1
|
Dhiman A, Rana D, Benival D, Garkhal K. Comprehensive insights into glioblastoma multiforme: drug delivery challenges and multimodal treatment strategies. Ther Deliv 2024:1-29. [PMID: 39445563 DOI: 10.1080/20415990.2024.2415281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors, with a high prevalence in elderly population. Most chemotherapeutic agents fail to reach the tumor site due to various challenges. However, smart nanocarriers have demonstrated excellent drug-loading capabilities, enabling them to cross the blood brain tumor barrier for the GBM treatment. Surface modification of nanocarriers has significantly enhanced their potential for targeting therapeutics. Moreover, recent innovations in drug therapies, such as the incorporation of theranostic agents in nanocarriers and antibody-drug conjugates, have offered newer insights for both diagnosis and treatment. This review focuses on recent advances in new therapeutic interventions for GBM, with an emphasis on the nanotheranostics systems to maximize therapeutic and diagnostic outcomes.
Collapse
Affiliation(s)
- Ashish Dhiman
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Kalpna Garkhal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| |
Collapse
|
2
|
Charbonneau M, Harper K, Brochu-Gaudreau K, Perreault A, Roy LO, Lucien F, Tian S, Fortin D, Dubois CM. The development of a rapid patient-derived xenograft model to predict chemotherapeutic drug sensitivity/resistance in malignant glial tumors. Neuro Oncol 2023; 25:1605-1616. [PMID: 36821432 PMCID: PMC10479744 DOI: 10.1093/neuonc/noad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND High-grade gliomas (HGG) are aggressive brain tumors associated with short median patient survival and limited response to therapies, driving the need to develop tools to improve patient outcomes. Patient-derived xenograft (PDX) models, such as mouse PDX, have emerged as potential Avatar platforms for personalized oncology approaches, but the difficulty for some human grafts to grow successfully and the long time required for mice to develop tumors preclude their use for HGG. METHODS We used a rapid and efficient ex-ovo chicken embryo chorioallantoic membrane (CAM) culture system to evaluate the efficacy of oncologic drug options for HGG patients. RESULTS Implantation of fresh glioma tissue fragments from 59 of 60 patients, that include difficult-to-grow IDH-mutated samples, successfully established CAM tumor xenografts within 7 days, with a tumor take rate of 98.3%. These xenografts faithfully recapitulate the histological and molecular characteristics of the primary tumor, and the ability of individual fragments to form tumors was predictive of poor patient prognosis. Treatment of drug-sensitive or drug-resistant xenografts indicates that the CAM-glioma assay enables testing tumor sensitivity to temozolomide and carboplatin at doses consistent with those administered to patients. In a proof-of-concept study involving 14 HGG patients, we observed a correlation of 100% between the CAM xenograft response to temozolomide or carboplatin and the clinical response of patients. CONCLUSION The CAM-glioma model is a fast and reliable assay that has the potential to serve as a complementary model to drug discovery and a real-time Avatar platform to predict the best treatment for HGG patients.
Collapse
Affiliation(s)
- Martine Charbonneau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Kelly Harper
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Alexis Perreault
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Laurent-Olivier Roy
- Department of Surgery, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | | | - Shulan Tian
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - David Fortin
- Department of Surgery, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Claire M Dubois
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| |
Collapse
|
3
|
Alfonso-Triguero P, Lorenzo J, Candiota AP, Arús C, Ruiz-Molina D, Novio F. Platinum-Based Nanoformulations for Glioblastoma Treatment: The Resurgence of Platinum Drugs? NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1619. [PMID: 37242036 PMCID: PMC10223043 DOI: 10.3390/nano13101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Current therapies for treating Glioblastoma (GB), and brain tumours in general, are inefficient and represent numerous challenges. In addition to surgical resection, chemotherapy and radiotherapy are presently used as standards of care. However, treated patients still face a dismal prognosis with a median survival below 15-18 months. Temozolomide (TMZ) is the main chemotherapeutic agent administered; however, intrinsic or acquired resistance to TMZ contributes to the limited efficacy of this drug. To circumvent the current drawbacks in GB treatment, a large number of classical and non-classical platinum complexes have been prepared and tested for anticancer activity, especially platinum (IV)-based prodrugs. Platinum complexes, used as alkylating agents in the anticancer chemotherapy of some malignancies, are though often associated with severe systemic toxicity (i.e., neurotoxicity), especially after long-term treatments. The objective of the current developments is to produce novel nanoformulations with improved lipophilicity and passive diffusion, promoting intracellular accumulation, while reducing toxicity and optimizing the concomitant treatment of chemo-/radiotherapy. Moreover, the blood-brain barrier (BBB) prevents the access of the drugs to the brain and accumulation in tumour cells, so it represents a key challenge for GB management. The development of novel nanomedicines with the ability to (i) encapsulate Pt-based drugs and pro-drugs, (ii) cross the BBB, and (iii) specifically target cancer cells represents a promising approach to increase the therapeutic effect of the anticancer drugs and reduce undesired side effects. In this review, a critical discussion is presented concerning different families of nanoparticles able to encapsulate platinum anticancer drugs and their application for GB treatment, emphasizing their potential for increasing the effectiveness of platinum-based drugs.
Collapse
Affiliation(s)
- Paula Alfonso-Triguero
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Carles Arús
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Fernando Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
4
|
Pinkiewicz M, Pinkiewicz M, Walecki J, Zawadzki M. A systematic review on intra-arterial cerebral infusions of chemotherapeutics in the treatment of glioblastoma multiforme: The state-of-the-art. Front Oncol 2022; 12:950167. [PMID: 36212394 PMCID: PMC9539841 DOI: 10.3389/fonc.2022.950167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022] Open
Abstract
Objective To provide a comprehensive review of intra-arterial cerebral infusions of chemotherapeutics in glioblastoma multiforme treatment and discuss potential research aims. We describe technical aspects of the intra-arterial delivery, methods of blood-brain barrier disruption, the role of intraoperative imaging and clinical trials involving intra-arterial cerebral infusions of chemotherapeutics in the treatment of glioblastoma multiforme. Method 159 articles in English were reviewed and used as the foundation for this paper. The Medline/Pubmed, Cochrane databases, Google Scholar, Scielo and PEDro databases have been used to select the most relevant and influential papers on the intra-arterial cerebral infusions of chemotherapeutics in the treatment of glioblastoma multiforme. Additionally, we have included some relevant clinical trials involving intra-arterial delivery of chemotherapeutics to other than GBM brain tumours. Conclusion Considering that conventional treatments for glioblastoma multiforme fall short of providing a significant therapeutic benefit, with a majority of patients relapsing, the neuro-oncological community has considered intra-arterial administration of chemotherapeutics as an alternative to oral or intravenous administration. Numerous studies have proven the safety of IA delivery of chemotherapy and its ability to ensure higher drug concentrations in targeted areas, simultaneously limiting systemic toxicity. Nonetheless, the scarcity of phase III trials prevents any declaration of a therapeutic benefit. Given that the likelihood of a single therapeutic agent which will be effective for the treatment of glioblastoma multiforme is extremely low, it is paramount to establish an adequate multimodal therapy which will have a synergistic effect on the diverse pathogenesis of GBM. Precise quantitative and spatial monitoring is necessary to guarantee the accurate delivery of the therapeutic to the tumour. New and comprehensive pharmacokinetic models, a more elaborate understanding of glioblastoma biology and effective methods of diminishing treatment-related neurotoxicity are paramount for intra-arterial cerebral infusion of chemotherapeutics to become a mainstay treatment for glioblastoma multiforme. Additional use of other imaging methods like MRI guidance during the procedure could have an edge over X-ray alone and aid in selecting proper arteries as well as infusion parameters of chemotherapeutics making the procedure safer and more effective.
