloprotein. Excellent agreement with experimental NMR shifts was achieved, which represented a substantial improvement over previous theoretical attempts. The effects of vibrational corrections to orbital shielding and hyperfine tensor were evaluated and discussed within the second-order vibrational perturbation theory (VPT2) framework.
Collapse
Affiliation(s)
- Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Niklas Hedin
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
4
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Vogel R, Müntener T, Häussinger D. Intrinsic anisotropy parameters of a series of lanthanoid complexes deliver new insights into the structure-magnetism relationship. Chem 2021. [DOI: 10.1016/j.chempr.2021.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Cucuzza S, Güntert P, Plückthun A, Zerbe O. An automated iterative approach for protein structure refinement using pseudocontact shifts. JOURNAL OF BIOMOLECULAR NMR 2021; 75:319-334. [PMID: 34338940 PMCID: PMC8473369 DOI: 10.1007/s10858-021-00376-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/19/2021] [Indexed: 05/02/2023]
Abstract
NMR structure calculation using NOE-derived distance restraints requires a considerable number of assignments of both backbone and sidechains resonances, often difficult or impossible to get for large or complex proteins. Pseudocontact shifts (PCSs) also play a well-established role in NMR protein structure calculation, usually to augment existing structural, mostly NOE-derived, information. Existing refinement protocols using PCSs usually either require a sizeable number of sidechain assignments or are complemented by other experimental restraints. Here, we present an automated iterative procedure to perform backbone protein structure refinements requiring only a limited amount of backbone amide PCSs. Already known structural features from a starting homology model, in this case modules of repeat proteins, are framed into a scaffold that is subsequently refined by experimental PCSs. The method produces reliable indicators that can be monitored to judge about the performance. We applied it to a system in which sidechain assignments are hardly possible, designed Armadillo repeat proteins (dArmRPs), and we calculated the solution NMR structure of YM4A, a dArmRP containing four sequence-identical internal modules, obtaining high convergence to a single structure. We suggest that this approach is particularly useful when approximate folds are known from other techniques, such as X-ray crystallography, while avoiding inherent artefacts due to, for instance, crystal packing.
Collapse
Affiliation(s)
- Stefano Cucuzza
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, 192-0397, Tokyo, Japan
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Oliver Zerbe
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
7
|
Ma Z, Lu C, Chen J, Rokicińska A, Kuśtrowski P, Coridan R, Dronskowski R, Slabon A, Jaworski A. CeTiO 2N oxynitride perovskite: paramagnetic 14N MAS NMR without paramagnetic shifts. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
14N magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of diamagnetic LaTiO2N perovskite oxynitride and its paramagnetic counterpart CeTiO2N are presented. The latter, to the best of our knowledge, constitutes the first high-resolution 14N MAS NMR spectrum collected from a paramagnetic solid material. The unpaired 4f-electrons in CeTiO2N do not induce a paramagnetic 14N NMR shift. This is remarkable given the direct Ce−N contacts in the structure for which ab initio calculations predict substantial Ce→14N contact shift interaction. The same effect is revealed with 14N MAS NMR for SrWO2N (unpaired 5d-electrons).
Collapse
Affiliation(s)
- Zili Ma
- Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University , Landoltweg 1, D-52056 Aachen , Germany
| | - Can Lu
- Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University , Landoltweg 1, D-52056 Aachen , Germany
| | - Jianhong Chen
- Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 , Stockholm , Sweden
| | - Anna Rokicińska
- Faculty of Chemistry, Jagiellonian University , Gronostajowa 2, 30-387 Kraków , Poland
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University , Gronostajowa 2, 30-387 Kraków , Poland
| | - Robert Coridan
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , AR 72701 , USA
| | - Richard Dronskowski
- Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University , Landoltweg 1, D-52056 Aachen , Germany
| | - Adam Slabon
- Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 , Stockholm , Sweden
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 , Stockholm , Sweden
| |
Collapse
|
8
|
Heiliger J, Matzel T, Çetiner EC, Schwalbe H, Kuenze G, Corzilius B. Site-specific dynamic nuclear polarization in a Gd(III)-labeled protein. Phys Chem Chem Phys 2020; 22:25455-25466. [PMID: 33103678 DOI: 10.1039/d0cp05021k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic nuclear polarization (DNP) of a biomolecule tagged with a polarizing agent has the potential to not only increase NMR sensitivity but also to provide specificity towards the tagging site. Although the general concept has been often discussed, the observation of true site-specific DNP and its dependence on the electron-nuclear distance has been elusive. Here, we demonstrate site-specific DNP in a uniformly isotope-labeled ubiquitin. By recombinant expression of three different ubiquitin point mutants (F4C, A28C, and G75C) post-translationally modified with a Gd3+-chelator tag, localized metal-ion DNP of 13C and 15N is investigated. Effects counteracting the site-specificity of DNP such as nuclear spin-lattice relaxation and proton-driven spin diffusion have been attenuated by perdeuteration of the protein. Particularly for 15N, large DNP enhancement factors on the order of 100 and above as well as localized effects within side-chain resonances differently distributed over the protein are observed. By analyzing the experimental DNP built-up dynamics combined with structural modeling of Gd3+-tags in ubiquitin supported by paramagnetic relaxation enhancement (PRE) in solution, we provide, for the first time, quantitative information on the distance dependence of the initial DNP transfer. We show that the direct 15N DNP transfer rate indeed linearly depends on the square of the hyperfine interaction between the electron and the nucleus following Fermi's golden rule, however, below a certain distance cutoff paramagnetic signal bleaching may dramatically skew the correlation.
