1
|
Chai Z, Zhu C, Wang X, Zheng Y, Han F, Xie Q, Liu C. PADI3 inhibits epithelial-mesenchymal transition by targeting CKS1-induced signal transduction in colon cancer. J Cancer Res Ther 2024; 20:1323-1333. [PMID: 39206995 DOI: 10.4103/jcrt.jcrt_558_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/03/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Protein arginine deiminase 3 (PADI3) is involved in various biological processes of human disease. PADI3 has recently received increasing attention due to its role in tumorigenesis. In a previous study, we found that PADI3 plays a tumor suppressor role in colon cancer by inducing cell cycle arrest, but its critical role and mechanism in cancer metastasis remain obscure. In this study, we fully studied the role of PADI3 in colon cancer cell metastasis. METHODS The expression levels of related proteins were detected by Western blotting, and Transwell and wound healing assays were used to examine the cell migration ability. Flow cytometry was used to measure and exclude cell apoptosis-affected cell migration. Both overexpression and rescue experiments were employed to elucidate the molecular mechanism of CKS1 in colon cancer cells. RESULTS The expression levels of PADI3 and CKS1 are negatively related, and PADI3 can promote CKS1 degradation in a ubiquitin-dependent manner. PADI3 can suppress colon cancer cell migration and reduce the wound healing speed by inhibiting CKS1 expression. The molecular mechanism showed that CKS1 can promote EMT by increasing Snail and N-cadherin expression and suppressing E-cadherin expression. PADI3, as a suppressor of CKS1, can block the process of EMT by impairing CKS1-induced Snail upregulation and E-cadherin downregulation; however, the expression of N-cadherin cannot be rescued. CONCLUSIONS CKS1 promotes EMT in colon cancer by regulating Snail/E-cadherin expression, and this effect can be reversed by PADI3 via the promotion of CKS1 degradation in a ubiquitylation-dependent manner.
Collapse
Affiliation(s)
- Zhengbin Chai
- Translational Research Laboratory for Stem Cell and Traditional Chinese Medicine, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, People's Republic of China
| | - Changhui Zhu
- Department of Biochemistry and Molecular Biology, Shandong Provincial Qianfoshan Hospital, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Xiwei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Yingying Zheng
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Fabin Han
- Translational Research Laboratory for Stem Cell and Traditional Chinese Medicine, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Qi Xie
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Chunyan Liu
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
| |
Collapse
|
2
|
Cyclin-dependent kinases as potential targets for colorectal cancer: past, present and future. Future Med Chem 2022; 14:1087-1105. [PMID: 35703127 DOI: 10.4155/fmc-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is a common cancer in the world and its prevalence is increasing in developing countries. Deregulated cell cycle traverse is a hallmark of malignant transformation and is often observed in CRC as a result of imprecise activity of cell cycle regulatory components, viz. cyclins and cyclin-dependent kinases (CDKs). Apart from cell cycle regulation, some CDKs also regulate processes such as transcription and have also been shown to be involved in colorectal carcinogenesis. This article aims to review cyclin-dependent kinases as potential targets for CRC. Furthermore, therapeutic candidates to target CDKs are also discussed.
Collapse
|
3
|
Baffi TR, Cohen-Katsenelson K, Newton AC. PHLPPing the Script: Emerging Roles of PHLPP Phosphatases in Cell Signaling. Annu Rev Pharmacol Toxicol 2021; 61:723-743. [PMID: 32997603 PMCID: PMC11003498 DOI: 10.1146/annurev-pharmtox-031820-122108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whereas protein kinases have been successfully targeted for a variety of diseases, protein phosphatases remain an underutilized therapeutic target, in part because of incomplete characterization of their effects on signaling networks. The pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) is a relatively new player in the cell signaling field, and new roles in controlling the balance among cell survival, proliferation, and apoptosis are being increasingly identified. Originally characterized for its tumor-suppressive function in deactivating the prosurvival kinase Akt, PHLPP may have an opposing role in promoting survival, as recent evidence suggests. Additionally, identification of the transcription factor STAT1 as a substrate unveils a role for PHLPP as a critical mediator of transcriptional programs in cancer and the inflammatory response. This review summarizes the current knowledge of PHLPP as both a tumor suppressor and an oncogene and highlights emerging functions in regulating gene expression and the immune system. Understanding the context-dependent functions of PHLPP is essential for appropriate therapeutic intervention.
Collapse
Affiliation(s)
- Timothy R Baffi
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA;
| | - Ksenya Cohen-Katsenelson
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA;
| | - Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA;
| |
Collapse
|
4
|
Ubiquitin-proteasome system (UPS) as a target for anticancer treatment. Arch Pharm Res 2020; 43:1144-1161. [PMID: 33165832 PMCID: PMC7651821 DOI: 10.1007/s12272-020-01281-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
The ubiquitin-proteasome system (UPS) plays an important role in the cellular processes for protein quality control and homeostasis. Dysregulation of the UPS has been implicated in numerous diseases, including cancer. Indeed, components of UPS are frequently mutated or abnormally expressed in various cancers. Since Bortezomib, a proteasome inhibitor, received FDA approval for the treatment of multiple myeloma and mantle cell lymphoma, increasing numbers of researchers have been seeking drugs targeting the UPS as a cancer therapeutic strategy. Here, we introduce the essential component of UPS, including ubiquitinating enzymes, deubiquitinating enzymes and 26S proteasome, and we summarize their targets and mechanisms that are crucial for tumorigenesis. In addition, we briefly discuss some UPS inhibitors, which are currently in clinical trials as cancer therapeutics.
Collapse
|
5
|
Yumimoto K, Yamauchi Y, Nakayama KI. F-Box Proteins and Cancer. Cancers (Basel) 2020; 12:cancers12051249. [PMID: 32429232 PMCID: PMC7281081 DOI: 10.3390/cancers12051249] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Controlled protein degradation is essential for the operation of a variety of cellular processes including cell division, growth, and differentiation. Identification of the relations between ubiquitin ligases and their substrates is key to understanding the molecular basis of cancer development and to the discovery of novel targets for cancer therapeutics. F-box proteins function as the substrate recognition subunits of S-phase kinase-associated protein 1 (SKP1)−Cullin1 (CUL1)−F-box protein (SCF) ubiquitin ligase complexes. Here, we summarize the roles of specific F-box proteins that have been shown to function as tumor promoters or suppressors. We also highlight proto-oncoproteins that are targeted for ubiquitylation by multiple F-box proteins, and discuss how these F-box proteins are deployed to regulate their cognate substrates in various situations.
Collapse
|
6
|
Asmamaw MD, Liu Y, Zheng YC, Shi XJ, Liu HM. Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev 2020; 40:1920-1949. [PMID: 32391596 DOI: 10.1002/med.21675] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a complex process that regulates protein stability and activity by the sequential actions of E1, E2 and E3 enzymes to influence diverse aspects of eukaryotic cells. However, due to the diversity of proteins in cells, substrate selection is a highly critical part of the process. As a key player in UPS, E3 ubiquitin ligases recruit substrates for ubiquitination specifically. Among them, RING E3 ubiquitin ligases which are the most abundant E3 ubiquitin ligases contribute to diverse cellular processes. The multisubunit cullin-RING ligases (CRLs) are the largest family of RING E3 ubiquitin ligases with tremendous plasticity in substrate specificity and regulate a vast array of cellular functions. The F-box protein Skp2 is a component of CRL1 (the prototype of CRLs) which is expressed in many tissues and participates in multiple cellular functions such as cell proliferation, metabolism, and tumorigenesis by contributing to the ubiquitination and subsequent degradation of several specific tumor suppressors. Most importantly, Skp2 plays a pivotal role in a plethora of cancer-associated signaling pathways. It enhances cell growth, accelerates cell cycle progression, promotes migration and invasion, and inhibits cell apoptosis among others. Hence, targeting Skp2 may represent a novel and attractive strategy for the treatment of different human cancers overexpressing this oncogene. In this review article, we summarized the known roles of Skp2 both in health and disease states in relation to the UPS.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Ying Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Xiao-Jing Shi
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Chai Z, Wang L, Zheng Y, Liang N, Wang X, Zheng Y, Zhang Z, Zhao C, Zhu T, Liu C. PADI3 plays an antitumor role via the Hsp90/CKS1 pathway in colon cancer. Cancer Cell Int 2019; 19:277. [PMID: 31708688 PMCID: PMC6833139 DOI: 10.1186/s12935-019-0999-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND CKS1 is highly expressed in colon cancer tissues, and is essential for cancer cell proliferation. The downstream molecular mechanism of CKS1 has been fully studied, but the upstream regulatory mechanism of it is still unclear. Earlier research found that PADI3 plays its anti-tumor roles via suppress cell proliferation, in this study, we found that the expression pattern of PADI3 and CKS1 are negatively correlated in colon cancer tissues, and overexpression of PADI3 can partly reverse CKS1 induced cancer cell proliferation. However, the regulatory mechanism of PADI3 and CKS1 in the tumorigenesis of colon cancer is still unclear and need to do further research. METHODS Western blot and real-time PCR were used to detect the expression levels of genes. CCK-8 and colony formation assays were used to examine cell proliferation and colony formation ability. Overexpression and rescue experiments were used to study the molecular mechanism of CKS1 in colon cancer cells, BALB/c nude mice were used to study the function of CKS1 in vivo. RESULTS CKS1 is highly expressed in colon cancer tissues, and the overexpression of CKS1 promotes cell proliferation and colony formation in both HCT116 (originating from primary colon cancer) and SW620 (originating from metastatic tumor nodules of colon cancer) cells. CKS1-expressing HCT116 cells produced larger tumors than the control cells. The expression pattern of PADI3 and CKS1 are negatively correlation in clinical samples of colon cancer, further study indicates that PADI3 can significantly decrease Hsp90 and CKS1 expression, and Hsp90 is essential for PADI3 to downregulate CKS1expression in colon cancer cells. CONCLUSIONS PADI3 exerts its antitumor activity by inhibiting Hsp90 and CKS1 expression, and Hsp90 is essential for PADI3 to suppress CKS1 expression.