Collapse
Affiliation(s)
- Mateusz Pinkiewicz
- Department of Diagnostic Imaging, Mazowiecki Regional Hospital in Siedlce, Siedlce, Poland
| | - Milosz Pinkiewicz
- English Division, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Walecki
- Division of Interventional Neuroradiology of the Central Clinical Hospital of the Ministry of Interior and Administration, Department of Radiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Michał Zawadzki
- Division of Interventional Neuroradiology of the Central Clinical Hospital of the Ministry of Interior and Administration, Department of Radiology, Centre of Postgraduate Medical Education, Warsaw, Poland
- *Correspondence: Michał Zawadzki,
| |
Collapse
|
5
|
Chen SR, Lang FF, Kan P. Preclinical animal brain tumor models for interventional neuro-oncology. J Neurointerv Surg 2022; 14:neurintsurg-2022-018968. [PMID: 35414632 DOI: 10.1136/neurintsurg-2022-018968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Stephen R Chen
- Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Kan
- Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Hersh AM, Alomari S, Tyler BM. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int J Mol Sci 2022; 23:4153. [PMID: 35456971 PMCID: PMC9032478 DOI: 10.3390/ijms23084153] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
The blood-brain barrier (BBB) constitutes a microvascular network responsible for excluding most drugs from the brain. Treatment of brain tumors is limited by the impermeability of the BBB and, consequently, survival outcomes for malignant brain tumors remain poor. Nanoparticles (NPs) represent a potential solution to improve drug transport to brain tumors, given their small size and capacity to target tumor cells. Here, we review the unique physical and chemical properties of NPs that aid in BBB transport and discuss mechanisms of NP transport across the BBB, including paracellular transport, carrier-mediated transport, and adsorptive- and receptor-mediated transcytosis. The major types of NPs investigated for treatment of brain tumors are detailed, including polymeric NPs, liposomes, solid lipid NPs, dendrimers, metals, quantum dots, and nanogels. In addition to their role in drug delivery, NPs can be used as imaging contrast agents and can be conjugated with imaging probes to assist in visualizing tumors, demarcating lesion boundaries and margins, and monitoring drug delivery and treatment response. Multifunctional NPs can be designed that are capable of targeting tumors for both imaging and therapeutic purposes. Finally, limitations of NPs for brain tumor treatment are discussed.
Collapse
Affiliation(s)
| | | | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (S.A.)
| |
Collapse
|
7
|
Dabrowski W, Siwicka-Gieroba D, Robba C, Bielacz M, Sołek-Pastuszka J, Kotfis K, Bohatyrewicz R, Jaroszyński A, Malbrain MLNG, Badenes R. Potentially Detrimental Effects of Hyperosmolality in Patients Treated for Traumatic Brain Injury. J Clin Med 2021; 10:4141. [PMID: 34575255 PMCID: PMC8467376 DOI: 10.3390/jcm10184141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hyperosmotic therapy is commonly used to treat intracranial hypertension in traumatic brain injury patients. Unfortunately, hyperosmolality also affects other organs. An increase in plasma osmolality may impair kidney, cardiac, and immune function, and increase blood-brain barrier permeability. These effects are related not only to the type of hyperosmotic agents, but also to the level of hyperosmolality. The commonly recommended osmolality of 320 mOsm/kg H2O seems to be the maximum level, although an increase in plasma osmolality above 310 mOsm/kg H2O may already induce cardiac and immune system disorders. The present review focuses on the adverse effects of hyperosmolality on the function of various organs.
Collapse
Affiliation(s)
- Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico San Martino, 16100 Genova, Italy;
| | - Magdalena Bielacz
- Institute of Tourism and Recreation, State Vocational College of Szymon Szymonowicz, 22-400 Zamosc, Poland;
| | - Joanna Sołek-Pastuszka
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.S.-P.); (R.B.)
| | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Romuald Bohatyrewicz
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.S.-P.); (R.B.)
| | - Andrzej Jaroszyński
- Department of Nephrology, Institute of Medical Science, Jan Kochanowski University of Kielce, 25-736 Kielce, Poland;
| | - Manu L. N. G. Malbrain
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland;
- International Fluid Academy, Dreef 3, 3360 Lovenjoel, Belgium
- Medical Department, AZ Jan Palfjin Hospital, Watersportlaan 5, 9000 Gent, Belgium
| | - Rafael Badenes
- Department of Anaesthesiology and Intensive Care, Hospital Clìnico Universitario de Valencia, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
8
|
Pharmacological Modulation of Blood-Brain Barrier Permeability by Kinin Analogs in Normal and Pathologic Conditions. Pharmaceuticals (Basel) 2020; 13:ph13100279. [PMID: 33003415 PMCID: PMC7650794 DOI: 10.3390/ph13100279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The blood–brain barrier (BBB) is a major obstacle to the development of effective diagnostics and therapeutics for brain cancers and other central nervous system diseases. Peptide agonist analogs of kinin B1 and B2 receptors, acting as BBB permeabilizers, have been utilized to overcome this barrier. The purpose of the study was to provide new insights for the potential utility of kinin analogs as brain drug delivery adjuvants. In vivo imaging studies were conducted in various animal models (primary/secondary brain cancers, late radiation-induced brain injury) to quantify BBB permeability in response to kinin agonist administrations. Results showed that kinin B1 (B1R) and B2 receptors (B2R) agonists increase the BBB penetration of chemotherapeutic doxorubicin to glioma sites, with additive effects when applied in combination. B2R agonist also enabled extravasation of high-molecular-weight fluorescent dextrans (155 kDa and 2 MDa) in brains of normal mice. Moreover, a systemic single dose of B2R agonist did not increase the incidence of metastatic brain tumors originating from circulating breast cancer cells. Lastly, B2R agonist promoted the selective delivery of co-injected diagnostic MRI agent Magnevist in irradiated brain areas, depicting increased vascular B2R expression. Altogether, our findings suggest additional evidence for using kinin analogs to facilitate specific access of drugs to the brain.
Collapse
|
9
|
Karmur BS, Philteos J, Abbasian A, Zacharia BE, Lipsman N, Levin V, Grossman S, Mansouri A. Blood-Brain Barrier Disruption in Neuro-Oncology: Strategies, Failures, and Challenges to Overcome. Front Oncol 2020; 10:563840. [PMID: 33072591 PMCID: PMC7531249 DOI: 10.3389/fonc.2020.563840] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023] Open
Abstract
The blood-brain barrier (BBB) presents a formidable challenge in the development of effective therapeutics in neuro-oncology. This has fueled several decades of efforts to develop strategies for disrupting the BBB, but progress has not been satisfactory. As such, numerous drug- and device-based methods are currently being investigated in humans. Through a focused assessment of completed, active, and pending clinical trials, our first aim in this review is to outline the scientific foundation, successes, and limitations of the BBBD strategies developed to date. Among 35 registered trials relevant to BBBD in neuro-oncology in the ClinicalTrials.gov database, mannitol was the most common drug-based method, followed by RMP-7 and regadenoson. MR-guided focused ultrasound was the most common device-based method, followed by MR-guided laser ablation, ultrasound, and transcranial magnetic stimulation. While most early-phase studies focusing on safety and tolerability have met stated objectives, advanced-phase studies focusing on survival differences and objective tumor response have been limited by heterogeneous populations and tumors, along with a lack of control arms. Based on shared challenges among all methods, our second objective is to discuss strategies for confirmation of BBBD, choice of systemic agent and drug design, alignment of BBBD method with real-world clinical workflow, and consideration of inadvertent toxicity associated with disrupting an evolutionarily-refined barrier. Finally, we conclude with a strategic proposal to approach future studies assessing BBBD.
Collapse
Affiliation(s)
- Brij S Karmur
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Aram Abbasian
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Brad E Zacharia
- Penn State Health Neurosurgery, College of Medicine, Penn State University, Hershey, PA, United States
| | - Nir Lipsman
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Victor Levin
- Department of Neurosurgery, Medical School, University of California, San Francisco, San Francisco, CA, United States
| | - Stuart Grossman
- Department of Oncology, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Alireza Mansouri
- Penn State Health Neurosurgery, College of Medicine, Penn State University, Hershey, PA, United States
| |
Collapse
|
10
|
Huang R, Boltze J, Li S. Strategies for Improved Intra-arterial Treatments Targeting Brain Tumors: a Systematic Review. Front Oncol 2020; 10:1443. [PMID: 32983974 PMCID: PMC7479245 DOI: 10.3389/fonc.2020.01443] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Conventional treatments for brain tumors relying on surgery, radiation, and systemic chemotherapy are often associated with high recurrence and poor prognosis. In recent decades, intra-arterial administration of anti-cancer drugs has been considered a suitable alternative drug delivery route to intravenous and oral administration. Intra-arterial administration is believed to offer increasing drug responses by primary and metastatic brain tumors, and to be associated with better median overall survival. By directly injecting therapeutic agents into carotid or vertebral artery, intra-arterial administration rapidly increases intra-tumoral drug concentration but lowers systemic exposure. However, unexpected vascular or neural toxicity has questioned the therapeutic safety of intra-arterial drug administration and limits its widespread clinical application. Therefore, improving targeting and accuracy of intra-arterial administration has become a major research focus. This systematic review categorizes strategies for optimizing intra-arterial administration into five categories: (1) transient blood-brain barrier (BBB)/blood-tumor barrier (BTB) disruption, (2) regional cerebral hypoperfusion for peritumoral hemodynamic changes, (3) superselective endovascular intervention, (4) high-resolution imaging techniques, and (5) others such as cell and gene therapy. We summarize and discuss both preclinical and clinical research, focusing on advantages and disadvantages of different treatment strategies for a variety of cerebral tumor types.