Collapse
Affiliation(s)
- Jörg Heiliger
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Müntener T, Böhm R, Atz K, Häussinger D, Hiller S. NMR pseudocontact shifts in a symmetric protein homotrimer. JOURNAL OF BIOMOLECULAR NMR 2020; 74:413-419. [PMID: 32621004 PMCID: PMC7508745 DOI: 10.1007/s10858-020-00329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
NMR pseudocontact shifts are a valuable tool for structural and functional studies of proteins. Protein multimers mediate key functional roles in biology, but methods for their study by pseudocontact shifts are so far not available. Paramagnetic tags attached to identical subunits in multimeric proteins cause a combined pseudocontact shift that cannot be described by the standard single-point model. Here, we report pseudocontact shifts generated simultaneously by three paramagnetic Tm-M7PyThiazole-DOTA tags to the trimeric molecular chaperone Skp and provide an approach for the analysis of this and related symmetric systems. The pseudocontact shifts were described by a "three-point" model, in which positions and parameters of the three paramagnetic tags were fitted. A good correlation between experimental data and predicted values was found, validating the approach. The study establishes that pseudocontact shifts can readily be applied to multimeric proteins, offering new perspectives for studies of large protein complexes by paramagnetic NMR spectroscopy.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Raphael Böhm
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Kenneth Atz
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland.
| |
Collapse
|
10
|
Softley CA, Bostock MJ, Popowicz GM, Sattler M. Paramagnetic NMR in drug discovery. JOURNAL OF BIOMOLECULAR NMR 2020; 74:287-309. [PMID: 32524233 PMCID: PMC7311382 DOI: 10.1007/s10858-020-00322-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 05/05/2023]
Abstract
The presence of an unpaired electron in paramagnetic molecules generates significant effects in NMR spectra, which can be exploited to provide restraints complementary to those used in standard structure-calculation protocols. NMR already occupies a central position in drug discovery for its use in fragment screening, structural biology and validation of ligand-target interactions. Paramagnetic restraints provide unique opportunities, for example, for more sensitive screening to identify weaker-binding fragments. A key application of paramagnetic NMR in drug discovery, however, is to provide new structural restraints in cases where crystallography proves intractable. This is particularly important at early stages in drug-discovery programs where crystal structures of weakly-binding fragments are difficult to obtain and crystallization artefacts are probable, but structural information about ligand poses is crucial to guide medicinal chemistry. Numerous applications show the value of paramagnetic restraints to filter computational docking poses and to generate interaction models. Paramagnetic relaxation enhancements (PREs) generate a distance-dependent effect, while pseudo-contact shift (PCS) restraints provide both distance and angular information. Here, we review strategies for introducing paramagnetic centers and discuss examples that illustrate the utility of paramagnetic restraints in drug discovery. Combined with standard approaches, such as chemical shift perturbation and NOE-derived distance information, paramagnetic NMR promises a valuable source of information for many challenging drug-discovery programs.
Collapse
Affiliation(s)
- Charlotte A Softley
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Mark J Bostock
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Grzegorz M Popowicz
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
11
|
Peters JA, Djanashvili K, Geraldes CF, Platas-Iglesias C. The chemical consequences of the gradual decrease of the ionic radius along the Ln-series. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213146] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Bahramzadeh A, Huber T, Otting G. Three-Dimensional Protein Structure Determination Using Pseudocontact Shifts of Backbone Amide Protons Generated by Double-Histidine Co 2+-Binding Motifs at Multiple Sites. Biochemistry 2019; 58:3243-3250. [PMID: 31282649 DOI: 10.1021/acs.biochem.9b00404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pseudocontact shifts (PCSs) generated by paramagnetic metal ions contribute highly informative long-range structure restraints that can be measured in solution and are ideally suited to guide structure prediction algorithms in determining global protein folds. We recently demonstrated that PCSs, which are relatively small but of high quality, can be generated by a double-histidine (dHis) motif in an α-helix, which provides a well-defined binding site for a single Co2+ ion. Here we show that PCSs of backbone amide protons generated by dHis-Co2+ motifs positioned in four different α-helices of a protein deliver excellent restraints to determine the three-dimensional (3D) structure of a protein in a way akin to the global positioning system (GPS). We demonstrate the approach with GPS-Rosetta calculations of the 3D structure of the C-terminal domain of the chaperone ERp29 (ERp29-C). Despite the relatively small size of the PCSs generated by the dHis-Co2+ motifs, the structure calculations converged readily. Generating PCSs by the dHis-Co2+ motif thus presents an excellent alternative to the use of lanthanide tags.
Collapse
Affiliation(s)
- Alireza Bahramzadeh
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| | - Thomas Huber
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| | - Gottfried Otting
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| |
Collapse
|
13
|
Carlon A, Ravera E, Parigi G, Murshudov GN, Luchinat C. Joint X-ray/NMR structure refinement of multidomain/multisubunit systems. JOURNAL OF BIOMOLECULAR NMR 2019; 73:265-278. [PMID: 30311122 PMCID: PMC6692505 DOI: 10.1007/s10858-018-0212-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Data integration in structural biology has become a paradigm for the characterization of biomolecular systems, and it is now accepted that combining different techniques can fill the gaps in each other's blind spots. In this frame, one of the combinations, which we have implemented in REFMAC-NMR, is residual dipolar couplings from NMR together with experimental data from X-ray diffraction. The first are exquisitely sensitive to the local details but does not give any information about overall shape, whereas the latter encodes more the information about the overall shape but at the same time tends to miss the local details even at the highest resolutions. Once crystals are obtained, it is often rather easy to obtain a complete X-ray dataset, however it is time-consuming to obtain an exhaustive NMR dataset. Here, we discuss the effect of including a-priori knowledge on the properties of the system to reduce the number of experimental data needed to obtain a more complete picture. We thus introduce a set of new features of REFMAC-NMR that allow for improved handling of RDC data for multidomain proteins and multisubunit biomolecular complexes, and encompasses the use of pseudo-contact shifts as an additional source of NMR-based information. The new feature may either help in improving the refinement, or assist in spotting differences between the crystal and the solution data. We show three different examples where NMR and X-ray data can be reconciled to a unique structural model without invoking mobility.