Collapse
Affiliation(s)
- Zhengbin Chai
- Department of Laboratory Medicine, Jinan Infectious Disease Hospital, Jingshi Road 22029, Jinan, 250021 Shandong People’s Republic of China
| | - Li Wang
- Department of Obstetrics, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Yabing Zheng
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Na Liang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Xiwei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Yingying Zheng
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Zhiwei Zhang
- Department of Obstetrics, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Chuanxi Zhao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250014 China
| | - Tingting Zhu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250014 China
| | - Chunyan Liu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| |
Collapse
|
8
|
Oi N, Yamamoto H, Langfald A, Bai R, Lee MH, Bode AM, Dong Z. LTA4H regulates cell cycle and skin carcinogenesis. Carcinogenesis 2017; 38:728-737. [PMID: 28575166 PMCID: PMC6248358 DOI: 10.1093/carcin/bgx049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/11/2017] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
Leukotriene A4 hydrolase (LTA4H), a bifunctional zinc metallo-enzyme, is reportedly overexpressed in several human cancers. Our group has focused on LTA4H as a potential target for cancer prevention and/or therapy. In the present study, we report that LTA4H is a key regulator of cell cycle at the G0/G1 phase acting by negatively regulating p27 expression in skin cancer. We found that LTA4H is overexpressed in human skin cancer tissue. Knocking out LTA4H significantly reduced skin cancer development in the 7,12-dimethylbenz(a)anthracene (DMBA)-initiated/12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted two-stage skin cancer mouse model. LTA4H depletion dramatically decreased anchorage-dependent and -independent skin cancer cell growth by inducing cell cycle arrest at the G0/G1 phase. Moreover, our findings showed that depletion of LTA4H enhanced p27 protein stability, which was associated with decreased phosphorylation of CDK2 at Thr160 and inhibition of the CDK2/cyclin E complex, resulting in down-regulated p27 ubiquitination. These findings indicate that LTA4H is critical for skin carcinogenesis and is an important mediator of cell cycle and the data begin to clarify the mechanisms of LTA4H's role in cancer development.
Collapse
Affiliation(s)
- Naomi Oi
- The Hormel Institute, University of Minnesota, 801 16th Ave. NE, Austin, MN 55912, USA
| | - Hiroyuki Yamamoto
- The Hormel Institute, University of Minnesota, 801 16th Ave. NE, Austin, MN 55912, USA
| | - Alyssa Langfald
- The Hormel Institute, University of Minnesota, 801 16th Ave. NE, Austin, MN 55912, USA
| | - Ruihua Bai
- The Hormel Institute, University of Minnesota, 801 16th Ave. NE, Austin, MN 55912, USA
| | - Mee-Hyun Lee
- The Hormel Institute, University of Minnesota, 801 16th Ave. NE, Austin, MN 55912, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Ave. NE, Austin, MN 55912, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801 16th Ave. NE, Austin, MN 55912, USA
| |
Collapse
|
9
|
Xu L, Fan S, Zhao J, Zhou P, Chu S, Luo J, Wen Q, Chen L, Wen S, Wang L, Shi L. Increased expression of Cks1 protein is associated with lymph node metastasis and poor prognosis in nasopharyngeal carcinoma. Diagn Pathol 2017; 12:2. [PMID: 28061788 PMCID: PMC5219755 DOI: 10.1186/s13000-016-0589-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Background The Cks1 protein is an essential factor in regulating cell cycle by mediating the ubiquitination of CDK inhibitor p27kip1. It has been reported that aberrant expression of Cks1 and p27kip1 proteins was found in various tumors and related to initiation and progression of carcinomas. However, the potential roles which Cks1 and p27KIP1 proteins play in NPC remain unclear. This study aims to examine the expression status of Cks1 and p27kip1 and their possible prognostic significance in NPC. Methods Paraffin-embedded specimens with NPC (n = 168) and non-tumor nasopharyngeal tissues (n = 49) were analyzed by IHC. Results Expression of Cks1 increased in NPC tissues compared with non-tumor nasopharyngeal tissues (P < 0.05), whereas p27kip1 protein frequently expressed in non-tumor nasopharyngeal tissues compared with NPC tissues (P < 0.05). There was a significant reverse correlation between Cks1 and p27kip1 protein expression in NPC (r = −0.189, P < 0.05).In addition, Kaplan-Meier survival curve showed that there was a significant tendency of shorter overall survival (OS) in NPC patients with Cks1 positive expression compared to negative ones, especially in patients with lymph node metastasis (P < 0.001, respectively). But there was no significance between p27kip1 expression and survival viability of NPC patients. Multivariate Cox regression analysis further identified increased expression of Cks1 was the independent poor prognostic factor for NPC (p = 0.13). Conclusion Our research found expression of Cks1 increased and was inverse to the expression of p27KIP1. High expression of Cks1 was significantly associated with lymph node metastasis and survival status in NPC. In addition, the abnormally high level of Cks1 protein was proved to be an independent poor prognostic factor in NPC. These results may provide novel clue for NPC therapy method. Electronic supplementary material The online version of this article (doi:10.1186/s13000-016-0589-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lina Xu
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Jin Zhao
- Department of Clinical Laboratory, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Peng Zhou
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Shuzhou Chu
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Lingjiao Chen
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Sailan Wen
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Li Wang
- Department of Chest Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China.
| |
Collapse
|
10
|
Zhang W, Cao L, Sun Z, Xu J, Tang L, Chen W, Luo J, Yang F, Wang Y, Guan X. Skp2 is over-expressed in breast cancer and promotes breast cancer cell proliferation. Cell Cycle 2016; 15:1344-51. [PMID: 27111245 DOI: 10.1080/15384101.2016.1160986] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The F box protein Skp2 is oncogenic. Skp2 and Skp2B, an isoform of Skp2 are overexpressed in breast cancer. However, little is known regarding the mechanism by which Skp2B promotes the occurrence and development of breast cancer. Here, we determined the expression and clinical outcomes of Skp2 in breast cancer samples and cell lines using breast cancer database, and investigated the role of Skp2 and Skp2B in breast cancer cell growth, apoptosis and cell cycle arrest. We obtained Skp2 is significantly overexpressed in breast cancer samples and cell lines, and high Skp2 expression positively correlated with poor prognosis of breast cancer. Both Skp2 and Skp2B could promote breast cancer cell proliferation, inhibit cell apoptosis, change the cell cycle distribution and induce the increased S phase cells and therefore induce cell proliferation in breast cancer cells. Moreover, the 2 isoforms could both suppress PIG3 expression via independent pathways in the breast cancer cells. Skp2 suppressed p53 and inhibited PIG3-induced apoptosis, while Skp2B attenuated the function of PIG3 by inhibiting PHB. Our results indicate that Skp2 and Skp2B induce breast cancer cell development and progression, making Skp2 and Skp2B potential molecular targets for breast cancer therapy.