Collapse
Affiliation(s)
- Rui Huang
- Department of Neurology, Dalian Municipal Central Hospital Affiliated With Dalian Medical University, Dalian, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital Affiliated With Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Super selective intra-arterial cerebral infusion of modern chemotherapeutics after blood–brain barrier disruption: where are we now, and where we are going. J Neurooncol 2020; 147:261-278. [DOI: 10.1007/s11060-020-03435-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
|
12
|
Srinivasan VM, Lang FF, Chen SR, Chen MM, Gumin J, Johnson J, Burkhardt JK, Kan P. Advances in endovascular neuro-oncology: endovascular selective intra-arterial (ESIA) infusion of targeted biologic therapy for brain tumors. J Neurointerv Surg 2020; 12:197-203. [PMID: 31676690 DOI: 10.1136/neurintsurg-2019-015137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Malignant gliomas continue to have a poor clinical outcome with available therapies. In the past few years, new targeted biologic therapies have been studied, with promising results. However, owing to problems with ineffective IV delivery of these newer agents, an alternative, more direct delivery mechanism is needed. Simultaneously, advancements in neuroendovascular technology have allowed endovascular selective intra-arterial approaches to delivery. This method has the potential to increase drug delivery and selectively target tumor vasculature. OBJECTIVE To review the history of IA therapy for brain tumors, prior failures and successes, the emergence of new technologies and therapies, and the future direction of this young field. METHODS A comprehensive literature search of two databases (PubMed, Ovid Medline) was performed for several terms including 'brain tumor', 'glioma', and 'endovascular intra-arterial'. Forty-five relevant articles were identified via a systematic review following PRISMA guidelines. Additional relevant articles were selected for further in-depth review. Emphasis was given to articles discussing selective intra-arterial intracranial delivery using microcatheters. RESULTS Endovascular intra-arterial therapy with chemotherapy has had mixed results, with currently active trials using temozolomide, cetuximab, and bevacizumab. Prior attempts at IA chemotherapy with older-generation medications did not surpass the efficacy of IV administration. Advances in neuro-oncology have brought to the forefront new targeted biologic therapies. CONCLUSIONS In this review, we discuss the emerging field of endovascular neuro-oncology, a field that applies modern neuroendovascular techniques to the delivery of new therapeutic agents to brain tumors. The development of targeted therapies for brain tumors has been concurrent with the development of microcatheter technology, which has made superselective distal intracranial arterial access feasible and safe.
Collapse
Affiliation(s)
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen R Chen
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA.,Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Melissa M Chen
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeremiah Johnson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Peter Kan
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
13
|
Shi M, Sanche L. Convection-Enhanced Delivery in Malignant Gliomas: A Review of Toxicity and Efficacy. JOURNAL OF ONCOLOGY 2019; 2019:9342796. [PMID: 31428153 PMCID: PMC6679879 DOI: 10.1155/2019/9342796] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/06/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
Malignant gliomas are undifferentiated or anaplastic gliomas. They remain incurable with a multitude of modalities, including surgery, radiation, chemotherapy, and alternating electric field therapy. Convection-enhanced delivery (CED) is a local treatment that can bypass the blood-brain barrier and increase the tumor uptake of therapeutic agents, while decreasing exposure to healthy tissues. Considering the multiple choices of drugs with different antitumor mechanisms, the supra-additive effect of concomitant radiation and chemotherapy, CED appears as a promising modality for the treatment of brain tumors. In this review, the CED-related toxicities are summarized and classified into immediate, early, and late side effects based on the time of onset, and local and systemic toxicities based on the location of toxicity. The efficacies of CED of various therapeutic agents including targeted antitumor agents, chemotherapeutic agents, radioisotopes, and immunomodulators are covered. The phase III trial PRECISE compares CED of IL13-PE38QQR, an interleukin-13 conjugated to Pseudomonas aeruginosa exotoxin A, to Gliadel® Wafer, a polymer loaded with carmustine. However, in this case, CED had no significant median survival improvement (11.3 months vs. 10 months) in patients with recurrent glioblastomas. In phase II studies, CED of recombinant poliovirus (PVSRIPO) had an overall survival of 21% vs. 14% for the control group at 24 months, and 21% vs. 4% at 36 months. CED of Tf-diphtheria toxin had a response rate of 35% in recurrent malignant gliomas patients. On the other hand, the TGF-β2 inhibitor Trabedersen, HSV-1-tk ganciclovir, and radioisotope 131I-chTNT-1/B mAb had a limited response rate. With this treatment, patients who received CED of the chemotherapeutic agent paclitaxel and immunomodulator, oligodeoxynucleotides containing CpG motifs (CpG-ODN), experienced intolerable toxicity. Toward the end of this article, an ideal CED treatment procedure is proposed and the methods for quality assurance of the CED procedure are discussed.
Collapse
Affiliation(s)
- Minghan Shi
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
14
|
Sinclair G, Benmakhlouf H, Martin H, Maeurer M, Dodoo E. Adaptive hypofractionated gamma knife radiosurgery in the acute management of brainstem metastases. Surg Neurol Int 2019; 10:14. [PMID: 30783544 PMCID: PMC6367951 DOI: 10.4103/sni.sni_53_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Intrinsic brainstem metastases are life-threatening neoplasms requiring rapid, effective intervention. Microsurgery is considered not feasible in most cases and systemic treatment seldom provides a successful outcome. In this context, radiation therapy remains the best option but adverse radiation effects (ARE) remain a major concern. A dose-adaptive gamma knife procedure coined as Rapid Rescue Radiosurgery (3R) offers the possibility to treat these lesions whilst reducing the risk of ARE evolvement. We report the results of 3R applied to a group of patients with brainstem metastases. Methods: Eight patients with nine brainstem metastases, having undergone three separate, dose-adapted gamma knife radiosurgery (GKRS) procedures over 7 days, were retrospectively analyzed in terms of tumor volume reduction, local control rates, and ARE-development under the period of treatment and at least 6 months after treatment completion. Results: Mean peripheral doses at GKRS 1, GKRS 2, and GKRS 3 were 7.4, 7.7, and 8.2 Gy (range 6–9 Gy) set at the 35–50% isodose lines. Mean tumor volume reduction between GKRS 1 and GKRS 3 was −15% and −56% at first follow-up. Four patients developed radiologic signs of ARE but remained clinically asymptomatic. One patient developed a local recurrence at 34 months. Mean survival from GKRS 1 was 13 months. Two patients were still alive at the time of paper submission (10 and 23 months from GKRS 1). Conclusions: In this study, 3R proved effective in terms of tumor volume reduction, rescue/preservation of neurological function, and limited ARE evolvement.
Collapse
Affiliation(s)
- Georges Sinclair
- Department of Neurosurgery, Karolinska University Hospital, Solna, Sweden
| | - Hamza Benmakhlouf
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden
| | - Heather Martin
- Department of Neuroradiology, Karolinska University Hospital, Solna, Sweden
| | - Markus Maeurer
- Department of Laboratory Medicine (LABMED), Therapeutic Immunology Unit (TIM), Karolinska Institutet, Stockholm, Sweden.,Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institute, Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Solna, Sweden
| | - Ernest Dodoo
- Department of Neurosurgery, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
15
|
Barnabas W. Drug targeting strategies into the brain for treating neurological diseases. J Neurosci Methods 2019; 311:133-146. [DOI: 10.1016/j.jneumeth.2018.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022]
|
16
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:407-466. [PMID: 31571171 DOI: 10.1007/978-981-13-7647-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood-brain interfaces comprise the cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Their main functions are to impede free diffusion between brain fluids and blood; to provide transport processes for essential nutrients, ions, and metabolic waste products; and to regulate the homeostasis of central nervous system (CNS), all of which are attributed to absent fenestrations, high expression of tight junction proteins at cell-cell contacts, and expression of multiple transporters, receptors, and enzymes. Existence of BBB is an important reason that systemic drug administration is not suitable for the treatment of CNS diseases. Some diseases, such epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and diabetes, alter BBB function via affecting tight junction proteins or altering expression and function of these transporters. This chapter will illustrate function of BBB, expression of transporters, as well as their alterations under disease status.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
17
|
Rodriguez A, Zugbi S, Requejo F, Deu A, Sampor C, Sgroi M, Bosaleh A, Fandiño A, Schaiquevich P, Chantada G. Combined high-dose intra-arterial and intrathecal chemotherapy for the treatment of a case of extraocular retinoblastoma. Pediatr Blood Cancer 2018; 65:e27385. [PMID: 30105793 DOI: 10.1002/pbc.27385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/05/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
Patients with retinoblastoma and central nervous system (CNS) involvement are rarely curable with available treatments. We designed a high-dose intra-arterial regimen targeting the ophthalmic artery and chiasm combined with intrathecal chemotherapy to treat a 4-year-old patient with retinoblastoma metastasized to the CNS. After three cycles of this regimen, including carboplatin, melphalan, and intrathecal topotecan, a partial response of the orbital tumor mass and chiasmatic lesion, and complete response in the cerebrospinal fluid and bone marrow were achieved. This new treatment strategy may be explored as a treatment component for patients with overt extraocular retinoblastoma and CNS dissemination.