Collapse
Affiliation(s)
- Azzurra Carlon
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Garib N. Murshudov
- MRC Laboratory for Molecular Biology, Francis Crick Ave, CB2 0QH Cambridge, UK
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Ravera E, Takis PG, Fragai M, Parigi G, Luchinat C. NMR Spectroscopy and Metal Ions in Life Sciences. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Panteleimon G. Takis
- Giotto Biotech S.R.L.; Via Madonna del Piano 6 50019 Sesto Fiorentino (FI) Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
15
|
Paluch P, Pawlak T, Ławniczak K, Trébosc J, Lafon O, Amoureux JP, Potrzebowski MJ. Simple and Robust Study of Backbone Dynamics of Crystalline Proteins Employing 1H- 15N Dipolar Coupling Dispersion. J Phys Chem B 2018; 122:8146-8156. [PMID: 30070484 DOI: 10.1021/acs.jpcb.8b04557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new solid-state multidimensional NMR approach based on the cross-polarization with variable-contact pulse sequence [ Paluch , P. ; Pawlak , T. ; Amoureux , J.-P. ; Potrzebowski , M. J. J. Magn. Reson. 233 , 2013 , 56 ], with 1H inverse detection and very fast magic angle spinning (νR = 60 kHz), dedicated to the measurement of local molecular motions of 1H-15N vectors. The introduced three-dimensional experiments, 1H-15N-1H and hCA(N)H, are particularly useful for the study of molecular dynamics of proteins and other complex structures. The applicability and power of this methodology have been revealed by employing as a model sample the GB-1 small protein doped with Na2CuEDTA. The results clearly prove that the dispersion of 1H-15N dipolar coupling constants well correlates with higher order structure of the protein. Our approach complements the conventional studies and offers a fast and reasonably simple method.
Collapse
Affiliation(s)
- Piotr Paluch
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| | - Karol Ławniczak
- Department of Theoretical Physics, Faculty of Physics and Applied Informatics , University of Łódź , Pomorska 149/153 , PL-90236 Łódź , Poland
| | - Julien Trébosc
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France
| | - Olivier Lafon
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France
| | - Jean-Paul Amoureux
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France.,Bruker France , 34 rue de l'Industrie , F-67166 Wissembourg , France
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| |
Collapse
|
16
|
Spectroscopic investigations of a semi-synthetic [FeFe] hydrogenase with propane di-selenol as bridging ligand in the binuclear subsite: comparison to the wild type and propane di-thiol variants. J Biol Inorg Chem 2018; 23:481-491. [PMID: 29627860 PMCID: PMC5940705 DOI: 10.1007/s00775-018-1558-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/30/2018] [Indexed: 11/25/2022]
Abstract
[FeFe] Hydrogenases catalyze the reversible conversion of H2 into electrons and protons. Their catalytic site, the H-cluster, contains a generic [4Fe–4S]H cluster coupled to a [2Fe]H subsite [Fe2(ADT)(CO)3(CN)2]2−, ADT = µ(SCH2)2NH. Heterologously expressed [FeFe] hydrogenases (apo-hydrogenase) lack the [2Fe]H unit, but this can be incorporated through artificial maturation with a synthetic precursor [Fe2(ADT)(CO)4(CN)2]2−. Maturation with a [2Fe] complex in which the essential ADT amine moiety has been replaced by CH2 (PDT = propane-dithiolate) results in a low activity enzyme with structural and spectroscopic properties similar to those of the native enzyme, but with simplified redox behavior. Here, we study the effect of sulfur-to-selenium (S-to-Se) substitution in the bridging PDT ligand incorporated in the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii using magnetic resonance (EPR, NMR), FTIR and spectroelectrochemistry. The resulting HydA1-PDSe enzyme shows the same redox behavior as the parent HydA1-PDT. In addition, a state is observed in which extraneous CO is bound to the open coordination site of the [2Fe]H unit. This state was previously observed only in the native enzyme HydA1-ADT and not in HydA1-PDT. The spectroscopic features and redox behavior of HydA1-PDSe, resulting from maturation with [Fe2(PDSe)(CO)4(CN)2]2−, are discussed in terms of spin and charge density shifts and provide interesting insight into the electronic structure of the H-cluster. We also studied the effect of S-to-Se substitution in the [4Fe–4S] subcluster. The reduced form of HydA1 containing only the [4Fe–4Se]H cluster shows a characteristic S = 7/2 spin state which converts back into the S = 1/2 spin state upon maturation with a [2Fe]–PDT/ADT complex.
Collapse
|
17
|
Cerofolini L, Staderini T, Giuntini S, Ravera E, Fragai M, Parigi G, Pierattelli R, Luchinat C. Long-range paramagnetic NMR data can provide a closer look on metal coordination in metalloproteins. J Biol Inorg Chem 2017; 23:71-80. [PMID: 29218635 DOI: 10.1007/s00775-017-1511-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022]
Abstract
Paramagnetic NMR data can be profitably incorporated in structural refinement protocols of metalloproteins or metal-substituted proteins, mostly as distance or angle restraints. However, they could in principle provide much more information, because the magnetic susceptibility of a paramagnetic metal ion is largely determined by its coordination sphere. This information can in turn be used to evaluate changes occurring in the coordination sphere of the metal when ligands (e.g.: inhibitors) are bound to the protein. This gives an experimental handle on the molecular structure in the vicinity of the metal which falls in the so-called blind sphere. The magnetic susceptibility anisotropy tensors of cobalt(II) and nickel(II) ions bound to human carbonic anhydrase II in free and inhibited forms have been determined. The change of the magnetic susceptibility anisotropy is directly linked to the binding mode of different ligands in the active site of the enzyme. Indication about the metal coordination sphere in the presence of an inhibitor in pharmaceutically relevant proteins could be important in the design of selective drugs with a structure-based approach.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Tommaso Staderini
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
18
|