Collapse
Affiliation(s)
- Wenwen Zhang
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Lulu Cao
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Zijia Sun
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Jing Xu
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Lin Tang
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Weiwei Chen
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Jiayan Luo
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Fang Yang
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Yucai Wang
- b Department of Medicine ; Rutgers New Jersey Medical School , Newark , NJ , USA
| | - Xiaoxiang Guan
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China.,c Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Bian B, Mongrain S, Cagnol S, Langlois MJ, Boulanger J, Bernatchez G, Carrier JC, Boudreau F, Rivard N. Cathepsin B promotes colorectal tumorigenesis, cell invasion, and metastasis. Mol Carcinog 2015; 55:671-87. [PMID: 25808857 PMCID: PMC4832390 DOI: 10.1002/mc.22312] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/05/2015] [Accepted: 02/21/2015] [Indexed: 12/14/2022]
Abstract
Cathepsin B is a cysteine proteinase that primarily functions as an endopeptidase within endolysosomal compartments in normal cells. However, during tumoral expansion, the regulation of cathepsin B can be altered at multiple levels, thereby resulting in its overexpression and export outside of the cell. This may suggest a possible role of cathepsin B in alterations leading to cancer progression. The aim of this study was to determine the contribution of intracellular and extracellular cathepsin B in growth, tumorigenesis, and invasion of colorectal cancer (CRC) cells. Results show that mRNA and activated levels of cathepsin B were both increased in human adenomas and in CRCs of all stages. Treatment of CRC cells with the highly selective and non‐permeant cathepsin B inhibitor Ca074 revealed that extracellular cathepsin B actively contributed to the invasiveness of human CRC cells while not essential for their growth in soft agar. Cathepsin B silencing by RNAi in human CRC cells inhibited their growth in soft agar, as well as their invasion capacity, tumoral expansion, and metastatic spread in immunodeficient mice. Higher levels of the cell cycle inhibitor p27Kip1 were observed in cathepsin B‐deficient tumors as well as an increase in cyclin B1. Finally, cathepsin B colocalized with p27Kip1 within the lysosomes and efficiently degraded the inhibitor. In conclusion, the present data demonstrate that cathepsin B is a significant factor in colorectal tumor development, invasion, and metastatic spreading and may, therefore, represent a potential pharmacological target for colorectal tumor therapy. © 2015 The Authors. Molecular Carcinogenesis, published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benjamin Bian
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sébastien Mongrain
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sébastien Cagnol
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Josée Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jim Boulanger
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gérald Bernatchez
- Gastroenterology Service, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julie C Carrier
- Gastroenterology Service, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François Boudreau
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nathalie Rivard
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
12
|
GONG JIAN, HUO JIRONG. New insights into the mechanism of F-box proteins in colorectal cancer (Review). Oncol Rep 2015; 33:2113-20. [DOI: 10.3892/or.2015.3823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/10/2015] [Indexed: 11/05/2022] Open
|
13
|
Cks1 proteasomal degradation is induced by inhibiting Hsp90-mediated chaperoning in cancer cells. Cancer Chemother Pharmacol 2014; 75:411-20. [PMID: 25544127 DOI: 10.1007/s00280-014-2666-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/22/2014] [Indexed: 12/20/2022]
Abstract
PURPOSE Cks1, a conformationally heterogenous 9 kDa protein, is markedly overexpressed in cancer cells and contributes to tumor development. Cks1 is an essential component of the SCF-Skp2 ubiquitin ligase complex that targets the Cdk inhibitors p27(Kip1) and p21(Cip1). Cks1 is known to interact with the Hsp90-Cdc37 chaperone machinery, although whether this facilitates its conformational maturation and stability is not known. To test whether abrogating the chaperone function of Hsp90 could destabilize Cks1, we examined the effects of treating different cancer cell lines with the benzoquinone ansamycin 17-allylamino geldanamycin (17-AAG), a compound that selectively binds Hsp90 and potently inhibits its ATP-dependent chaperone activity. METHODS The effect of Hsp90 inhibition using 17-AAG on Cks1 protein and associated cell cycle proteins including Skp2, p27(Kip1), p21(Cip1), and Cdk1 in cancer cells was determined by Western blotting. Ubiquitination analysis was carried out by transfecting cells with an HA-ubiquitin plasmid and specifically immunoprecipitating Cks1 to examine polyubiquitinated species. Flow cytometry was utilized to examine the effects of Hsp90 inhibition on cell cycle profiles. RESULTS Here, we demonstrate for the first time that inhibition of Hsp90 utilizing 17-AAG destabilizes Cks1 in cancer cells by promoting its ubiquitination and proteasomal degradation. 17-AAG-induced Cks1 depletion was accompanied by concomitant decreases in Skp2 and Cdk1. 17-AAG treatment also induced G2/M accumulation in MCF-7 breast carcinoma cells, and G1 accumulation in the colon carcinoma lines HCT116 and SW620. CONCLUSIONS We conclude that perturbing the Hsp90 pathway could provide a useful therapeutic strategy in tumors driven by Cks1 overexpression.
Collapse
|
14
|
Kim SJ, Lee HW, Gu Kang H, La SH, Choi IJ, Ro JY, Bresalier RS, Song J, Chun KH. Ablation of galectin-3 induces p27(KIP1)-dependent premature senescence without oncogenic stress. Cell Death Differ 2014; 21:1769-79. [PMID: 24971481 PMCID: PMC4211374 DOI: 10.1038/cdd.2014.88] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 12/20/2022] Open
Abstract
Premature senescence induced by oncogenic stimuli or tumor suppressor activation plays opposing roles in tumorigenesis. Here, we propose that galectin-3, a β-galactoside-binding lectin, regulates premature senescence without oncogenic stress. We detected premature senescence, decreased Skp2, and increased p27KIP1 expression in galectin-3 knockout MEFs and galectin-3-depleted gastric cancer cells. Interestingly, galectin-3 depletion did not affect other senescence inducers such as p14ARF, p16INK4A, and p21WAF1/CIP1, suggesting that galectin-3-regulated senescence is p27KIP1 dependent. We demonstrate that galectin-3 depletion decreases retinoblastoma protein (Rb) phosphorylation (Ser780, Ser807/811), cyclin D1 and CDK4 expression, and E2F1 transcriptional activation. Galectin-3 directly interacts with the cyclin D1/CDK4 complex and promotes hyperphosphorylation of Rb. It also blocks the inhibition of E2F1 transcription, thereby increasing the expression of Skp2 and reducing the stability of p27KIP1 to promote the proliferation of gastric cancer cells. Xenograft mice with galectin-3-depleted gastric cancer cells display tumor growth retardation that is reversed by Skp2 overexpression. Increased expression of galectin-3 is also associated with the advanced TNM (tumor, lymph node, metastasis) system, clinicopathological stage, and lymph node metastases. The probability of survival was significantly decreased in gastric cancer patients with galectin-3high p27KIP1-lowcells. Taken together, our results show that galectin-3 may accelerate gastric tumorigenesis by inhibiting premature senescence.
Collapse
Affiliation(s)
- S-J Kim
- 1] Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea [2] Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - H-W Lee
- 1] Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea [2] Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - H Gu Kang
- 1] Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea [2] Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - S-H La
- 1] Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea [2] Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Il Ju Choi
- Center for Gastric Cancer, National Cancer Center Research Institute, Goyang, Republic of Korea
| | - J Y Ro
- The Methodist Hospital, Department of Pathology and Genomic Medicine, Weill Medical College of Cornell University, Houston, TX, USA
| | - R S Bresalier
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - J Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - K-H Chun
- 1] Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea [2] Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
15
|
IL-1Ra selectively protects intestinal crypt epithelial cells, but not tumor cells, from chemotoxicity via p53-mediated upregulation of p21WAF1 and p27KIP1. Pharmacol Res 2014; 82:21-33. [DOI: 10.1016/j.phrs.2014.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 12/27/2022]
|
16
|
Rehman SK, Li SH, Wyszomierski SL, Wang Q, Li P, Sahin O, Xiao Y, Zhang S, Xiong Y, Yang J, Wang H, Guo H, Zhang JD, Medina D, Muller WJ, Yu D. 14-3-3ζ orchestrates mammary tumor onset and progression via miR-221-mediated cell proliferation. Cancer Res 2013; 74:363-373. [PMID: 24197133 DOI: 10.1158/0008-5472.can-13-2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
14-3-3ζ is overexpressed in more than 40% of breast cancers, but its pathophysiologic relevance to tumorigenesis has not been established. Here, we show that 14-3-3ζ overexpression is sufficient to induce tumorigenesis in a transgenic mouse model of breast cancer. MMTV-LTR promoter-driven HA-14-3-3ζ transgenic mice (MMTV-HA-14-3-3ζ) developed mammary tumors, whereas control mice did not. Whey acidic protein promoter-driven HA-14-3-3ζ transgenic mice (WAP-HA-14-3-3ζ) developed hyperplastic lesions and showed increased susceptibility to carcinogen-induced tumorigenesis. When crossed with MMTV-neu transgenic mice, 14-3-3ζ.neu transgenic mice exhibited accelerated mammary tumorigenesis and metastasis compared with MMTV-neu mice. Mechanistically, 14-3-3ζ overexpression enhanced MAPK/c-Jun signaling, leading to increased miR-221 transcription, which inhibited p27 CDKI translation and, consequently, promoted cell proliferation. Importantly, this 14-3-3ζ-miR-221-p27 proliferation axis is also functioning in breast tumors in patients and is associated with high-grade cancers. Taken together, our findings show that overexpression of 14-3-3ζ has a causal role in mammary tumorigenesis and progression, acting through miR-221 in cooperation with known oncogenic events to drive neoplastic cell proliferation.
Collapse
Affiliation(s)
- Sumaiyah K Rehman
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Cancer Biology Program, University of Texas Graduate School of Biomedical Sciences-Houston, TX 77030, USA
| | - Shau-Hsuan Li
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shannon L Wyszomierski
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingfei Wang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ozgur Sahin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siyuan Zhang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Xiong
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hai Wang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Guo
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jitao D Zhang
- Department of Computational Biology and Bioinformatics, F. Hoffmann-La-Roche AG, 4070 Basel, Switzerland
| | - Daniel Medina
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - William J Muller
- Molecular Oncology Group, McGill University Health Center, Montreal, Quebec, H3A 1A1, Canada
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Cancer Biology Program, University of Texas Graduate School of Biomedical Sciences-Houston, TX 77030, USA
| |
Collapse
|
17
|
Lv A, Li Z, Tian X, Guan X, Zhao M, Dong B, Hao C. SKP2 high expression, KIT exon 11 deletions, and gastrointestinal bleeding as predictors of poor prognosis in primary gastrointestinal stromal tumors. PLoS One 2013; 8:e62951. [PMID: 23690967 PMCID: PMC3656858 DOI: 10.1371/journal.pone.0062951] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/27/2013] [Indexed: 12/26/2022] Open
Abstract
Background and Aims Considering the indication of adjuvant therapy, the recurrence risk for primary gastrointestinal stromal tumor (GIST) after surgery needs to be accurately estimated. However, current risk stratification schemes may still have room for improvement. This study seeks to analyze prognostic factors for primary GISTs from 3 aspects, including clinicopathological parameters, immunohistochemical biomarkers, and gene mutational status, and attempts to find novel valuable factors predicting the malignancy potential of GISTs. Methods Retrospective data from 114 primary GIST patients after R0 resection were collected. Clinicopathological data was obtained from medical records and re-evaluated. Immunohistochemical analysis was performed using the Tissue Microarray method for Ki67, p16, p27, p53, SKP2, CD133, and actin. KIT gene exons 9, 11, 13, and 17 and PDGFRα gene exons 12 and 18 were tested for mutations using PCR. Results Univariate analysis revealed the following factors as poor prognostic indicators for relapse-free survival with a median follow-up of 50 months: male gender, gastrointestinal bleeding, mitotic index >5/50HPFs, tumor size >5 cm, non-gastric site, necrosis, epithelioid or mixed cell type, surrounding tissue invasion, Ki67>5%, p16>20%, p53 index >10, SKP2>10%, and KIT exon 11 deletion. Besides mitotic index, tumor size and site, SKP2 high expression (RR = 2.91, 95% CI: 1.41–5.99, P = 0.004) and KIT exon 11 deletion (RR = 2.73, 95% CI: 1.04–7.16, P = 0.041) were also independent risk factors in multivariate analysis, with gastrointestinal bleeding also showing a trend towards significance (RR = 1.88, 95% CI: 0.98–3.64, P = 0.059). In addition, gastrointestinal bleeding and SKP2 high expression showed a good ability to stratify high-risk patients further. Conclusion Our results show that gastrointestinal bleeding, SKP2 high expression, and KIT exon 11 deletions may be useful indicators of high recurrence risk for primary GIST patients.