Collapse
Affiliation(s)
- Anabel Rodriguez
- Department of Hematology-Oncology, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires, Argentina
| | - Santiago Zugbi
- Unit of Clinical Pharmacokinetics, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires, Argentina
| | - Flavio Requejo
- Department of Neuroradiology, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires, Argentina
| | - Alejandra Deu
- Department of Hematology-Oncology, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires, Argentina
| | - Claudia Sampor
- Department of Hematology-Oncology, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires, Argentina
| | - Mariana Sgroi
- Department of Ophthalmology, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires, Argentina
| | - Andrea Bosaleh
- Department of Pathology, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires, Argentina
| | - Adriana Fandiño
- Department of Ophthalmology, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires, Argentina
| | - Paula Schaiquevich
- Unit of Clinical Pharmacokinetics, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Guillermo Chantada
- Department of Hematology-Oncology, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
18
|
Ganipineni LP, Danhier F, Préat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Control Release 2018; 281:42-57. [PMID: 29753958 DOI: 10.1016/j.jconrel.2018.05.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive and deadliest central nervous system tumors, and the current standard treatment is surgery followed by radiotherapy with concurrent chemotherapy. Nevertheless, the survival period is notably low. Although ample research has been performed to develop an effective therapeutic strategy for treating GBM, the success of extending patients' survival period and quality of life is limited. This review focuses on the strategies developed to address the challenges associated with drug delivery in GBM, particularly nanomedicine. The first part describes major obstacles to the development of effective GBM treatment strategies. The second part focuses on the conventional chemotherapeutic nanomedicine strategies, their limitations and the novel and advanced strategies of nanomedicine, which could be promising for GBM treatment. We also highlighted the prominence of nanomedicine clinical translation. The near future looks bright following the beginning of clinical translation of nanochemotherapy for GBM.
Collapse
Affiliation(s)
- Lakshmi Pallavi Ganipineni
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Fabienne Danhier
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium.
| |
Collapse
|
19
|
Jackson S, Weingart J, Nduom EK, Harfi TT, George RT, McAreavey D, Ye X, Anders NM, Peer C, Figg WD, Gilbert M, Rudek MA, Grossman SA. The effect of an adenosine A 2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma. Fluids Barriers CNS 2018; 15:2. [PMID: 29332604 PMCID: PMC5767971 DOI: 10.1186/s12987-017-0088-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/26/2017] [Indexed: 01/29/2023] Open
Abstract
Background The blood–brain barrier (BBB) severely limits the entry of systemically administered drugs including chemotherapy to the brain. In rodents, regadenoson activation of adenosine A2A receptors causes transient BBB disruption and increased drug concentrations in normal brain. This study was conducted to evaluate if activation of A2A receptors would increase intra-tumoral temozolomide concentrations in patients with glioblastoma. Methods Patients scheduled for a clinically indicated surgery for recurrent glioblastoma were eligible. Microdialysis catheters (MDC) were placed intraoperatively, and the positions were documented radiographically. On post-operative day #1, patients received oral temozolomide (150 mg/m2). On day #2, 60 min after oral temozolomide, patients received one intravenous dose of regadenoson (0.4 mg). Blood and MDC samples were collected to determine temozolomide concentrations. Results Six patients were enrolled. Five patients had no complications from the MDC placement or regadenoson and had successful collection of blood and dialysate samples. The mean plasma AUC was 16.4 ± 1.4 h µg/ml for temozolomide alone and 16.6 ± 2.87 h µg/ml with addition of regadenoson. The mean dialysate AUC was 2.9 ± 1.2 h µg/ml with temozolomide alone and 3.0 ± 1.7 h µg/ml with regadenoson. The mean brain:plasma AUC ratio was 18.0 ± 7.8 and 19.1 ± 10.7% for temozolomide alone and with regadenoson respectively. Peak concentration and Tmax in brain were not significantly different. Conclusions Although previously shown to be efficacious in rodents to increase varied size agents to cross the BBB, our data suggest that regadenoson does not increase temozolomide concentrations in brain. Further studies exploring alternative doses and schedules are needed; as transiently disrupting the BBB to facilitate drug entry is of critical importance in neuro-oncology. Electronic supplementary material The online version of this article (10.1186/s12987-017-0088-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sadhana Jackson
- Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA. .,Neuro-Oncology Branch, NCI/NIH, 9030 Old Georgetown Rd, Building 82, Bethesda, MD, 20892, USA.
| | - Jon Weingart
- School of Medicine, Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Edjah K Nduom
- Surgical Neurology Branch, NINDS/NIH, 10 Center Drive, 3D20, Bethesda, MD, 20814, USA
| | - Thura T Harfi
- David Heart & Lung Research Institute, The Ohio State University, 374 12th Avenue, Suite 200, Columbus, OH, 43210, USA
| | - Richard T George
- Heart and Vascular Institute, Johns Hopkins University, 600 N. Wolfe Street, Sheikh Zayed Tower, Baltimore, MD, 21287, USA
| | - Dorothea McAreavey
- Critical Care Medicine Department, Nuclear Cardiology Section, NIH Clinical Center, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Xiaobu Ye
- School of Medicine, Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Nicole M Anders
- Cancer Chemical and Structural Biology and Analytical Pharmacology Core Laboratory, Johns Hopkins University, Bunting-Blaustein Cancer Research Building I, 1650 Orleans Street, CRB1 Room 1M52, Baltimore, MD, 21231, USA
| | - Cody Peer
- Clinical Pharmacology, NCI/NIH, 10 Center Drive, 5A01, Bethesda, MD, 20814, USA
| | - William D Figg
- Clinical Pharmacology, NCI/NIH, 10 Center Drive, 5A01, Bethesda, MD, 20814, USA
| | - Mark Gilbert
- Neuro-Oncology Branch, NCI/NIH, 9030 Old Georgetown Rd, Building 82, Bethesda, MD, 20892, USA
| | - Michelle A Rudek
- Cancer Chemical and Structural Biology and Analytical Pharmacology Core Laboratory, Johns Hopkins University, Bunting-Blaustein Cancer Research Building I, 1650 Orleans Street, CRB1 Room 1M52, Baltimore, MD, 21231, USA
| | - Stuart A Grossman
- Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA
| |
Collapse
|
20
|
Huang W, Liang Y, Sang C, Mei C, Li X, Chen T. Therapeutic nanosystems co-deliver anticancer drugs and oncogene SiRNA to achieve synergetic precise cancer chemo-gene therapy. J Mater Chem B 2018; 6:3013-3022. [PMID: 32254336 DOI: 10.1039/c8tb00004b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein we design a therapeutic nanoplatform as carriers of oncogene siRNA and chemotherapeutics to achieve precise cancer therapy.
Collapse
Affiliation(s)
- Wei Huang
- The First Affiliated Hospital
- Jinan University
- Guangzhou 510632
- China
- Department of Chemistry
| | - Yuanwei Liang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Chengcheng Sang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Chaoming Mei
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- The First Affiliated Hospital
- Jinan University
- Guangzhou 510632
- China
- Department of Chemistry
| |
Collapse
|
21
|
Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H. Nanotherapeutic systems for local treatment of brain tumors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28544801 DOI: 10.1002/wnan.1479] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
Malignant brain tumor, including the most common type glioblastoma, are histologically heterogeneous and invasive tumors known as the most devastating neoplasms with high morbidity and mortality. Despite multimodal treatment including surgery, radiotherapy, chemotherapy, and immunotherapy, the disease inevitably recurs and is fatal. This lack of curative options has motivated researchers to explore new treatment strategies and to develop new drug delivery systems (DDSs); however, the unique anatomical, physiological, and pathological features of brain tumors greatly limit the effectiveness of conventional chemotherapy. In this context, we review the recent progress in the development of nanoparticle-based DDSs aiming to address the key challenges in transporting sufficient amount of therapeutic agents into the brain tumor areas while minimizing the potential side effects. We first provide an overview of the standard treatments currently used in the clinic for the management of brain cancers, discussing the effectiveness and limitations of each therapy. We then provide an in-depth review of nanotherapeutic systems that are intended to bypass the blood-brain barrier, overcome multidrug resistance, infiltrate larger tumorous tissue areas, and/or release therapeutic agents in a controlled manner. WIREs Nanomed Nanobiotechnol 2018, 10:e1479. doi: 10.1002/wnan.1479 This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Rami Walid Chakroun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
22
|
Tosi U, Marnell CS, Chang R, Cho WC, Ting R, Maachani UB, Souweidane MM. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors. Int J Mol Sci 2017; 18:ijms18020351. [PMID: 28208698 PMCID: PMC5343886 DOI: 10.3390/ijms18020351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022] Open
Abstract
Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.