Ye L, Van Eps N, Li X, Ernst OP, Prosser RS. Utilizing tagged paramagnetic shift reagents to monitor protein dynamics by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1555-1563. [PMID: 28951313 DOI: 10.1016/j.bbapap.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Calmodulin is a ubiquitous calcium sensor protein, known to serve as a critical interaction hub with a wide range of signaling partners. While the holo form of calmodulin (CaM-4Ca2+) has a well-defined ground state structure, it has been shown to undergo exchange, on a millisecond timescale, to a conformation resembling that of the peptide bound state. Tagged paramagnetic relaxation agents have been previously used to identify long-range dipolar interactions through relaxation effects on nuclear spins of interest. In the case of calmodulin, this lead to the determination of the relative orientation of the N- and C-terminal domains and the presence of a weakly populated peptide bound like state. Here, we make use of pseudocontact shifts from a tagged paramagnetic shift reagent which allows us to define minor states both in 13C and 15N NMR spectra and through 13C- and 15N-edited 1H-CPMG relaxation dispersion measurements. This is validated by pulsed EPR (DEER) spectroscopy which reveals an ensemble consisting of a compact peptide-bound like conformer, an intermediate peptide-bound like conformer, and a (dumbbell-like) extended ground state conformer of CaM-4Ca2+, where addition of the MLCK peptide increases the population of the peptide-bound conformers. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Libin Ye
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Xiang Li
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
19
|
Ravera E, Parigi G, Luchinat C. Perspectives on paramagnetic NMR from a life sciences infrastructure. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 282:154-169. [PMID: 28844254 DOI: 10.1016/j.jmr.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 05/17/2023]
Abstract
The effects arising in NMR spectroscopy because of the presence of unpaired electrons, collectively referred to as "paramagnetic NMR" have attracted increasing attention over the last decades. From the standpoint of the structural and mechanistic biology, paramagnetic NMR provides long range restraints that can be used to assess the accuracy of crystal structures in solution and to improve them by simultaneous refinements through NMR and X-ray data. These restraints also provide information on structure rearrangements and conformational variability in biomolecular systems. Theoretical improvements in quantum chemistry calculations can nowadays allow for accurate calculations of the paramagnetic data from a molecular structural model, thus providing a tool to refine the metal coordination environment by matching the paramagnetic effects observed far away from the metal. Furthermore, the availability of an improved technology (higher fields and faster magic angle spinning) has promoted paramagnetic NMR applications in the fast-growing area of biomolecular solid-state NMR. Major improvements in dynamic nuclear polarization have been recently achieved, especially through the exploitation of the Overhauser effect occurring through the contact-driven relaxation mechanism: the very large enhancement of the 13C signal observed in a variety of liquid organic compounds at high fields is expected to open up new perspectives for applications of solution NMR.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
20
|
Schubert M. Insights into Carbohydrate Recognition by 3D Structure Determination of Protein–Carbohydrate Complexes Using NMR. NMR IN GLYCOSCIENCE AND GLYCOTECHNOLOGY 2017:101-122. [DOI: 10.1039/9781782623946-00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This chapter provides an overview of protein–carbohydrate complex structures determined with NMR spectroscopy and deposited in the Protein Data Bank (PDB). These 14 structures include protein–carbohydrate interactions ranging from nanomolar to millimolar affinities. Two complexes are discussed in detail, one representing a tightly bound complex and one a weak but specific interaction. This review illustrates that NMR spectroscopy is a competitive method for three-dimensional structure determination of protein–carbohydrate complexes, especially in the case of weak interactions. The number of biological functions in which protein–carbohydrate interactions are involved is steadily growing. Essential functions of the immune system such as the distinction between self and non-self, or the resolution of inflammation, involve critical protein–carbohydrate recognition events. It is therefore expected that by providing atomic details, NMR spectroscopy can make a significant contribution in the near future to unexplored pathways of the immune system and of many other biological processes.
Collapse
Affiliation(s)
- Mario Schubert
- Department of Molecular Biology, University of Salzburg 5020 Salzburg Austria
| |
Collapse
|
21
|
Malkin VG, Malkina OL, Zhidomirov GM. Visualization of Electron Paramagnetic Resonance Hyperfine Structure Coupling Pathways. J Phys Chem A 2017; 121:3580-3587. [PMID: 28410441 DOI: 10.1021/acs.jpca.7b01833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The close relation between the EPR hyperfine coupling constant and NMR indirect spin-spin coupling constant is well-known. For example, the Karplus-type dependence of hyperfine constants on the dihedral angle, originally proposed for NMR spin-spin coupling, is widely used in pNMR studies. In the present work we propose a new tool for visualization of hyperfine coupling pathways based on our experience with visualization of NMR indirect spin-spin couplings. The plotted 3D-function is the difference between the total electron densities when the magnetic moment of the nucleus of interest changes its sign and as such is an observable from the physical point of view. It has been shown that it is proportional to the linear response of the spin density to the nuclear spin (i.e., magnetic moment). In contrast to the widely used visualization of spin density, our new approach depicts only the part of the electron cloud of a molecule that is affected by the interaction of the unpaired electron(s) with the desired nuclear magnetic moment. Because visualization of NMR spin-spin couplings and hyperfine interaction is based on the same ideas and done using similar techniques, it allows a direct comparison of the corresponding pathways for the two phenomena so as to analyze their resemblance and/or dissimilarity.