Collapse
Affiliation(s)
- Ang Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Center laboratory, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Center laboratory, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
18
|
Khattar V, Thottassery JV. Cks1: Structure, Emerging Roles and Implications in Multiple Cancers. ACTA ACUST UNITED AC 2013; 4:1341-1354. [PMID: 24563807 PMCID: PMC3930463 DOI: 10.4236/jct.2013.48159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Deregulation of the cell cycle results in loss of normal control mechanisms that prevent aberrant cell proliferation and cancer progression. Regulation of the cell cycle is a highly complex process with many layers of control. One of these mechanisms involves timely degradation of CDK inhibitors (CKIs) like p27Kip1 by the ubiquitin proteasomal system (UPS). Cks1 is a 9 kDa protein which is frequently overexpressed in different tumor subtypes, and has pleiotropic roles in cell cycle progression, many of which remain to be fully characterized. One well characterized molecular role of Cks1 is that of an essential adaptor that regulates p27Kip1 abundance by facilitating its interaction with the SCF-Skp2 E3 ligase which appends ubiquitin to p27Kip1 and targets it for degradation through the UPS. In addition, emerging research has uncovered p27Kip1-independent roles of Cks1 which have provided crucial insights into how it may be involved in cancer progression. We review here the structural features of Cks1 and their functional implications, and also some recently identified Cks1 roles and their involvement in breast and other cancers.
Collapse
Affiliation(s)
| | - Jaideep V Thottassery
- Southern Research Institute, Birmingham, USA ; University of Alabama Comprehensive Cancer Center, Birmingham, USA
| |
Collapse
|
19
|
Miyai K, Yamamoto S, Iwaya K, Asano T, Tamai S, Tsuda H, Matsubara O. Altered expression of p27(Kip1) -interacting cell-cycle regulators in the adult testicular germ cell tumors: potential role in tumor development and histological progression. APMIS 2012; 120:890-900. [PMID: 23009113 DOI: 10.1111/j.1600-0463.2012.02919.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/11/2012] [Indexed: 12/27/2022]
Abstract
We examined the potential role of cell-cycle dysregulation in the development and histological progression of adult testicular germ cell tumors (TGCTs). Expressions of p27(Kip1) -interacting cell-cycle regulators (down-regulation of p27(Kip1) and overexpression of Skp2, Cks1, cyclin A, and cyclin E) and Ki-67 labeling index (LI) were immunohistochemically examined in histological components of 50 intratubular germ cell neoplasms, unclassified (IGCNUs); 74 seminomas; and 25 embryonal carcinomas, identified from 88 patients. Altered expression of p27(Kip1) , Skp2, Cks1, cyclin A, and cyclin E was observed in 20%, 12%, 16%, 10%, and 24% of IGCNUs; 26%, 36%, 27%, 89%, and 23% of seminomas; and 48%, 68%, 56%, 100%, and 60% of embryonal carcinomas, respectively. A significant difference in the frequency of Skp2 and cyclin A overexpression was observed between IGCNUs and seminomas. Significantly more frequent alterations of Skp2, Cks1, and cyclin E and p27(Kip1) were detected in embryonal carcinomas than in seminomas. Alterations of all cell-cycle regulators were significantly more frequent in embryonal carcinomas than in IGCNUs. The mean Ki-67 LI significantly increased from IGCNU (21.2%) through seminoma (34.7%) to embryonal carcinoma (54.2%). These results suggest that alterations of the p27(Kip1) -interacting cell-cycle regulators are common in TGCTs and may be involved in their histological progression.
Collapse
Affiliation(s)
- Kosuke Miyai
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Wang Z, Fukushima H, Inuzuka H, Wan L, Liu P, Gao D, Sarkar FH, Wei W. Skp2 is a promising therapeutic target in breast cancer. Front Oncol 2012; 1. [PMID: 22279619 PMCID: PMC3263529 DOI: 10.3389/fonc.2011.00057] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the most common type of cancer among American women, and remains the second leading cause of cancer-related death for female in the United States. It has been known that several signaling pathways and various factors play critical roles in the development and progression of breast cancer, such as estrogen receptor, Notch, PTEN, human epidermal growth factor receptor 2, PI3K/Akt, BRCA1, and BRCA2. Emerging evidence has shown that the F-box protein S-phase kinase associated protein 2 (Skp2) also plays an important role in the pathogenesis of breast cancer. Therefore, in this brief review, we summarize the novel functions of Skp2 in the pathogenesis of breast cancer. Moreover, we provide further evidence regarding the state of our knowledge toward the development of novel Skp2 inhibitors especially natural "chemopreventive agents" as targeted approach for the prevention and/or treatment of breast cancer.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Jia L, Sun Y. SCF E3 ubiquitin ligases as anticancer targets. Curr Cancer Drug Targets 2011; 11:347-56. [PMID: 21247385 DOI: 10.2174/156800911794519734] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/27/2010] [Indexed: 11/22/2022]
Abstract
The SCF multisubunit complex (Skp1, Cullins, F-box proteins) E3 ubiquitin ligase, also known as CRL (Cullin-RING ubiquitin Ligase) is the largest E3 ubiquitin ligase family that promotes the ubiquitination of various regulatory proteins for targeted degradation, thus regulating many biological processes, including cell cycle progression, signal transduction, and DNA replication. The efforts to discover small molecule inhibitors of a SCF-type ligase or its components were expedited by the FDA approval of Bortezomib (also known as Velcade or PS-341), the first (and only) class of general proteasome inhibitor, for the treatment of relapsed/refractory multiple myeloma and mantle cell lymphoma. Although Bortezomib has demonstrated a certain degree of cancer cell selectivity with measurable therapeutic index, the drug is, in general, cytotoxic due to its inhibition of overall protein degradation. An alternative and ideal approach is to target a specific E3 ligase, known to be activated in human cancer, for a high level of specificity and selectivity with less associated toxicity, since such inhibitors would selectively stabilize a specific set of cellular proteins regulated by this E3. Here, we review recent advances in validation of SCF E3 ubiquitin ligase complex as an attractive anti-cancer target and discuss how MLN4924, a small molecule inhibitor of NEDD8-activating enzyme, can be developed as a novel class of anticancer agents by inhibiting SCF E3 ligase complex via removal of cullin neddylation. Finally, we discuss under future perspective how basic research on SCF biology will direct the drug discovery efforts surrounding this target.
Collapse
Affiliation(s)
- L Jia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, 4424B Medical Science-I, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
22
|
Hsu JD, Kao SH, Ou TT, Chen YJ, Li YJ, Wang CJ. Gallic acid induces G2/M phase arrest of breast cancer cell MCF-7 through stabilization of p27(Kip1) attributed to disruption of p27(Kip1)/Skp2 complex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1996-2003. [PMID: 21299246 DOI: 10.1021/jf103656v] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Gallic acid (GA), 3,4,5-trihydroxybenzoic acid, is a natural polyphenolic acid and widely found in gallnuts, tea leaves and various fruits. Previous studies have shown that GA possesses anti-inflammatory, antiallergic and anticarcinogenic activity. In the present study, we aim to investigate the antitumor effects of GA on breast cancer cell. Our results revealed that GA treatment significantly reduced the cell growth of human breast cancer cell MCF-7 in a dose-dependent manner. Further flow cytometric analysis showed that GA induced significant G2/M phase arrest but slightly affected the population of sub-G1MCF-7 cells. Therefore, levels of cyclins, cyclin-dependent kinases (CDKs), and their regulatory proteins involved in S-G2/M transition were investigated. Our findings revealed that levels of cyclin A, CDK2, cyclin B1 and cdc2/CDK1 were diminished; in contrast, levels of the negative regulators p27(Kip1) and p21(Cip1) were increased by GA treatment. Additionally, Skp2, a specific ubiquitin E3 ligase for polyubiquitination of p27(Kip1) was reduced by GA treatment. Further investigation showed that GA attenuated Skp2-p27(Kip1) association and diminished polyubiquitination of p27(Kip1) in MCF-7 cells. Moreover, knockdown of p27(Kip1) but not p21(Cip1) significantly alleviated GA-induced accumulation of G2/M phase. These findings indicate that GA may upregulate p27(Kip1) level via disruption of p27(Kip1)/Skp2 association and the consequent degradation of p27(Kip1) by proteosome, leading to G2/M phase arrest of MCF-7 cell. It is suggested that GA should be beneficial to treatment of breast cancer and p27(Kip1)-deficient carcinomas.