Collapse
Affiliation(s)
- Umberto Tosi
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Christopher S Marnell
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Raymond Chang
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| | - Richard Ting
- Department of Radiology, Molecular Imaging Innovations Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Uday B Maachani
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
23
|
Costa R, Carneiro B, Wainwright D, Santa-Maria C, Kumthekar P, Chae Y, Gradishar W, Cristofanilli M, Giles F. Developmental therapeutics for patients with breast cancer and central nervous system metastasis: current landscape and future perspectives. Ann Oncol 2017; 28:44-56. [PMID: 28177431 PMCID: PMC7360139 DOI: 10.1093/annonc/mdw532] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the second-leading cause of metastatic disease in the central nervous system (CNS). Recent advances in the biological understanding of breast cancer have facilitated an unprecedented increase of survival in a subset of patients presenting with metastatic breast cancer. Patients with HER2 positive (HER2+) or triple negative breast cancer are at highest risk of developing CNS metastasis, and typically experience a poor prognosis despite treatment with local and systemic therapies. Among the obstacles ahead in the realm of developmental therapeutics for breast cancer CNS metastasis is the improvement of our knowledge on its biological nuances and on the interaction of the blood–brain barrier with new compounds. This article reviews recent discoveries related to the underlying biology of breast cancer brain metastases, clinical progress to date and suggests rational approaches for investigational therapies.
Collapse
Affiliation(s)
- R. Costa
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - B.A. Carneiro
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - D.A. Wainwright
- Department of Pathology
- Department of Neurology
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - C.A. Santa-Maria
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | | | - Y.K. Chae
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - W.J. Gradishar
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - M. Cristofanilli
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - F.J. Giles
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| |
Collapse
|
24
|
Ngen EJ, Bar-Shir A, Jablonska A, Liu G, Song X, Ansari R, Bulte JWM, Janowski M, Pearl M, Walczak P, Gilad AA. Imaging the DNA Alkylator Melphalan by CEST MRI: An Advanced Approach to Theranostics. Mol Pharm 2016; 13:3043-53. [PMID: 27398883 DOI: 10.1021/acs.molpharmaceut.6b00130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brain tumors are among the most lethal types of tumors. Therapeutic response variability and failure in patients have been attributed to several factors, including inadequate drug delivery to tumors due to the blood-brain barrier (BBB). Consequently, drug delivery strategies are being developed for the local and targeted delivery of drugs to brain tumors. These drug delivery strategies could benefit from new approaches to monitor the delivery of drugs to tumors. Here, we evaluated the feasibility of imaging 4-[bis(2-chloroethyl)amino]-l-phenylalanine (melphalan), a clinically used DNA alkylating agent, using chemical exchange saturation transfer magnetic resonance imaging (CEST MRI), for theranostic applications. We evaluated the physicochemical parameters that affect melphalan's CEST contrast and demonstrated the feasibility of imaging the unmodified drug by saturating its exchangeable amine protons. Melphalan generated a CEST signal despite its reactivity in an aqueous milieu. The maximum CEST signal was observed at pH 6.2. This CEST contrast trend was then used to monitor therapeutic responses to melphalan in vitro. Upon cell death, the decrease in cellular pH from ∼7.4 to ∼6.4 caused an amplification of the melphalan CEST signal. This is contrary to what has been reported for other CEST contrast agents used for imaging cell death, where a decrease in the cellular pH following cell death results in a decrease in the CEST signal. Ultimately, this method could be used to noninvasively monitor melphalan delivery to brain tumors and also to validate therapeutic responses to melphalan clinically.
Collapse
Affiliation(s)
- Ethel J Ngen
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Amnon Bar-Shir
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Anna Jablonska
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Guanshu Liu
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute , Baltimore, Maryland 21205, United States
| | - Xiaolei Song
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute , Baltimore, Maryland 21205, United States
| | | | - Jeff W M Bulte
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute , Baltimore, Maryland 21205, United States
| | - Miroslaw Janowski
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,NeuroRepair Department, Mossakowski Medical Research Centre, PAS , 02106 Warsaw, Poland.,Department of Neurosurgery, Mossakowski Medical Research Centre, PAS , 02106 Warsaw, Poland
| | - Monica Pearl
- Division of Interventional Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Department of Radiology, Children's National Medical Center , Washington, D.C. 20010, United States
| | - Piotr Walczak
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Assaf A Gilad
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute , Baltimore, Maryland 21205, United States
| |
Collapse
|
25
|
Endovascular therapies for malignant gliomas: Challenges and the future. J Clin Neurosci 2016; 26:26-32. [DOI: 10.1016/j.jocn.2015.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/25/2015] [Indexed: 12/17/2022]
|
26
|
Convection-enhancement delivery of liposomal formulation of oxaliplatin shows less toxicity than oxaliplatin yet maintains a similar median survival time in F98 glioma-bearing rat model. Invest New Drugs 2016; 34:269-76. [PMID: 26961906 DOI: 10.1007/s10637-016-0340-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
Abstract
Results of clinical trials with oxaliplatin in treating glioblastoma are dismal. Previous works showed that intravenous (i.v.) delivery of oxaliplatin did not increase the survival of F98 glioma-bearing Fisher rats. Low accumulation of the drug in tumor cells is presumed to be responsible for the lack of antitumor effect. In the present study, convection-enhanced delivery (CED) was used to directly inject oxaliplatin in brain tumor implanted in rats. Since CED can led to severe toxicity, the liposomal formulation of oxaliplatin (Lipoxal™) was also assessed. The maximum tolerated dose (MTD) of oxaliplatin was 10 μg, while that of Lipoxal™ was increased by 3-times reaching 30 μg. Median survival time (MeST) of F98 glioma-bearing rats injected with 10 μg oxaliplatin by CED was 31 days, 7.5 days longer than untreated control (p = 0.0002); while CED of 30 μg Lipoxal™ reached the same result. Compared to previous study on i.v. delivery of these drugs, their injection by CED significantly increased their tumoral accumulations as well as MeSTs in the F98 glioma bearing rat model. The addition of radiotherapy (15 Gy) to CED of oxaliplatin or Lipoxal™ increased the MeST by 4.0 and 3.0 days, respectively. The timing of radiotherapy (4 h or 24 h after CED) produced similar results. However, the treatment was better tolerated when radiotherapy was performed 24 h after CED. In conclusion, a better tumoral accumulation was achieved when oxaliplatin and Lipoxal™ were injected by CED. The liposomal encapsulation of oxaliplatin reduced its toxic, while maintaining its antitumor potential.
Collapse
|
27
|
Kim B, Kim K, Im KH, Kim JH, Lee JH, Jeon P, Byun H. Multiparametric MR imaging of tumor response to intraarterial chemotherapy in orthotopic xenograft models of human metastatic brain tumor. J Neurooncol 2016; 127:243-51. [PMID: 26746691 DOI: 10.1007/s11060-015-2041-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/28/2015] [Indexed: 01/18/2023]
Abstract
The purpose of our study was to investigate the therapeutic efficacy of intraarterial (IA) chemotherapy via multiparametric magnetic resonance imaging (MRI) analysis in orthotopic mouse brain tumor models. Stereotactic-guided intracranial inoculation of MDA-MB-231 cells was performed in nude mice. Thirty tumor bearing mice were randomized into three groups, and each group received either IA docetaxel administration (n = 10), intravenous (IV) docetaxel administration (n = 10), or IA solvent injection (n = 10) as control. Treatment response was monitored by diffusion-weighted imaging and dynamic contrast enhanced-MRI obtained 1 day before and 8 days after therapy initiation. Imaging results were correlated with histopathology. In the results, IA chemotherapy showed a significant decrease in tumor volume (86.5 ± 15.6 %) compared to the IV chemotherapy (121.1 ± 39.6%) and control (126.2 ± 22.0%) 8 days after therapy (p < 0.05). Furthermore, IA chemotherapy resulted in a significant increase in mean tumor apparent diffusion coefficient (ADC) values (116.8 ± 44.9%); in contrary IV chemotherapy (66.6 ± 26.9%) and control (69.1 ± 29.5%) showed a significant decrease in ADC values corresponding to further tumor growth (p < 0.05). However, there was no significant difference in perfusion parameters including initial area under the curve, K(trans), K(ep), and V(e) between the groups (p > 0.05). Histopathology confirmed necrosis and necroptosis in the tumors after IA chemotherapy. In conclusion, IA chemotherapy may lead to effective inhibition of tumor cell proliferation and offer potential benefit of inducing higher degree of treatment response than IV chemotherapy.