Collapse
Affiliation(s)
- Vladimir G Malkin
- Institute of Inorganic Chemistry, Slovak Academy of Sciences , Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Olga L Malkina
- Institute of Inorganic Chemistry, Slovak Academy of Sciences , Dúbravská cesta 9, SK-84536 Bratislava, Slovakia.,Department of Inorganic Chemistry, Comenius University , SK-84215 Bratislava, Slovakia
| | - Georgy M Zhidomirov
- G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences , Prospect Lavrentieva 5, 630090 Novosibirsk, Russia
| |
Collapse
|
22
|
Benda L, Mareš J, Ravera E, Parigi G, Luchinat C, Kaupp M, Vaara J. Pseudo-Contact NMR Shifts over the Paramagnetic Metalloprotein CoMMP-12 from First Principles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ladislav Benda
- Institut für Chemie, Theoretische Chemie; Technische Universität Berlin; Sekr. C7, Straße des 17. Juni 135 10623 Berlin Germany
- Institut des Sciences Analytiques; UMR 5280 CNRS/ ENS Lyon/ UCB Lyon 1; 5 rue de la Doua 69100 Villeurbanne France
| | - Jiří Mareš
- NMR Research Unit; University of Oulu; P.O. Box 3000 90014 Oulu Finland
| | - Enrico Ravera
- Magnetic Resonance Center; University of Florence and; Interuniversity Consortium for Magnetic Resonance of Metalloproteins; Sesto Fiorentino Italy
| | - Giacomo Parigi
- Magnetic Resonance Center; University of Florence and; Interuniversity Consortium for Magnetic Resonance of Metalloproteins; Sesto Fiorentino Italy
- Department of Chemistry; University of Florence; Sesto Fiorentino Italy
| | - Claudio Luchinat
- Magnetic Resonance Center; University of Florence and; Interuniversity Consortium for Magnetic Resonance of Metalloproteins; Sesto Fiorentino Italy
- Department of Chemistry; University of Florence; Sesto Fiorentino Italy
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie; Technische Universität Berlin; Sekr. C7, Straße des 17. Juni 135 10623 Berlin Germany
| | - Juha Vaara
- NMR Research Unit; University of Oulu; P.O. Box 3000 90014 Oulu Finland
| |
Collapse
|
23
|
Benda L, Mareš J, Ravera E, Parigi G, Luchinat C, Kaupp M, Vaara J. Pseudo-Contact NMR Shifts over the Paramagnetic Metalloprotein CoMMP-12 from First Principles. Angew Chem Int Ed Engl 2016; 55:14713-14717. [PMID: 27781358 DOI: 10.1002/anie.201608829] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Indexed: 11/08/2022]
Abstract
Long-range pseudo-contact NMR shifts (PCSs) provide important restraints for the structure refinement of proteins when a paramagnetic metal center is present, either naturally or introduced artificially. Here we show that ab initio quantum-chemical methods and a modern version of the Kurland-McGarvey approach for paramagnetic NMR (pNMR) shifts in the presence of zero-field splitting (ZFS) together provide accurate predictions of all PCSs in a metalloprotein (high-spin cobalt-substituted MMP-12 as a test case). Computations of 314 13 C PCSs using g- and ZFS tensors based on multi-reference methods provide a reliable bridge between EPR-parameter- and susceptibility-based pNMR formalisms. Due to the high sensitivity of PCSs to even small structural differences, local structures based either on X-ray diffraction or on various DFT optimizations could be evaluated critically by comparing computed and experimental PCSs. Many DFT functionals provide insufficiently accurate structures. We also found the available 1RMZ PDB X-ray structure to exhibit deficiencies related to binding of a hydroxamate inhibitor. This has led to a newly refined PDB structure for MMP-12 (5LAB) that provides a more accurate coordination arrangement and PCSs.
Collapse
Affiliation(s)
- Ladislav Benda
- Institut für Chemie, Theoretische Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623, Berlin, Germany.,Institut des Sciences Analytiques, UMR 5280 CNRS/ ENS Lyon/ UCB Lyon 1, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Jiří Mareš
- NMR Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| | - Enrico Ravera
- Magnetic Resonance Center, University of Florence and, Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center, University of Florence and, Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center, University of Florence and, Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Juha Vaara
- NMR Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| |
Collapse
|
24
|
Baldoneschi V, Cerofolini L, Dragoni E, Storai A, Luchinat C, Fragai M, Richichi B, Nativi C. Active-Site Targeting Paramagnetic Probe for Matrix Metalloproteinases. Chempluschem 2016; 81:1333-1338. [DOI: 10.1002/cplu.201600375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/23/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Veronica Baldoneschi
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Linda Cerofolini
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; Univeristy of Florence; Via Sacconi 6 50019 Sesto Fiorentino Italy
| | - Elisa Dragoni
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Andrea Storai
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Claudio Luchinat
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; Univeristy of Florence; Via Sacconi 6 50019 Sesto Fiorentino Italy
| | - Marco Fragai
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; Univeristy of Florence; Via Sacconi 6 50019 Sesto Fiorentino Italy
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; Univeristy of Florence; Via Sacconi 6 50019 Sesto Fiorentino Italy
| |
Collapse
|
25
|
Palamara J, Seidel K, Moini A, Prasad S. Ion distribution in copper exchanged zeolites by using Si-29 spin lattice relaxation analysis. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 267:9-14. [PMID: 27055207 DOI: 10.1016/j.jmr.2016.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n=4 and m=0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts.
Collapse
|
26
|
Bertini I, Felli IC, Luchinat C, Parigi G, Pierattelli R. Towards a protocol for solution structure determination of copper(II) proteins: the case of Cu(II)Zn(II) superoxide dismutase. Chembiochem 2016; 8:1422-9. [PMID: 17583552 DOI: 10.1002/cbic.200700006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have developed an optimized protocol to solve the solution structure of copper(II) proteins. After assignment, proton-proton NOEs are used for the shell where 1H spectra are conveniently observed. In a shell closer to the metal ion, 13C NMR spectra with band-selective homonuclear decoupling provide the assignment of all nuclei except for those of the metal ligands. A convenient method for the measurement of 13C longitudinal-relaxation rates (R1) of carbonyls and carboxylate moieties is proposed. 1H NOEs and 1H and 13C R1 data are sufficient to produce a good/reasonable solution structure, as demonstrated for a monomeric species of superoxide dismutase, a 153-residue protein.