Collapse
Affiliation(s)
- Jeng-Dong Hsu
- Department of Pathology, Chung Shan Medical University Hospital , Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Pu XX, Huang GL, Guo HQ, Guo CC, Li H, Ye S, Ling S, Jiang L, Tian Y, Lin TY. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol 2010; 25:1674-80. [PMID: 20880178 DOI: 10.1111/j.1440-1746.2010.06417.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Circulating miRNAs exist in serum and plasma and they can be used as a potential noninvasive molecular marker for colorectal cancer (CRC) diagnosis. The present study was to test the availability of direct amplification of miRNAs from plasma without RNA extraction, and to evaluate its clinical application value in CRC. METHODS Plasma miR-21, miR-221 and miR-222 levels were determined in 103 CRC patients and 37 healthy normal controls by quantitative reverse transcription-polymerase chain reaction. Immunohistochemical staining for p53, carcinoembryonic antigen (CEA), estrogen receptor (ER) and progesterone receptor (PR) was carried out in the same CRC patient cohort. The correlation between miR-221 levels and protein levels of p53, CEA, ER and PR, clinicopathological features or overall survival was analyzed. RESULTS A standard curve shows a good linearity between the log of sample input and C(T) values over three orders of magnitude of plasma miR-21, miR-221 and miR-222. ROC curve analysis reveals that the plasma levels of miR-221 is a potential biomarker for differentiating CRC patients from controls. Kaplan-Meier curve assessment shows that the elevated plasma miR-221 level is a significant prognostic factor for poor overall survival in CRC patients. The immunohistochemistry analysis demonstrates a significant correlation between plasma miR-221 level and p53 expression. CONCLUSIONS The direct amplification of plasma miR-221 can be used as a potential noninvasive molecular marker for diagnosis and prognosis of CRC and is correlated with p53 expression.
Collapse
Affiliation(s)
- Xing-xiang Pu
- Department of Medical Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Voutsadakis IA, Patrikidou A, Tsapakidis K, Karagiannaki A, Hatzidaki E, Stathakis NE, Papandreou CN. Additive inhibition of colorectal cancer cell lines by aspirin and bortezomib. Int J Colorectal Dis 2010; 25:795-804. [PMID: 20397022 DOI: 10.1007/s00384-010-0939-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2010] [Indexed: 02/04/2023]
Abstract
PURPOSE To investigate the effect of cyclooxygenase-2 (Cox-2) inhibitor aspirin (acetylsalicylic acid, ASA) and proteasome inhibitor bortezomib in the proliferation and apoptosis of colorectal cancer cell lines. METHODS MTT assay, trypan blue exclusion and DNA fragmentation have been used to investigate cell proliferation and apoptosis in the presence of drugs. For the determination of Cox activity a colorimetric method was used. Western blotting was used for the measurement of the effect of the drugs in different proteins expression. RESULTS Bortezomib together with aspirin inhibit the growth of colorectal cancer cell lines HCT116, HT-29, and CaCo2 more than each drug alone. In the first two cell lines ASA inhibitory effects are Cox-2 independent because HCT116 cells do not express the enzyme while in HT-29 cells, Cox-2 has no activity as shown by a Cox activity assay. In CaCo2 cells that express enzymatically active Cox-2 this activity is inhibited by ASA. ASA is also able to suppress the increase in Cox-2 activity induced by bortezomib in these cells. Cell cycle inhibitors p21 and p27 are induced in the three cell lines by bortezomib and the combination treatment. Akt1 kinase is down-regulated in all three lines by the same treatments. Transcription factor NF-kappaB is retained in the cytoplasm by drug treatment in cell lines HCT116 and HT-29, a fact that may play a role in their pro-apoptotic activity. Pro-apoptotic bcl-2 family member, bad is down-regulated in cell lines HCT116 and CaCo2 by bortezomib treatment, a neoplasia-promoting event that is reversed by combination treatment. CONCLUSION The combination of bortezomib and ASA cooperates to decrease proliferation and induce apoptosis in three human colorectal cell lines with different genetic lesions. These effects are at least in some cases Cox-2 independent and involve common and diverse mechanisms in the three lines.
Collapse
|
25
|
Sorokin AV, Kim ER, Ovchinnikov LP. Proteasome system of protein degradation and processing. BIOCHEMISTRY (MOSCOW) 2010; 74:1411-42. [PMID: 20210701 DOI: 10.1134/s000629790913001x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, degradation of most intracellular proteins is realized by proteasomes. The substrates for proteolysis are selected by the fact that the gate to the proteolytic chamber of the proteasome is usually closed, and only proteins carrying a special "label" can get into it. A polyubiquitin chain plays the role of the "label": degradation affects proteins conjugated with a ubiquitin (Ub) chain that consists at minimum of four molecules. Upon entering the proteasome channel, the polypeptide chain of the protein unfolds and stretches along it, being hydrolyzed to short peptides. Ubiquitin per se does not get into the proteasome, but, after destruction of the "labeled" molecule, it is released and labels another molecule. This process has been named "Ub-dependent protein degradation". In this review we systematize current data on the Ub-proteasome system, describe in detail proteasome structure, the ubiquitination system, and the classical ATP/Ub-dependent mechanism of protein degradation, as well as try to focus readers' attention on the existence of alternative mechanisms of proteasomal degradation and processing of proteins. Data on damages of the proteasome system that lead to the development of different diseases are given separately.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
26
|
Li GQ, Xie J, Lei XY, Zhang L. Macrophage migration inhibitory factor regulates proliferation of gastric cancer cells via the PI3K/Akt pathway. World J Gastroenterol 2010. [PMID: 19938192 DOI: 10.3748/wjg.15.554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of macrophage migration inhibitory factor (MIF) on proliferation of human gastric cancer MGC-803 cells and expression of cyclin D1 and p27(Kip1) in them, and further determine whether the effects are related to the PI3K/Akt signal transduction pathway. METHODS Gastric cancer MGC-803 cells were cultured and then treated with 50 microg/L recombinant human MIF (rhMIF) with and without a PI3K inhibitor, LY294002 (25 micromol/L). MTT assay was used to detect the proliferation of MGC-803 cells. Cell cycle was detected by flow cytometry. Expression of cyclin D1 and p27(Kip1) mRNA was by reverse transcription-polymerase chain reaction. Protein expression of phosphorylated Akt (p-Akt), Akt, cyclin D1 and p27(Kip1) was examined by immunocytochemistry and Western blotting. RESULTS rhMIF significantly stimulated the proliferation of MGC-803 cells and cell cycle progression from G1 phase to S phase in a concentration- and time-dependent manner. After the MGC-803 cells were treated with rhMIF for 24 h, the expression of cyclin D1 was significantly up-regulated compared with the cells not treated with rhMIF at both mRNA and protein levels (0.97 +/- 0.02 vs 0.74 +/- 0.01, P = 0.002; 0.98 +/- 0.05 vs 0.69 +/- 0.04, P = 0.003). The p27(Kip1) was down-regulated but only statistically significant at the protein level. rhMIF significantly increased the expression of p-Akt, which reached the peak at 30 min, but did not affect the expression of Akt. However, LY294002 inhibited all the effects of rhMIF. CONCLUSION Macrophage MIF increases the proliferation of gastric cancer cells, induces the expression of cyclin D1 at the transcriptional level and inhibits the expression of p27(Kip1) at the post-transcriptional level via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Guo-Qing Li
- Department of Gastroenterology, The Second Affiliated Hospital, University of South China, Hunan Province, China.
| | | | | | | |
Collapse
|
27
|
Abubaker J, Bavi P, Al-Haqawi W, Sultana M, Al-Harbi S, Al-Sanea N, Abduljabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Uddin S, Al-Kuraya KS. Prognostic significance of alterations in KRAS isoforms KRAS-4A/4B and KRAS mutations in colorectal carcinoma. J Pathol 2010; 219:435-45. [PMID: 19824059 DOI: 10.1002/path.2625] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Somatic KRAS mutation is an early well-known event in colorectal carcinogenesis but a complete understanding of RAS function and dysfunction in colorectal cancer is still to come. Our aim was to study the incidence of KRAS mutation; KRAS splice variants: KRAS4A and KRAS4B; and their relationships with various clinico-pathological characteristics in colorectal cancer (CRC).In this study, 285 CRC cases were analysed for KRAS mutation by direct DNA sequencing followed by immunohistochemical analysis after validation with real-time PCR assay, to study the protein expression of KRAS4A and -4B isoforms. KRAS gene mutations were seen in 80/285 CRCs (28.1%) and of the mutated cases, the majority of the mutations were seen in codon 12 (81.2%) as opposed to codon 13 (18.8%). CRCs with KRAS mutations were associated with a poor overall survival (p = 0.0009). Furthermore, KRAS mutations at codon 12 were associated with a poor overall survival of 64.4% at 5 years compared with a 5-year overall survival of 75.8% and 78.2% with codon 13 mutation and absence of KRAS mutations, respectively (p = 0.0025). KRAS4A protein expression was predominantly seen in the cytoplasm, while KRAS4B protein was nuclear. KRAS4A overexpression was significantly associated with left colon, histology subtype of adenocarcinoma, p27kip1, and cleaved caspase3 expression. Interestingly, KRAS4A overexpression was associated with a better overall survival (p = 0.0053). On the other hand, KRAS4B overexpression (33.2%) was significantly associated with larger tumour size (p = 0.0234) and inversely correlated with p27kip1 protein (p = 0.0159). Both KRAS mutation and KRAS4A were independent prognostic markers in a multivariate analysis with age, gender, stage, differentiation, and MSI status. Our results highlight the differential role of KRAS isoforms in CRC, their utility as a prognostic biomarker, and underline the importance of KRAS alterations as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Jehad Abubaker
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li GQ, Xie J, Lei XY, Zhang L. Macrophage migration inhibitory factor regulates proliferation of gastric cancer cells via the PI3K/Akt pathway. World J Gastroenterol 2009; 15:5541-8. [PMID: 19938192 PMCID: PMC2785056 DOI: 10.3748/wjg.15.5541] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of macrophage migration inhibitory factor (MIF) on proliferation of human gastric cancer MGC-803 cells and expression of cyclin D1 and p27Kip1 in them, and further determine whether the effects are related to the PI3K/Akt signal transduction pathway.