Collapse
Affiliation(s)
- Byungjun Kim
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Keonha Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul, 135-710, Korea.
| | - Keun Ho Im
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul, 135-710, Korea
| | - Jae-Hoon Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul, 135-710, Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul, 135-710, Korea
| | - Pyoung Jeon
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul, 135-710, Korea
| | - Hongsik Byun
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul, 135-710, Korea
| |
Collapse
|
28
|
Ellis JA, Banu M, Hossain SS, Singh-Moon R, Lavine SD, Bruce JN, Joshi S. Reassessing the Role of Intra-Arterial Drug Delivery for Glioblastoma Multiforme Treatment. JOURNAL OF DRUG DELIVERY 2015; 2015:405735. [PMID: 26819758 PMCID: PMC4706947 DOI: 10.1155/2015/405735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/16/2015] [Indexed: 12/16/2022]
Abstract
Effective treatment for glioblastoma (GBM) will likely require targeted delivery of several specific pharmacological agents simultaneously. Intra-arterial (IA) delivery is one technique for targeting the tumor site with multiple agents. Although IA chemotherapy for glioblastoma (GBM) has been attempted since the 1950s, the predicted benefits remain unproven in clinical practice. This review focuses on innovative approaches to IA drug delivery in treating GBM. Guided by novel in vitro and in vivo optical measurements, newer pharmacokinetic models promise to better define the complex relationship between background cerebral blood flow and drug injection parameters. Advanced optical technologies and tracers, unique nanoparticles designs, new cellular targets, and rational drug formulations are continuously modifying the therapeutic landscape for GBM. Personalized treatment approaches are emerging; however, such tailored approaches will largely depend on effective drug delivery techniques and on the ability to simultaneously deliver multidrug regimens. These new paradigms for tumor-selective drug delivery herald dramatic improvements in the effectiveness of IA chemotherapy for GBM. Therefore, within this context of so-called "precision medicine," the role of IA delivery for GBM is thoroughly reassessed.
Collapse
Affiliation(s)
- Jason A. Ellis
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Matei Banu
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Shaolie S. Hossain
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX 77030, USA
| | - Rajinder Singh-Moon
- School of Engineering and Applied Science, Columbia University, New York, NY 10032, USA
| | - Sean D. Lavine
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Shailendra Joshi
- Department of Anesthesiology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
29
|
Hendricks BK, Cohen-Gadol AA, Miller JC. Novel delivery methods bypassing the blood-brain and blood-tumor barriers. Neurosurg Focus 2015; 38:E10. [PMID: 25727219 DOI: 10.3171/2015.1.focus14767] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor and carries a grave prognosis. Despite years of research investigating potentially new therapies for GBM, the median survival rate of individuals with this disease has remained fairly stagnant. Delivery of drugs to the tumor site is hampered by various barriers posed by the GBM pathological process and by the complex physiology of the blood-brain and blood-cerebrospinal fluid barriers. These anatomical and physiological barriers serve as a natural protection for the brain and preserve brain homeostasis, but they also have significantly limited the reach of intraparenchymal treatments in patients with GBM. In this article, the authors review the functional capabilities of the physical and physiological barriers that impede chemotherapy for GBM, with a specific focus on the pathological alterations of the blood-brain barrier (BBB) in this disease. They also provide an overview of current and future methods for circumventing these barriers in therapeutic interventions. Although ongoing research has yielded some potential options for future GBM therapies, delivery of chemotherapy medications across the BBB remains elusive and has limited the efficacy of these medications.
Collapse
Affiliation(s)
- Benjamin K Hendricks
- Goodman Campbell Brain and Spine, Indiana University Department of Neurological Surgery; and
| | | | | |
Collapse
|
30
|
Kozler P, Riljak V, Jandová K, Pokorný J. CT imaging and spontaneous behavior analysis after osmotic blood-brain barrier opening in Wistar rat. Physiol Res 2015; 63:S529-34. [PMID: 25669684 DOI: 10.33549/physiolres.932935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In our previous experiments we demonstrated that osmotic opening of the blood brain barrier (BBB) in rats by administration of mannitol into the internal carotid artery leads to cerebral edema. The aim of this study was to confirm objectively the development of brain edema and determine whether it affects spontaneous locomotor activity in rats (SLA). Brain edema was verified by computer tomography (CT) examination of the brain and SLA was observed during open field test. Twenty four adult male rats were divided into four groups of six: (1) control animals (C), (2) controls with anesthesia (CA), (3) controls with sham surgery (CS), (4) experimental - osmotic opening of the BBB (MA). Osmotic BBB disruption manifested by reducing the density of brain tissue (hypodensity), suggesting a higher water content in the brain tissue. SLA was compared between C, CA, CS and MA groups and between MA and CA groups. Significant difference was found only between the control group and MA group. In the first 30 min of the examination, rats after the mannitol administration revealed a marked limitation of spontaneous locomotor activity. Experimental results demonstrated reduction of spontaneous locomotor activity in rats with induced brain edema.
Collapse
Affiliation(s)
- P Kozler
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | |
Collapse
|
31
|
A murine model of targeted infusion for intracranial tumors. J Neurooncol 2015; 126:37-45. [PMID: 26376657 DOI: 10.1007/s11060-015-1942-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 09/12/2015] [Indexed: 10/23/2022]
Abstract
Historically, intra-arterial (IA) drug administration for malignant brain tumors including glioblastoma multiforme (GBM) was performed as an attempt to improve drug delivery. With the advent of percutaneous neuorovascular techniques and modern microcatheters, intracranial drug delivery is readily feasible; however, the question remains whether IA administration is safe and more effective compared to other delivery modalities such as intravenous (IV) or oral administrations. Preclinical large animal models allow for comparisons between treatment routes and to test novel agents, but can be expensive and difficult to generate large numbers and rapid results. Accordingly, we developed a murine model of IA drug delivery for GBM that is reproducible with clear readouts of tumor response and neurotoxicities. Herein, we describe a novel mouse model of IA drug delivery accessing the internal carotid artery to treat ipsilateral implanted GBM tumors that is consistent and reproducible with minimal experience. The intent of establishing this unique platform is to efficiently interrogate targeted anti-tumor agents that may be designed to take advantage of a directed, regional therapy approach for brain tumors.
Collapse
|
32
|
Intraarterial drug delivery for glioblastoma mutiforme. J Neurooncol 2015; 124:333-43. [DOI: 10.1007/s11060-015-1846-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/08/2015] [Indexed: 01/03/2023]
|
33
|
Garg T, Bhandari S, Rath G, Goyal AK. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J Drug Target 2015; 23:865-87. [PMID: 25835469 DOI: 10.3109/1061186x.2015.1029930] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain tumor is one of the most challenging diseases to treat. The major obstacle in the specific drug delivery to brain is blood-brain barrier (BBB). Mostly available anti-cancer drugs are large hydrophobic molecules which have limited permeability via BBB. Therefore, it is clear that the protective barriers confining the passage of the foreign particles into the brain are the main impediment for the brain drug delivery. Hence, the major challenge in drug development and delivery for the neurological diseases is to design non-invasive nanocarrier systems that can assist controlled and targeted drug delivery to the specific regions of the brain. In this review article, our major focus to treat brain tumor by study numerous strategies includes intracerebral implants, BBB disruption, intraventricular infusion, convection-enhanced delivery, intra-arterial drug delivery, intrathecal drug delivery, injection, catheters, pumps, microdialysis, RNA interference, antisense therapy, gene therapy, monoclonal/cationic antibodies conjugate, endogenous transporters, lipophilic analogues, prodrugs, efflux transporters, direct conjugation of antitumor drugs, direct targeting of liposomes, nanoparticles, solid-lipid nanoparticles, polymeric micelles, dendrimers and albumin-based drug carriers.
Collapse
Affiliation(s)
| | - Saurav Bhandari
- b Department of Quality Assurance , ISF College of Pharmacy , Moga , Punjab , India
| | | | | |
Collapse
|
34
|
Convection-enhancement delivery of platinum-based drugs and Lipoplatin(TM) to optimize the concomitant effect with radiotherapy in F98 glioma rat model. Invest New Drugs 2015; 33:555-63. [PMID: 25784204 DOI: 10.1007/s10637-015-0228-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
The prognosis for patients with glioblastoma remains poor with current treatments. Although platinum-based drugs are sometimes offered at relapse, their efficacy in this setting is still disputed. In this study, we use convection-enhanced delivery (CED) to deliver the platinum-based drugs (cisplatin, carboplatin, and Lipoplatin(TM) - liposomal formulation of cisplatin) directly into the tumor of F98 glioma-bearing rats that were subsequently treated with γ radiation (15 Gy). CED increased by factors varying between 17 and 111, the concentration of these platinum-based drugs in the brain tumor compared to intra-venous (i.v.) administration, and by 9- to 34-fold, when compared to intra-arterial (i.a.) administration. Furthermore, CED resulted in a better systemic tolerance to platinum drugs compared to their i.a. injection. Among the drugs tested, carboplatin showed the highest maximum tolerated dose (MTD). Treatment with carboplatin resulted in the best median survival time (MeST) (38.5 days), which was further increased by the addition of radiotherapy (54.0 days). Although the DNA-bound platinum adduct were higher at 4 h after CED than 24 h for carboplatin group, combination with radiotherapy led to similar improvement of median survival time. However, less toxicity was observed in animals irradiated 24 h after CED-based chemotherapy. In conclusion, CED increased the accumulation of platinum drugs in tumor, reduced the toxicity, and resulted in a higher median survival time. The best treatment was obtained in animals treated with carboplatin and irradiated 24 h later.