Collapse
Affiliation(s)
- Ivano Bertini
- CERM and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | |
Collapse
|
27
|
Barb AW, Subedi GP. An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins. JOURNAL OF BIOMOLECULAR NMR 2016; 64:75-85. [PMID: 26728077 PMCID: PMC4884023 DOI: 10.1007/s10858-015-0009-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/28/2015] [Indexed: 05/03/2023]
Abstract
Metal ions serve important roles in structural biology applications from long-range perturbations seen in magnetic resonance experiments to electron-dense signatures in X-ray crystallography data; however, the metal ion must be secured in a molecular framework to achieve the maximum benefit. Polypeptide-based lanthanide-binding tags (LBTs) represent one option that can be directly encoded within a recombinant protein expression construct. However, LBTs often exhibit significant mobility relative to the target molecule. Here we report the characterization of improved LBTs sequences for insertion into a protein loop. These LBTs were inserted to connect two parallel alpha helices of an immunoglobulin G (IgG)-binding Z domain platform. Variants A and B bound Tb(3+) with high affinity (0.70 and 0.13 μM, respectively) and displayed restricted LBT motion. Compared to the parent construct, the metal-bound A experienced a 2.5-fold reduction in tag motion as measured by magnetic field-induced residual dipolar couplings and was further studied in a 72.2 kDa complex with the human IgG1 fragment crystallizable (IgG1 Fc) glycoprotein. The appearance of both pseudo-contact shifts (-0.221 to 0.081 ppm) and residual dipolar couplings (-7.6 to 14.3 Hz) of IgG1 Fc resonances in the IgG1 Fc:(variant A:Tb(3+))2 complex indicated structural restriction of the LBT with respect to the Fc. These studies highlight the applicability of improved LBT sequences with reduced mobility to probe the structure of macromolecular systems.
Collapse
Affiliation(s)
- Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, IA, 50011, USA.
| | - Ganesh P Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, IA, 50011, USA
| |
Collapse
|
28
|
Abstract
The energy landscapes of proteins are highly complex and can be influenced by changes in physical and chemical conditions under which the protein is studied. The redox enzyme cytochrome P450cam undergoes a multistep catalytic cycle wherein two electrons are transferred to the heme group and the enzyme visits several conformational states. Using paramagnetic NMR spectroscopy with a lanthanoid tag, we show that the enzyme bound to its redox partner, putidaredoxin, is in a closed state at ambient temperature in solution. This result contrasts with recent crystal structures of the complex, which suggest that the enzyme opens up when bound to its partner. The closed state supports a model of catalysis in which the substrate is locked in the active site pocket and the enzyme acts as an insulator for the reactive intermediates of the reaction.
Collapse
|
29
|
Vranken WF, Vuister GW, Bonvin AMJJ. NMR-based modeling and refinement of protein 3D structures. Methods Mol Biol 2015; 1215:351-380. [PMID: 25330971 DOI: 10.1007/978-1-4939-1465-4_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
NMR is a well-established method to characterize the structure and dynamics of biomolecules in solution. High-quality structures can now be produced thanks to both experimental advances and computational developments that incorporate new NMR parameters and improved protocols and force fields in the structure calculation and refinement process. In this chapter, we give a short overview of the various types of NMR data that can provide structural information, and then focus on the structure calculation methodology itself. We discuss and illustrate with tutorial examples "classical" structure calculation, refinement, and structure validation approaches.
Collapse
Affiliation(s)
- Wim F Vranken
- Department of Structural Biology, VIB Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | | | | |
Collapse
|
30
|
Cao C, Chen JL, Yang Y, Huang F, Otting G, Su XC. Selective (15)N-labeling of the side-chain amide groups of asparagine and glutamine for applications in paramagnetic NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2014; 59:251-61. [PMID: 25002097 DOI: 10.1007/s10858-014-9844-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/01/2014] [Indexed: 05/24/2023]
Abstract
The side-chain amide groups of asparagine and glutamine play important roles in stabilizing the structural fold of proteins, participating in hydrogen-bonding networks and protein interactions. Selective (15)N-labeling of side-chain amides, however, can be a challenge due to enzyme-catalyzed exchange of amide groups during protein synthesis. In the present study, we developed an efficient way of selectively labeling the side chains of asparagine, or asparagine and glutamine residues with (15)NH2. Using the biosynthesis pathway of tryptophan, a protocol was also established for simultaneous selective (15)N-labeling of the side-chain NH groups of asparagine, glutamine, and tryptophan. In combination with site-specific tagging of the target protein with a lanthanide ion, we show that selective detection of (15)N-labeled side-chains of asparagine and glutamine allows determination of magnetic susceptibility anisotropy tensors based exclusively on pseudocontact shifts of amide side-chain protons.
Collapse
Affiliation(s)
- Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Maltsev S, Hudson SM, Sahu ID, Liu L, Lorigan GA. Solid-state NMR (31)P paramagnetic relaxation enhancement membrane protein immersion depth measurements. J Phys Chem B 2014; 118:4370-7. [PMID: 24689497 PMCID: PMC4002136 DOI: 10.1021/jp500267y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/01/2014] [Indexed: 11/29/2022]
Abstract
Paramagnetic relaxation enhancement (PRE) is a widely used approach for measuring long-range distance constraints in biomolecular solution NMR spectroscopy. In this paper, we show that (31)P PRE solid-state NMR spectroscopy can be utilized to determine the immersion depth of spin-labeled membrane peptides and proteins. Changes in the (31)P NMR PRE times coupled with modeling studies can be used to describe the spin-label position/amino acid within the lipid bilayer and the corresponding helical tilt. This method provides valuable insight on protein-lipid interactions and membrane protein structural topology. Solid-state (31)P NMR data on the 23 amino acid α-helical nicotinic acetylcholine receptor nAChR M2δ transmembrane domain model peptide followed predicted behavior of (31)P PRE rates of the phospholipid headgroup as the spin-label moves from the membrane surface toward the center of the membrane. Residue 11 showed the smallest changes in (31)P PRE (center of the membrane), while residue 22 shows the largest (31)P PRE change (near the membrane surface), when compared to the diamagnetic control M2δ sample. This PRE SS-NMR technique can be used as a molecular ruler to measure membrane immersion depth.
Collapse
Affiliation(s)
- Sergey Maltsev
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Stephen M. Hudson
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Lishan Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
33
|
Charnock GTP, Kuprov I. A partial differential equation for pseudocontact shift. Phys Chem Chem Phys 2014; 16:20184-9. [DOI: 10.1039/c4cp03106g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is demonstrated that pseudocontact shift (PCS), viewed as a scalar or a tensor field in three dimensions, obeys an elliptic partial differential equation with a source term that depends on the Hessian of the unpaired electron probability density.