METHODS: Gastric cancer MGC-803 cells were cultured and then treated with 50 μg/L recombinant human MIF (rhMIF) with and without a PI3K inhibitor, LY294002 (25 μmol/L). MTT assay was used to detect the proliferation of MGC-803 cells. Cell cycle was detected by flow cytometry. Expression of cyclin D1 and p27Kip1 mRNA was by reverse transcription-polymerase chain reaction. Protein expression of phosphorylated Akt (p-Akt), Akt, cyclin D1 and p27Kip1 was examined by immunocytochemistry and Western blotting.
RESULTS: rhMIF significantly stimulated the proliferation of MGC-803 cells and cell cycle progression from G1 phase to S phase in a concentration- and time-dependent manner. After the MGC-803 cells were treated with rhMIF for 24 h, the expression of cyclin D1 was significantly up-regulated compared with the cells not treated with rhMIF at both mRNA and protein levels (0.97 ± 0.02 vs 0.74 ± 0.01, P = 0.002; 0.98 ± 0.05 vs 0.69 ± 0.04, P = 0.003). The p27Kip1 was down-regulated but only statistically significant at the protein level. rhMIF significantly increased the expression of p-Akt, which reached the peak at 30 min, but did not affect the expression of Akt. However, LY294002 inhibited all the effects of rhMIF.
CONCLUSION: Macrophage MIF increases the proliferation of gastric cancer cells, induces the expression of cyclin D1 at the transcriptional level and inhibits the expression of p27Kip1 at the post-transcriptional level via the PI3K/Akt pathway.
Collapse
|
29
|
Vlaicu SI, Tegla CA, Cudrici CD, Fosbrink M, Nguyen V, Azimzadeh P, Rus V, Chen H, Mircea PA, Shamsuddin A, Rus H. Epigenetic modifications induced by RGC-32 in colon cancer. Exp Mol Pathol 2009; 88:67-76. [PMID: 19883641 DOI: 10.1016/j.yexmp.2009.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
Abstract
First described as a cell cycle activator, RGC-32 is both an activator and a substrate for CDC2. Deregulation of RGC-32 expression has been detected in a wide variety of human cancers. We have now shown that RGC-32 is expressed in precancerous states, and its expression is significantly higher in adenomas than in normal colon tissue. The expression of RGC-32 was higher in advanced stages of colon cancer than in precancerous states or the initial stages of colon cancer. In order to identify the genes that are regulated by RGC-32, we used gene array analysis to investigate the effect of RGC-32 knockdown on gene expression in the SW480 colon cancer cell line. Of the 230 genes that were differentially regulated after RGC-32 knockdown, a group of genes involved in chromatin assembly were the most significantly regulated in these cells: RGC-32 knockdown induced an increase in acetylation of histones H2B lysine 5 (H2BK5), H2BK15, H3K9, H3K18, and H4K8. RGC-32 silencing was also associated with decreased expression of SIRT1 and decreased trimethylation of histone H3K27 (H3K27me3). In addition, RGC-32 knockdown caused a significantly higher percentage of SW480 cells to enter S phase and subsequently G2/M. These data suggest that RGC-32 may contribute to the development of colon cancer by regulating chromatin assembly.
Collapse
Affiliation(s)
- Sonia I Vlaicu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang CW, Lin CY, Huang HY, Liu HW, Chen YJ, Shih DF, Chen HY, Juan CC, Ker CG, Huang CYF, Li CF, Shiue YL. CKS1B overexpression implicates clinical aggressiveness of hepatocellular carcinomas but not p27(Kip1) protein turnover: an independent prognosticator with potential p27 (Kip1)-independent oncogenic attributes? Ann Surg Oncol 2009; 17:907-22. [PMID: 19866239 DOI: 10.1245/s10434-009-0779-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Indexed: 12/25/2022]
Abstract
BACKGROUND Through data mining the Stanford Microarray Database, the CKS1B transcript was found to be frequently upregulated in hepatocellular carcinomas (HCCs) with low alpha-fetal protein (AFP) expression. Together with SKP2, CKS1B is known to implicate p27(Kip1) protein turnover promoting cell-cycle progression. METHODS CKS1B, p27(Kip1), and SKP2 were immunostained in 75 HCCs and correlated with clinicopathological features, local recurrence-free survival (LRFS), and overall survival (OS). Silencing of CKS1B and SKP2 with interference short-hairpin RNA (shRNA) was performed in SK-Hep1 and Hep-3B cell lines. RESULTS Immunohistochemically, increased CKS1B and SKP2, and attenuated p27(Kip1) were all associated with tumor multiplicity (P < 0.05) and increasing American Joint Committee on Cancer (AJCC) stage (P < 0.05). Overexpression of CKS1B significantly correlated with advanced Okuda stages (P = 0.048) and SKP2 overexpression (P = 0.047). Neither CKS1B nor SKP2 was inversely related to p27(Kip1), which was reinforced by no alteration in p27(Kip1) abundance in HCC-derived cells with CKS1B or SKP2 silencing. Both CKS1B overexpression (P = 0.0011 and P = 0.0017) and p27(Kip1) attenuation (P = 0.0079 and P = 0.0085) were predictive of OS and LRFS, respectively, while SKP2 overexpression was associated with worse OS alone (P = 0.0043). Combined assessment of CKS1B and p27(Kip1) was able to robustly distinguish three prognostically different groups (P < 0.0001). In multivariate comparison, CKS1B overexpression represented the strongest independent adverse prognosticator [OS, P = 0.0235, hazard ratio (HR): 4.193; LRFS, P = 0.0204, HR: 4.262], followed by p27(Kip1) attenuation (OS, P = 0.0320, HR: 2.553; LRFS, P = 0.0262, HR: 2.533). CONCLUSIONS CKS1B protein overexpression in HCCs is implicated in clinical aggressiveness but not in p27(Kip1) turnover, implying presence of p27(Kip1)-independent oncogenic attributes. The combined assessment of CKS1B and p27(Kip1) immunoexpressions effectively risk-stratifies HCCs with different prognoses, which may aid in the management of this deadly malignancy.
Collapse
Affiliation(s)
- Ching-Wen Huang
- Department of Surgery, Yuan's General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nagler RM, Ben-Izhak O, Ostrovsky D, Golz A, Hershko DD. The expression and prognostic significance of Cks1 in salivary cancer. Cancer Invest 2009; 27:512-20. [PMID: 19296297 DOI: 10.1080/07357900802239116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cks1 is an essential factor in facilitating Skp2-dependent degradation of p27, but its role in salivary malignancies is unknown. Expression of cyclin-dependent kinase subunit 1 (Cks1) was examined in 64 salivary malignancies, compared with p27, S-phase kinase protein 2 (Skp2), Ki-67, p53, and TDT-mediated dutp-biotin nick end labeling (TUNEL) expression, and with THE patient's clinical and pathological parameters. Cks1 expression was markedly increased in 30 patients (47%) and strongly correlated with increased expression of Skp2, Ki-67, p53, and TUNEL, but inversely with p27 levels. High expression of Cks1 WAS strongly associated with lymph node metastases and poor prognosis and survival. Cks1 alterations may have a significant biological role in the pathogenesis of salivary cancer.
Collapse
Affiliation(s)
- Rafael M Nagler
- Department of Oral and Maxillofacial Surgery and Oral Biochemistry Laboratory, Rambam Medical Center and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | |
Collapse
|
32
|
Zolota VG, Tzelepi VN, Leotsinidis M, Zili PE, Panagopoulos ND, Dougenis D, Tsamandas AC, Scopa CD. Histologic-type specific role of cell cycle regulators in non-small cell lung carcinoma. J Surg Res 2009; 164:256-65. [PMID: 19691991 DOI: 10.1016/j.jss.2009.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Lung cancer is the most lethal type of cancer in humans. Cell cycle alterations have commonly been encountered in lung cancer and may have prognostic value. MATERIALS AND METHODS This study investigates the immunohistochemical expression of the important cell cycle regulators phosphatase and tensin homolog deleted on chromosome 10 (PTEN), p27, Cks1, and Skp2 in 128 non-small cell lung carcinomas (64 adenocarcinomas, 46 squamous cell carcinomas, and 18 large cell undifferentiated carcinomas) and adjacent non-neoplastic lung tissue. RESULTS PTEN and p27 were always highly expressed in non-neoplastic lung whereas Cks1 and Skp2 were not expressed in normal tissue. Decreased PTEN expression was noted in 19/64 adenocarcinomas, 15/46 squamous cell carcinomas, and 7/18 undifferentiated large cell carcinomas. Reduced expression of p27 was noted in 28/64, 19/46, and 6/18 of the tumors, respectively. Increased expression of Cks1 was seen in 38/64, 26/46, and 11/18 and increased expression of Skp2 in 29/64, 30/46, and 14/18 of the tumors, respectively. An inverse relationship between p27 and Skp2 levels was found in adenocarcinomas and between p27 and Cks1 levels in squamous cell carcinomas. Decreased PTEN and p27 expression were associated with advanced tumor stage in squamous cell carcinomas. Univariate analysis showed that high p27 and PTEN and low Cks1 expression correlated with increased survival in patients with squamous cell carcinoma independently of tumor stage. CONCLUSIONS Aberrant expression of PTEN, p27, Cks1, and Skp2 is a common feature of all three major types of non-small cell lung cancer NSCLC, but seems to be involved in the progression of squamous cell carcinoma alone.