Collapse
|
35
|
van Tellingen O, Yetkin-Arik B, de Gooijer M, Wesseling P, Wurdinger T, de Vries H. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 2015; 19:1-12. [DOI: 10.1016/j.drup.2015.02.002] [Citation(s) in RCA: 438] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 12/23/2022]
|
36
|
|
37
|
Abstract
While traditional computed tomography (CT) and magnetic resonance (MR) imaging illustrate the structural morphology of brain pathology, newer, dynamic imaging techniques are able to show the movement of contrast throughout the brain parenchyma and across the blood-brain barrier (BBB). These data, in combination with pharmacokinetic models, can be used to investigate BBB permeability, which has wide-ranging applications in the diagnosis and management of central nervous system (CNS) tumors in children. In the first part of this paper, we review the technical principles underlying four imaging modalities used to evaluate BBB permeability: PET, dynamic CT, dynamic T1-weighted contrast-enhanced MR imaging, and dynamic T2-weighted susceptibility contrast MR. We describe the data that can be derived from each method, provide some caveats to data interpretation, and compare the advantages and disadvantages of the different techniques. In the second part of this paper, we review the clinical applications that have been reported with permeability imaging data, including diagnosing the nature of a lesion found on imaging (neoplastic versus non-neoplastic, tumor type, tumor grade, recurrence versus pseudoprogression), predicting the natural history of a tumor, monitoring angiogenesis and tracking response to anti-angiogenic agents, optimizing chemotherapy agent selection, and aiding in the development of new antineoplastic drugs and methods to increase local delivery of chemotherapeutics.
Collapse
Affiliation(s)
- Sandi Lam
- 1 Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA ; 2 Functional and Stereotactic Neurosurgery, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Yimo Lin
- 1 Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA ; 2 Functional and Stereotactic Neurosurgery, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Peter C Warnke
- 1 Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA ; 2 Functional and Stereotactic Neurosurgery, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
38
|
Intra-arterial carboplatin as a salvage strategy in the treatment of recurrent glioblastoma multiforme. J Neurooncol 2014; 119:397-403. [DOI: 10.1007/s11060-014-1504-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 06/07/2014] [Indexed: 12/24/2022]
|
39
|
Blanchette M, Tremblay L, Lepage M, Fortin D. Impact of drug size on brain tumor and brain parenchyma delivery after a blood-brain barrier disruption. J Cereb Blood Flow Metab 2014; 34:820-6. [PMID: 24517973 PMCID: PMC4013755 DOI: 10.1038/jcbfm.2014.14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/02/2014] [Indexed: 11/09/2022]
Abstract
Drug delivery to the brain is influenced by the blood-brain barrier (BBB) and blood-tumor barrier (BTB) to an extent that is still debated in neuro-oncology. In this paper, we studied the delivery across the BTB and the BBB of compounds with different molecular sizes in normal and glioma-bearing rats. Studies were performed at baseline as well as after an osmotic BBB disruption (BBBD) using dynamic contrast-enhanced magnetic resonance imaging and two T₁ contrast agents (CAs), Magnevist (743 Da) and Gadomer (17,000 Da). More specifically, we determined the time window for the BBB permeability, the distribution and we calculated the brain exposure to the CAs. A different pattern of accumulation and distribution at baseline as well as after a BBBD procedure was observed for both agents, which is consistent with their different molecular size and weight. Baseline tumor exposure was threefold higher for Magnevist compared with Gadomer, whereas postBBBD tumor exposure was twofold higher for Magnevist. Our study clearly showed that the time window and the extent of delivery across the intact, as well as permeabilized BTB and BBB are influenced by drug size.
Collapse
Affiliation(s)
- Marie Blanchette
- Département de médecine nucléaire et radiobiologie, Centre d'imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luc Tremblay
- Département de médecine nucléaire et radiobiologie, Centre d'imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martin Lepage
- Département de médecine nucléaire et radiobiologie, Centre d'imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - David Fortin
- Département de chirurgie, service de neurochirurgie et de neuro-oncologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
40
|
Roy LO, Poirier MB, Fortin D. Transforming growth factor-beta and its implication in the malignancy of gliomas. Target Oncol 2014; 10:1-14. [PMID: 24590691 DOI: 10.1007/s11523-014-0308-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/18/2014] [Indexed: 12/13/2022]
Abstract
Malignant gliomas are the most common type of primary malignant brain tumors. They are characterized by enhanced growing capabilities, neoangiogenic proliferation, and extensive infiltration of the brain parenchyma, which make their complete surgical resection impossible. Together with transient and refractory responses to standard therapy, these aggressive neoplasms are incurable and present a median survival of 12 to 14 months. Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine of which two of the three isoforms expressed in humans have been shown to be overexpressed proportionally to the histologic grade of glioma malignancy. The increase of chromosomal aberrations and genetic mutations observed in glioma cells turns TGF-β into an oncogene. For that reason, it plays critical roles in glioma progression through induction of several genes implicated in many carcinogenic processes such as proliferation, angiogenesis, and invasion. Consequently, investigators have begun developing innovative therapeutics targeting this growth factor or its signaling pathway in an attempt to hinder TGF-β's appalling effects in order to refine the treatment of malignant gliomas and improve their prognosis. In this paper, we extensively review the TGF-β-induced oncogenic pathways and discuss the diverse new molecules targeting this growth factor.
Collapse
Affiliation(s)
- Laurent-Olivier Roy
- Department of Pharmacology, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | | |
Collapse
|
41
|
Theodotou C, Shah AH, Hayes S, Bregy A, Johnson JN, Aziz-Sultan MA, Komotar RJ. The role of intra-arterial chemotherapy as an adjuvant treatment for glioblastoma. Br J Neurosurg 2014; 28:438-46. [DOI: 10.3109/02688697.2013.877122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Dervishi E, Aubry JF, Delattre JY, Boch AL. [Focused ultrasound therapy: current status and potential applications in neurosurgery]. Neurochirurgie 2013; 59:201-9. [PMID: 24210288 DOI: 10.1016/j.neuchi.2013.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 05/19/2013] [Accepted: 06/09/2013] [Indexed: 01/26/2023]
Abstract
High Intensity Focused Ultrasound (HIFU) therapy is an innovative approach for tissue ablation, based on high intensity focused ultrasound beams. At the focus, HIFU induces a temperature elevation and the tissue can be thermally destroyed. In fact, this approach has been tested in a number of clinical studies for the treatment of several tumors, primarily the prostate, uterine, breast, bone, liver, kidney and pancreas. For transcranial brain therapy, the skull bone is a major limitation, however, new adaptive techniques of phase correction for focusing ultrasound through the skull have recently been implemented by research systems, paving the way for HIFU therapy to become an interesting alternative to brain surgery and radiotherapy.
Collapse
Affiliation(s)
- E Dervishi
- Équipe de neuro-oncologie expérimentale, Inserm, UMRS 975, CNRS 7225, institut du cerveau et de la moelle épinière, groupe hospitalier La Pitié Salpêtrière-Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris, France.
| | | | | | | |
Collapse
|
43
|
Fraser JF, Hussain MS, Eskey C, Abruzzo T, Bulsara K, English J, Blackham K, Do HM, Prestigiacomo C, Jayaraman MV, Patsalides A, Kelly M, Sunshine JL, Meyers P. Reporting standards for endovascular chemotherapy of head, neck and CNS tumors. J Neurointerv Surg 2013; 5:396-9. [PMID: 23828325 DOI: 10.1136/neurintsurg-2013-010841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND The goal of this article is to provide expert consensus recommendations for reporting standards, terminology and definitions when reporting on neurointerventional chemotherapy administration for head and neck tumors. These criteria may be used to design clinical trials, to provide definitions for patient stratification and to permit robust analysis of published data. METHODS This publication represents a consensus document by the Society for Neurointerventional Surgery. A PubMed search was conducted and included articles published in 2002-2011, with the search strategy designed to identify all studies of intra-arterial chemotherapy for tumors of neck and head. Articles were evaluated for evidence class, and recommendations were made using guidelines for evidence-based medicine proposed by a joint committee of the American Association of Neurological Surgeons and the Congress of Neurological Surgeons. Specifically, technical methods, outcome variables and reported complications were highlighted. RESULTS Thirty-five publications were included in the review. While most studies represent class III evidence, there was sufficient concordance to justify level 2 recommendations regarding technical methods for administration of intra-arterial chemotherapy. The data also support level 2 recommendations regarding reporting of particular outcome variables subsumed within broad categories entitled 'Procedure-related', 'Disease control' and 'Survival'. The data support recommendations for the reporting of access site-related, neurologic, head and neck, ocular, hematologic and systemic complications, and also complications related to the percutaneous access site. CONCLUSIONS Intra-arterial chemotherapy is a growing field in interventional neuroradiology. It is important to adopt uniform technical and reporting standards that will allow cross-publication comparisons and facilitate homogeneous practice standards. Published data support such standards, which are vital for the consistent evaluation of future published research.