Collapse
Affiliation(s)
| | - Ilya Kuprov
- School of Chemistry
- University of Southampton
- Southampton, UK
| |
Collapse
|
34
|
Fragai M, Luchinat C, Parigi G, Ravera E. Conformational freedom of metalloproteins revealed by paramagnetism-assisted NMR. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Varghese S, Yang F, Pacheco V, Wrede K, Medvedev A, Ogata H, Knipp M, Heise H. Expression, purification, and solid-state NMR characterization of the membrane binding heme protein nitrophorin 7 in two electronic spin states. Biochemistry 2013; 52:7031-40. [PMID: 24033104 DOI: 10.1021/bi401020t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nitrophorins (NPs) comprise a group of NO transporting ferriheme b proteins found in the saliva of the blood sucking insect Rhodnius prolixus . In contrast to other nitrophorins (NP1-4), the recently identified membrane binding isoform NP7 tends to form oligomers and precipitates at higher concentrations in solution. Hence, solid-state NMR (ssNMR) was employed as an alternative method to gain structural insights on the precipitated protein. We report the expression and purification of (13)C,(15)N isotopically labeled protein together with the first ssNMR characterization of NP7. Because the size of NP7 (21 kDa) still provides a challenge for ssNMR, the samples were reverse labeled with Lys and Val to reduce the number of crosspeaks in two-dimensional spectra. The two electronic spin states with S = 1/2 and S = 0 at the ferriheme iron were generated by the complexation with imidazole and NO, respectively. ssNMR spectra of both forms are well resolved, which allows for sequential resonance assignments of 22 residues. Importantly, the ssNMR spectra demonstrate that aggregation does not affect the protein fold. Comparison of the spectra of the two electronic spin states allows the determination of paramagnetically shifted cross peaks due to pseudocontact shifts, which assists the assignment of residues close to the heme center.
Collapse
Affiliation(s)
- Sabu Varghese
- ICS-6 Institute of Complex Systems-Structural Biochemistry, Forschungszentrum Jülich , D-2425 Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Almeida RM, Turano P, Moura I, Moura JJG, Pauleta SR. Superoxide Reductase: Different Interaction Modes with its Two Redox Partners. Chembiochem 2013; 14:1858-66. [DOI: 10.1002/cbic.201300196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Indexed: 11/08/2022]
|
37
|
Bhaumik A, Luchinat C, Parigi G, Ravera E, Rinaldelli M. NMR crystallography on paramagnetic systems: solved and open issues. CrystEngComm 2013. [DOI: 10.1039/c3ce41485j] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Jaipuria G, Lobo NP, Shet D, Atreya HS. High resolution methyl selective ¹³C-NMR of proteins in solution and solid state. JOURNAL OF BIOMOLECULAR NMR 2012; 54:33-42. [PMID: 22782234 DOI: 10.1007/s10858-012-9647-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/19/2012] [Indexed: 05/23/2023]
Abstract
New ¹³C-detected NMR experiments have been devised for molecules in solution and solid state, which provide chemical shift correlations of methyl groups with high resolution, selectivity and sensitivity. The experiments achieve selective methyl detection by exploiting the one bond J-coupling between the ¹³C-methyl nucleus and its directly attached ¹³C spin in a molecule. In proteins such correlations edit the ¹³C-resonances of different methyl containing residues into distinct spectral regions yielding a high resolution spectrum. This has a range of applications as exemplified for different systems such as large proteins, intrinsically disordered polypeptides and proteins with a paramagnetic centre.
Collapse
Affiliation(s)
- Garima Jaipuria
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
39
|
Bertini I, Luchinat C, Nagulapalli M, Parigi G, Ravera E. Paramagnetic relaxation enhancement for the characterization of the conformational heterogeneity in two-domain proteins. Phys Chem Chem Phys 2012; 14:9149-56. [PMID: 22622816 DOI: 10.1039/c2cp40139h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multidomain proteins are often composed of rigid domains that can reorient in solution more or less freely. Calmodulin (CaM) is a two domain protein which can experience a large degree of conformational freedom thanks to a mobile linker connecting the N-terminal and C-terminal domains of the protein. The maximum occurrences (MOs) of the possible protein conformations have been analyzed using the paramagnetic relaxation enhancements (PREs) induced by a gadolinium(III) ion together with the paramagnetic pseudocontact shift and residual dipolar coupling restraints measured in the presence of terbium(III), thulium(III) or dysprosium(III) ions. The results suggest that the PREs provide complementary information useful for improving the description of the conformational heterogeneity of the protein. The data, acquired at 298 K and at 278 K, suggest that compact conformations are disfavoured by decreasing the temperature.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.
| | | | | | | | | |
Collapse
|
40
|
Luchinat C, Nagulapalli M, Parigi G, Sgheri L. Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 215:85-93. [PMID: 22264683 DOI: 10.1016/j.jmr.2011.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/14/2011] [Accepted: 12/18/2011] [Indexed: 05/31/2023]
Abstract
Multidomain proteins are composed of rigid domains connected by (flexible) linkers. Therefore, the domains may experience a large degree of reciprocal reorientation. Pseudocontact shifts and residual dipolar couplings arising from one or more paramagnetic metals successively placed in a single metal binding site in the protein can be used as restraints to assess the degree of mobility of the different domains. They can be used to determine the maximum occurrence (MO) of each possible protein conformation, i.e. the maximum weight that such conformations can have independently of the real structural ensemble, in agreement with the provided restraints. In the case of two-domain proteins, the metal ions can be placed all in the same domain, or distributed between the two domains. It has been demonstrated that the quantity of independent information for the characterization of the system is larger when all metals are bound in the same domain. At the same time, it has been shown that there are practical advantages in placing the metals in different domains. Here, it is shown that distributing the metals between the domains provides a tool for defining a coefficient of compatibility among the restraints obtained from different metals, without a significant decrease of the capability of the MO values to discriminate among conformations with different weights.