Collapse
Affiliation(s)
- Vassiliki G Zolota
- Department of Pathology, Medical School, University of Patras, Patras, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bertagnolli MM, Warren RS, Niedzwiecki D, Mueller E, Compton CC, Redston M, Hall M, Hahn HP, Jewell SD, Mayer RJ, Goldberg RM, Saltz LB, Loda M. p27Kip1 in stage III colon cancer: implications for outcome following adjuvant chemotherapy in cancer and leukemia group B protocol 89803. Clin Cancer Res 2009; 15:2116-22. [PMID: 19276255 PMCID: PMC3059545 DOI: 10.1158/1078-0432.ccr-08-2674] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND In retrospective studies, loss of p27(Kip1) (p27), a cyclin-dependent kinase inhibitor, has been associated with poor prognosis following colorectal cancer treatment. In a prospective study, we validated this relationship in patients enrolled on a trial of adjuvant chemotherapy for stage III colon cancer. METHODS Cancer and Leukemia Group B protocol 89803 randomized 1,264 stage III colon cancer patients to receive weekly bolus 5-fluorouracil/leucovorin or weekly bolus irinotecan, 5-fluorouracil, and leucovorin (IFL). The primary endpoint was overall survival (OS); disease-free survival was a secondary endpoint. Expression of p27 and DNA mismatch repair proteins were determined by immunohistochemistry in primary tumor and normal tissue from paraffin blocks. Data were analyzed using log-rank test. RESULTS Of 601 tumors analyzed, 207 (34.4%) showed p27 loss, 377 (62.8%) retained p27, and 17 (2.8%) were indeterminate. Patients with p27-negative tumors showed reduced OS [5-year OS 66%: 95% confidence interval (95% CI), 0.59-0.72 versus 75%: 95% CI, 0.70-0.79; log-rank P = 0.021]. This relationship was not influenced by treatment arm. Combination of p27 status with mismatch repair status, however, identified a small subset of patients that may benefit from IFL (n = 36; 5-year disease-free survival 81%: 95% CI, 0.64-0.98 versus 47%: 95% CI, 0.21-0.72; log-rank P = 0.042; 5-year OS 81%: 95% CI, 0.64-0.98 versus 60%: 95% CI, 0.35-0.85; log-rank P = 0.128). CONCLUSIONS Loss of p27 is associated with reduced survival in stage III colon cancer but by itself does not indicate a significant difference in outcome between patients treated IFL or 5-fluorouracil/leucovorin.
Collapse
|
34
|
Abstract
We examined Ki67 expression in salivary malignancies of 75 patients with a follow-up period of up to 20 years. Correlations between enhanced Ki67 and enhanced p53 and TUNEL and heparanase staining levels were significant. Median survival for reduced-stained-tumor patients (< or = 5%) was 163 months, dropping significantly to 39 months (p = 0.0005) for enhanced stained tumors (> 5%); 5 year survival probability was 93% and 33%, respectively, 45% and 16%, respectively, (p = 0.0005) at 20 years. Significant correlation between poor survival and concurrently altered expression rates of Ki67 and p53, p27 Skp2, TUNEL and heparanase in the salivary malignancies indicates a biological role in salivary cancer pathogenesis.
Collapse
Affiliation(s)
- Ofer Ben-Izhak
- Department of Pathology, Rambam Medical Center, Haifa, Israel
| | | | | |
Collapse
|
35
|
Liu J, Weiss HL, Rychahou P, Jackson LN, Evers BM, Gao T. Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene 2008; 28:994-1004. [PMID: 19079341 PMCID: PMC2921630 DOI: 10.1038/onc.2008.450] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PHLPP (PH domain leucine-rich repeats protein phosphatase) represents a family of novel Ser/Thr protein phosphatases. Two highly related isoforms in this family, PHLPP1 and PHLPP2, have been identified to serve as negative regulators of Akt and protein kinase C by dephosphorylating the kinases directly. In this study, we examined the expression pattern of both PHLPP isoforms in colorectal cancer specimens and the adjacent normal mucosa using immunohistochemical staining. We found that the expression of PHLPP1 or PHLPP2 isoform was lost or decreased in 78 and 86% of tumor tissues, respectively. Stable overexpression of either PHLPP isoform in colon cancer cells decreased the rate of cell proliferation and sensitized the cells to growth inhibition induced by the phosphoinositide-3 kinase inhibitor, LY294002, whereas knockdown of either PHLPP isoform by shRNA promoted the proliferation of DLD1 cells. In addition, we demonstrated that the PHLPP-mediated growth inhibition in colon cancer cells was largely rescued by overexpression of a constitutively active Akt. Moreover, reexpression of either PHLPP isoform in HCT116 cells inhibited tumor growth in vivo. Taken together, our results strongly support a tumor suppressor role of PHLPP in colon cancer.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry and Molecular Biology, West China Medical School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | | | | | | | | | | |
Collapse
|
36
|
Strategies for the identification of novel inhibitors of deubiquitinating enzymes. Biochem Soc Trans 2008; 36:828-32. [PMID: 18793145 DOI: 10.1042/bst0360828] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dysregulation of the UPS (ubiquitin-proteasome system) has been implicated in a wide range of pathologies including cancer, neurodegeneration and viral infection. Inhibiting the proteasome has been shown to be an effective therapeutic strategy in humans; yet toxicity with this target remains high. DUBs (deubiquitinating enzymes) represent an alternative target in the UPS with low predicted toxicity. Currently, there are no DUB inhibitors that have been used clinically. To address this situation, Progenra has developed a novel assay to measure the proteolytic cleavage of Ub (ubiquitin) or UBL (Ub-like protein) conjugates such as SUMO (small Ub-related modifier), NEDD8 (neural-precursor-cell-expressed, developmentally down-regulated 8) or ISG15 (interferon-stimulated gene 15) by isopeptidases. In this review, current platforms for detecting DUB inhibitors are discussed and the advantages and disadvantages of the approaches are underlined.
Collapse
|
37
|
Maran A, Shogren KL, Benedikt M, Sarkar G, Turner RT, Yaszemski MJ. 2-methoxyestradiol-induced cell death in osteosarcoma cells is preceded by cell cycle arrest. J Cell Biochem 2008; 104:1937-45. [PMID: 18384113 DOI: 10.1002/jcb.21758] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
2-Methoxyestradiol (2-ME), a naturally occurring mammalian metabolite of 17beta-Estradiol (E2), induces cell death in osteosarcoma cells. To further understand the molecular mechanisms of action, we have investigated cell cycle progression in 2-ME-treated human osteosarcoma (MG63, SaOS-2 and LM7 [corrected]) cells. At 5 microM, 2-ME induced growth arrest by inducing a block in cell cycle; 2-ME-treatment resulted in 2-fold increases in G1 phase cells and a decrease in S phase cells in MG63 and SaOS-2 osteosarcoma cell lines, compared to the appropriate vehicle controls. 2-ME-treatment induced a threefold increase in the G2 phase in LM7 [corrected] osteosarcoma cells. The results demonstrated steroid specificity, as the tumorigenic metabolite, 16alpha-hydroxyestradiol (16-OHE), did not have any effect on cell cycle progression in osteosarcoma cells. The cell cycle arrest coincided with an increase in expression of the cell cycle markers p21, p27 and p53 proteins in 2-ME-treated osteosarcoma cells. Also, MG63 cells, transiently transfected with cDNA for a 'loss of function mutant' RNA-dependent protein kinase (PKR) protein, were resistant to 2-ME-induced cell cycle arrest. These results suggest that 2-ME works in concert with factors regulating cell cycle progression, and cell cycle arrest precedes cell death in 2-ME-treated osteosarcoma cells.
Collapse
Affiliation(s)
- Avudaiappan Maran
- Department of Orthopedics, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Lan Y, Zhang Y, Wang J, Lin C, Ittmann MM, Wang F. Aberrant expression of Cks1 and Cks2 contributes to prostate tumorigenesis by promoting proliferation and inhibiting programmed cell death. Int J Cancer 2008; 123:543-51. [PMID: 18498131 DOI: 10.1002/ijc.23548] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mammalian Cks family consists of 2 well-conserved small proteins, Cks1 and Cks2. Cks1 has been shown to promote cell-cycle progression by triggering degradation of p27(kip1). The function of Cks2 in somatic mammalian cells is not well understood although it is required for the first metaphase/anaphase transition during the meiosis. Emerging evidence shows that elevated expression of Cks1 and Cks2 is often found in a variety of tumors, and is correlated with poor survival rate of the patients. Here we demonstrated that expression of Cks1 and Cks2 were elevated in prostate tumors of human and animal models, as well as prostatic cancer cell lines. Forced expression of Cks1 and Cks2 in benign prostate tumor epithelial cells promoted cell population growth. Knockdown of Cks1 expression in malignant prostate tumor cells inhibited proliferation, anchorage-independent growth, and migration activities, whereas knockdown of Cks2 expression induced programmed cell death and inhibited the tumorigenicity. Collectively, the data suggest that elevated expression of Cks1 contributes to the tumorigenicity of prostate tumor cells by promoting cell growth and elevated expression of Cks2 protects the cells from apoptosis. Thus, the finding suggests a novel therapeutic strategy for prostatic cancer based on inhibiting Cks1 and Cks2 activity.