Collapse
Affiliation(s)
- Justin F Fraser
- Department of Neurological Surgery, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chacko AM, Li C, Pryma DA, Brem S, Coukos G, Muzykantov V. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: crossing the blood-brain barrier divide. Expert Opin Drug Deliv 2013; 10:907-26. [PMID: 23751126 PMCID: PMC4089357 DOI: 10.1517/17425247.2013.808184] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Brain tumors are inherently difficult to treat in large part due to the cellular blood-brain barriers (BBBs) that limit the delivery of therapeutics to the tumor tissue from the systemic circulation. Virtually no large molecules, including antibody-based proteins, can penetrate the BBB. With antibodies fast becoming attractive ligands for highly specific molecular targeting to tumor antigens, a variety of methods are being investigated to enhance the access of these agents to intracranial tumors for imaging or therapeutic applications. AREAS COVERED This review describes the characteristics of the BBB and the vasculature in brain tumors, described as the blood-brain tumor barrier (BBTB). Antibodies targeted to molecular markers of central nervous system (CNS) tumors will be highlighted, and current strategies for enhancing the delivery of antibodies across these cellular barriers into the brain parenchyma to the tumor will be discussed. Noninvasive imaging approaches to assess BBB/BBTB permeability and/or antibody targeting will be presented as a means of guiding the optimal delivery of targeted agents to brain tumors. EXPERT OPINION Preclinical and clinical studies highlight the potential of several approaches in increasing brain tumor delivery across the BBB divide. However, each carries its own risks and challenges. There is tremendous potential in using neuroimaging strategies to assist in understanding and defining the challenges to translating and optimizing molecularly targeted antibody delivery to CNS tumors to improve clinical outcomes.
Collapse
Affiliation(s)
- Ann-Marie Chacko
- University of Pennsylvania, Perelman School of Medicine, Nuclear Medicine & Clinical Molecular Imaging, Department of Radiology, 231 S. 34 Street, Room 288, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
45
|
Khaitan D, Ningaraj NS. Targeting potassium channels for increasing delivery of imaging agents and therapeutics to brain tumors. Front Pharmacol 2013; 4:62. [PMID: 23755013 PMCID: PMC3665941 DOI: 10.3389/fphar.2013.00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/22/2013] [Indexed: 11/13/2022] Open
Abstract
Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/capillaries that form the blood-brain barrier not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB). Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells (ECs). In this study, we validated the non-invasive and clinically relevant dynamic contrast enhancing-magnetic resonance imaging (DCE-MRI) method with invasive, clinically irrelevant but highly accurate quantitative autoradiography method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa) channel activator NS-1619. Our results show that human gliomas and brain tumor ECs that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents' delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.
Collapse
Affiliation(s)
- Divya Khaitan
- Department of Molecular Oncology Research, Scintilla Academy for Applied Sciences' Research and Education Bangalore, Karnataka, India
| | | |
Collapse
|
46
|
Yohay K, Wolf DS, Aronson LJ, Duus M, Melhem ER, Cohen KJ. Vascular distribution of glioblastoma multiforme at diagnosis. Interv Neuroradiol 2013; 19:127-31. [PMID: 23472735 DOI: 10.1177/159101991301900119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 11/25/2012] [Indexed: 11/17/2022] Open
Abstract
Treatment of high-grade gliomas with selective intra-arterial (IA) administration of chemotherapies has been proposed, and utilized as a therapeutic modality. This approach offers the conceptual benefit of providing maximal delivery of the agent to the tumor bed, while potentially reducing systemic exposure to the agent. This retrospective study was designed to determine the vascular distribution of glioblastoma multiforme (GBM) at the time of diagnosis in an effort to determine what proportion of patients would likely be candidates for this approach. The preoperative MRI scans of 50 patients with GBM were analyzed and compared to published normative data of intracranial vascular distribution. Vascular distribution was determined by analyzing post-gadolinium axial and coronal T1 images, axial T2 images, and axial T2 images with an additional 1 cm margin (T2 + 1 cm) added in all dimensions. T1 analysis demonstrated 60% of tumors in a single vascular distribution. T2 analysis of these tumors reduced that number to 34%. When the T2 + 1 cm margin was utilized, only 6% of tumors were in a single vascular distribution. 66% of tumors were limited to the anterior circulation on T1 imaging but only 34% on T2 + 1 cm imaging. 30% of tumors were also within the distribution of the anterior choroidal artery. These findings suggest that the use of selective IA administration of agents is necessarily limited to a fraction of presenting patients or will require administration via multiple cerebral arteries.
Collapse
Affiliation(s)
- K Yohay
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
BACKGROUND The impact of malignant glioma resection on survival is still a matter of controversy. The lack of well-designed prospective studies as well as control of all factors in retrospective studies plays an important role in this debate. Amongst some of these uncontrolled factors, are the inclusion of different histological grades, the lack of objective methods to estimate the extent of resection and unspecified delays in post-operative imaging. METHODS We retrospectively reviewed 126 consecutive patients with glioblastoma, operated on by the senior authors at the Centre Hospitalier Universitaire de Sherbrooke, who met the following criteria: >18 years of age, newly diagnosed glioblastoma, pre-operative magnetic resonance imaging (MRI) within 2 weeks prior to surgery, and a post-operative MRI within 72 hours after surgery. Extent of tumour resection was calculated using pre and post-operative tumour delimitation on gadolinium-enhanced T1 MRI in a volumetric analysis. RESULTS Applying stringent specific inclusion criteria, 126 patients were retained in the analysis. The median overall survival was 271 days and the median extent of resection was 65%. Patients with more than 90% of tumour resection had a significantly better outcome, improving median survival from 225 to 519 days (P=0.006). Other factors that significantly improved survival were the use of radiotherapy, the number of regimens and type of chemotherapy used. CONCLUSION A more aggressive approach combining maximal safe resection and use of salvage chemotherapy seems to confer a survival advantage for glioblastoma patients.
Collapse
|
48
|
Allhenn D, Boushehri MAS, Lamprecht A. Drug delivery strategies for the treatment of malignant gliomas. Int J Pharm 2012; 436:299-310. [PMID: 22721856 DOI: 10.1016/j.ijpharm.2012.06.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 01/07/2023]
Abstract
As primary brain tumors, malignant gliomas are known to be one of the most insidious types of brain cancer afflicting the humans. The current standard strategy for the treatment of malignant gliomas includes the surgical resection of the tumor when possible, followed by a combination of radiotherapy and/or a certain chemotherapeutic protocol. However, due to the short mean survival, frequent recurrences, and poor prognosis associated with the tumors, new therapeutic strategies are investigated consecutively. These novel drug delivery approaches can be subdivided as systemic and local drug administration. This review focuses on localized drug delivery strategies for the treatment of malignant gliomas, including the injections, infusions, trans-nasal delivery systems, convection enhanced delivery (CED) systems, and various types of polymeric implants. Furthermore, systemic strategies to increase the drug penetration into the brain, such as temporary disruption of the blood brain barrier (BBB), chemical modification of the available therapeutic substances, and utilization of endogenous transport systems will be briefly discussed.
Collapse
Affiliation(s)
- Daniela Allhenn
- Department of Pharm. Technology, Institute of Pharmacy, University of Bonn, Germany.
| | | | | |
Collapse
|
49
|
Desmarais G, Fortin D, Bujold R, Wagner R, Mathieu D, Paquette B. Infiltration of glioma cells in brain parenchyma stimulated by radiation in the F98/Fischer rat model. Int J Radiat Biol 2012; 88:565-74. [DOI: 10.3109/09553002.2012.692495] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Blanchette M, Michaud K, Fortin D. A new method of quantitatively assessing the opening of the blood–brain barrier in murine animal models. J Neurosci Methods 2012; 207:125-9. [DOI: 10.1016/j.jneumeth.2012.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 11/30/2022]
|