Collapse
Affiliation(s)
- Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | |
Collapse
|
41
|
|
42
|
|
43
|
Dasgupta S, Hu X, Keizers PHJ, Liu WM, Luchinat C, Nagulapalli M, Overhand M, Parigi G, Sgheri L, Ubbink M. Narrowing the conformational space sampled by two-domain proteins with paramagnetic probes in both domains. JOURNAL OF BIOMOLECULAR NMR 2011; 51:253-263. [PMID: 21826520 DOI: 10.1007/s10858-011-9532-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/14/2011] [Indexed: 05/31/2023]
Abstract
Calmodulin is a two-domain protein which in solution can adopt a variety of conformations upon reorientation of its domains. The maximum occurrence (MO) of a set of calmodulin conformations that are representative of the overall conformational space possibly sampled by the protein, has been calculated from the paramagnetism-based restraints. These restraints were measured after inclusion of a lanthanide binding tag in the C-terminal domain to supplement the data obtained by substitution of three paramagnetic lanthanide ions to the calcium ion in the second calcium binding loop of the N-terminal domain. The analysis shows that the availability of paramagnetic restraints arising from metal ions placed on both domains, reduces the MO of the conformations to different extents, thereby helping to identify those conformations that can be mostly sampled by the protein.
Collapse
Affiliation(s)
- Soumyasri Dasgupta
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Koehler J, Meiler J. Expanding the utility of NMR restraints with paramagnetic compounds: background and practical aspects. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 59:360-89. [PMID: 22027343 PMCID: PMC3202700 DOI: 10.1016/j.pnmrs.2011.05.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 05/06/2011] [Indexed: 05/05/2023]
Affiliation(s)
- Julia Koehler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-8725, USA.
| | | |
Collapse
|
45
|
Sgrignani J, Pierattelli R. Nuclear magnetic resonance signal chemical shifts and molecular simulations: a multidisciplinary approach to modeling copper protein structures. J Biol Inorg Chem 2011; 17:71-9. [DOI: 10.1007/s00775-011-0830-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/01/2011] [Indexed: 01/12/2023]
|
46
|
Wang X, Lee HW, Liu Y, Prestegard JH. Structural NMR of protein oligomers using hybrid methods. J Struct Biol 2011; 173:515-29. [PMID: 21074622 PMCID: PMC3040251 DOI: 10.1016/j.jsb.2010.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/03/2010] [Accepted: 11/04/2010] [Indexed: 11/19/2022]
Abstract
Solving structures of native oligomeric protein complexes using traditional high-resolution NMR techniques remains challenging. However, increased utilization of computational platforms, and integration of information from less traditional NMR techniques with data from other complementary biophysical methods, promises to extend the boundary of NMR-applicable targets. This article reviews several of the techniques capable of providing less traditional and complementary structural information. In particular, the use of orientational constraints coming from residual dipolar couplings and residual chemical shift anisotropy offsets are shown to simplify the construction of models for oligomeric complexes, especially in cases of weak homo-dimers. Combining this orientational information with interaction site information supplied by computation, chemical shift perturbation, paramagnetic surface perturbation, cross-saturation and mass spectrometry allows high resolution models of the complexes to be constructed with relative ease. Non-NMR techniques, such as mass spectrometry, EPR and small angle X-ray scattering, are also expected to play increasingly important roles by offering alternative methods of probing the overall shape of the complex. Computational platforms capable of integrating information from multiple sources in the modeling process are also discussed in the article. And finally a new, detailed example on the determination of a chemokine tetramer structure will be used to illustrate how a non-traditional approach to oligomeric structure determination works in practice.
Collapse
Affiliation(s)
- Xu Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - Hsiau-Wei Lee
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - Yizhou Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| |
Collapse
|
47
|
Kwan AH, Mobli M, Gooley PR, King GF, Mackay JP. Macromolecular NMR spectroscopy for the non-spectroscopist. FEBS J 2011; 278:687-703. [PMID: 21214860 DOI: 10.1111/j.1742-4658.2011.08004.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
NMR spectroscopy is a powerful tool for studying the structure, function and dynamics of biological macromolecules. However, non-spectroscopists often find NMR theory daunting and data interpretation nontrivial. As the first of two back-to-back reviews on NMR spectroscopy aimed at non-spectroscopists, the present review first provides an introduction to the basics of macromolecular NMR spectroscopy, including a discussion of typical sample requirements and what information can be obtained from simple NMR experiments. We then review the use of NMR spectroscopy for determining the 3D structures of macromolecules and examine how to judge the quality of NMR-derived structures.
Collapse
Affiliation(s)
- Ann H Kwan
- School of Molecular Bioscience, University of Sydney, New South Wales, Australia
| | | | | | | | | |
Collapse
|
48
|
Mallagaray A, Canales A, Domínguez G, Jiménez-Barbero J, Pérez-Castells J. A rigid lanthanide binding tag for NMR structural analysis of carbohydrates. Chem Commun (Camb) 2011; 47:7179-81. [DOI: 10.1039/c1cc11860a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, Nietlispach D. Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 2010; 17:768-74. [PMID: 20512150 PMCID: PMC2923064 DOI: 10.1038/nsmb.1807] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 03/16/2010] [Indexed: 11/18/2022]
Abstract
Seven-helix membrane proteins represent a challenge for structural biology. Here we report the first NMR structure determination of a detergent-solubilized seven-helix transmembrane (7TM) protein, the phototaxis receptor sensory rhodopsin II (pSRII) from Natronomonas pharaonis, as a proof of principle. The overall quality of the structure ensemble is good (backbone r.m.s. deviation of 0.48 A) and agrees well with previously determined X-ray structures. Furthermore, measurements in more native-like small phospholipid bicelles indicate that the protein structure is the same as in detergent micelles, suggesting that environment-specific effects are minimal when using mild detergents. We use our case study as a platform to discuss the feasibility of similar solution NMR studies for other 7TM proteins, including members of the family of G protein-coupled receptors.
Collapse
Affiliation(s)
- Antoine Gautier
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Helen R. Mott
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Mark J. Bostock
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - John P. Kirkpatrick
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
50
|
Affiliation(s)
- Gottfried Otting
- Australian National University, Research School of Chemistry, Canberra, ACT 0200, Australia;
| |
Collapse
|