Collapse
Affiliation(s)
- Yongsheng Lan
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030-3303, USA
| | | | | | | | | | | |
Collapse
|
39
|
Voutsadakis IA. The ubiquitin-proteasome system in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2008; 1782:800-8. [PMID: 18619533 DOI: 10.1016/j.bbadis.2008.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 01/01/2023]
Abstract
The proteasome is a multiprotein complex that regulates the stability of hundreds of cellular proteins and thus, it is implicated in virtually all cellular functions. Most of the time, to be recognized and processed by the proteasome, a protein has to be linked to a chain of ubiquitin molecules. Cell proliferation, apoptosis, angiogenesis and motility, processes with particular importance for carcinogenesis are regulated by the ubiquitin-proteasome system (UPS). In colorectal epithelium, UPS plays a role in the regulation of the Wnt/beta-catenin/APC/TCF4 signaling which regulates proliferation of colorectal epithelial cells in the bottom of the crypts and the inhibition of this proliferation as cells move towards colon villi tips. In most colorectal cancers APC (Adenomatous Polyposis Coli) disabling mutations interfere with the ability of the proteasome to degrade beta-catenin leading to uninhibited cell proliferation. Other key molecules in colorectal carcinogenesis such as p53, Smad4 and components of the k-ras pathways are also regulated by the UPS. In this review I discuss the role of UPS in colorectal carcinogenesis and colorectal cancer prognosis and aspects of its inhibition for therapeutic purposes.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, University Hospital of Larissa, Larissa 41110, Greece.
| |
Collapse
|
40
|
Abstract
BCR-ABL is proposed to impair cell-cycle control by disabling p27, a tumor suppressor that inhibits cyclin-dependent kinases. We show that in cell lines p27 expression is inversely correlated with expression of SKP2, the F-box protein of SCF(SKP2) (SKP1/Cul1/F-box), the E3 ubiquitin ligase that promotes proteasomal degradation of p27. Inhibition of BCR-ABL kinase causes G(1) arrest, down-regulation of SKP2, and accumulation of p27. Ectopic expression of wild-type SKP2, but not a mutant unable to recognize p27, partially rescues cell-cycle progression. A similar regulation pattern is seen in cell lines transformed by FLT3-ITD, JAK2(V617F), and TEL-PDGFRbeta, suggesting that the SKP2/p27 conduit may be a universal target for leukemogenic tyrosine kinases. Mice that received transplants of BCR-ABL-infected SKP2(-/-) marrow developed a myeloproliferative syndrome but survival was significantly prolonged compared with recipients of BCR-ABL-expressing SKP2(+/+) marrow. SKP2(-/-) leukemic cells demonstrated higher levels of nuclear p27 than SKP2(+/+) counterparts, suggesting that the attenuation of leukemogenesis depends on increased p27 expression. Our data identify SKP2 as a crucial mediator of BCR-ABL-induced leukemogenesis and provide the first in vivo evidence that SKP2 promotes oncogenesis. Hence, stabilization of p27 by inhibiting its recognition by SCF(SKP2) may be therapeutically useful.
Collapse
|
41
|
Fujita T, Liu W, Doihara H, Wan Y. Regulation of Skp2-p27 axis by the Cdh1/anaphase-promoting complex pathway in colorectal tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:217-28. [PMID: 18535175 DOI: 10.2353/ajpath.2008.070957] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abrogated entry into S phase is a common hallmark of cancer cells. Skp2, a subunit of ubiquitin ligase, is critical for regulating the G(1)/S transition. Uncontrolled Skp2 activity is detected frequently in human tumors, often correlated with poor prognosis. Current studies have suggested that the regulation of Skp2 turnover is mediated by another critical ubiquitin ligase, the anaphase-promoting complex (APC), in association with its substrate-specific factor Cdh1. To dissect the potential role of Cdh1/APC in tumorigenesis through the degradation of Skp2, we analyzed the Cdh1/APC-Skp2-p27 axis in colorectal tumorigenesis using a human tumor array and biochemical analyses. Our results show that the percentage of Cdh1- and p27-positive samples in colon cancer tissues was significantly lower than that in adjacent nonmalignant tissue. Conversely, the percentage of Skp2-positive colon cancer samples was significantly higher than that in normal tissue. Furthermore, results from clinicopathological analysis revealed that elevated Cdh1 expression was associated with lower histological grade tumors. In addition, depletion of Cdh1 by RNA interference in nonmalignant colon cells resulted in increased cellular proliferation, whereas knockdown of Skp2 significantly suppressed cancer cell growth. Our result suggests a pathological correlation between Skp2 and Cdh1/APC in colorectal cancer. Thus, Cdh1 may function as a component in tumor suppression via proteolysis of Skp2 in colorectal tumorigenesis and may serve as a prognostic marker in colon cancer patients.
Collapse
Affiliation(s)
- Takeo Fujita
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
42
|
Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 2008; 8:438-49. [PMID: 18500245 PMCID: PMC2711846 DOI: 10.1038/nrc2396] [Citation(s) in RCA: 736] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The maintenance and preservation of distinct phases during the cell cycle is a highly complex and coordinated process. It is regulated by phosphorylation--through the activity of cyclin-dependent kinases (CDKs)--and protein degradation, which occurs through ubiquitin ligases such as SCF (SKP1-CUL1-F-box protein) complexes and APC/C (anaphase-promoting complex/cyclosome). Here, we explore the functionality and biology of the F-box proteins, SKP2 (S-phase kinase-associated protein 2) and beta-TrCP (beta-transducin repeat-containing protein), which are emerging as important players in cancer biogenesis owing to the deregulated proteolysis of their substrates.
Collapse
Affiliation(s)
- David Frescas
- Department of Pathology, NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | |
Collapse
|
43
|
Xiang-Lan M, Zu-Lan S, Dan H, Bi-Hong S, Ya-Qin P, Han-Liang L. Skp2/p27 expression profile is correlated with Epstein-Barr virus status in extranodal nasal-type natural killer cell lymphoma. Transl Res 2008; 151:303-8. [PMID: 18514141 DOI: 10.1016/j.trsl.2008.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/19/2008] [Accepted: 04/21/2008] [Indexed: 01/12/2023]
Abstract
Extranodal nasal-type natural killer cell lymphoma (ENKL) is a high-grade malignancy and is associated with Epstein-Barr virus (EBV) latent infection. Little is known about its molecular abnormalities. Here, we studied the expression of Skp2 and p27 proteins in 48 cases of ENKL, and we evaluated their correlations with EBV status and clinical outcomes. EBV infection was observed in 90% of the cases. In all, 71% of the ENKLs were positive to Skp2 and 73% were negative to p27. A significant negative correlation was observed between the expression of Skp2 and p27 proteins (P = 0.022). Fifty-eight percent of the cases were Skp2+/p27- phenotype and correlated with EBV status (P = 0.047). The overall survival was influenced by the expression of Skp2, p27, and Skp2/p27. Patients with Skp2+, p27-, and Skp2+/p27- phenotypes had worse overall survival (P < 0.01, P = 0.016, and P < 0.01, respectively). Multivariance analysis showed the Skp2/p27 expression profile was an independent prognostic factor for overall survival (RR = 3.09, P < 0.01, 95% CI: 1.27-7.51). In conclusion, the Skp2/p27 expression profile is a helpful prognostic factor for ENKL. Latent EBV infection may increase the expression levels of Skp2, and consequently, p27 protein degradation is accelerated. EBV may be a good target for treatment of EBV-associated ENKL.
Collapse
Affiliation(s)
- Mo Xiang-Lan
- Department of Pathology, The Third Affiliated Hospital of Sun Yat Sen University, Guangdong, China
| | | | | | | | | | | |
Collapse
|
44
|
Di Vizio D, Demichelis F, Simonetti S, Pettinato G, Terracciano L, Tornillo L, Freeman MR, Insabato L. Skp2 expression is associated with high risk and elevated Ki67 expression in gastrointestinal stromal tumours. BMC Cancer 2008; 8:134. [PMID: 18474118 PMCID: PMC2396636 DOI: 10.1186/1471-2407-8-134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 05/13/2008] [Indexed: 11/17/2022] Open
Abstract
Background Gastrointestinal stromal tumors (GIST) exhibit an unpredictable clinical course and can rapidly progress to lethality. Predictions about the biological behavior of GIST are based on a number of canonical clinical and pathologic parameters whose validity in distinguishing between a benign and a malignant tumour is still imperfect. The aim of our study was to investigate the role of morphologic parameters and expression of cells cycle regulators as prognosticators in GIST. Methods We performed an immunohistochemical analysis for Ki67, p27Kip1, Jab1, and Skp2, on a Tissue Microarray (TMA) containing 94 GIST. Expression of the above proteins was correlated to classically used prognosticators, as well as to risk groups. Clinical significance of histologic and immunohistochemical features were evaluated in 59 patients for whom follow-up information was available. Results Overexpression of Ki67 and Skp2, and p27Kip1 loss directly correlated with the high risk group (p = 0.03 for Ki67 and Skp2, p = 0.05 for p27Kip1). Jab1 expression did not exhibit correlation with risk. In 59 cases provided with clinical follow-up, high cellularity, presence of necrosis, and Ki67 overexpression were predictive of a reduced overall survival in a univariate model. The same parameters, as well as mitotic rate, tumour size, and p27Kip1 loss were indicative of a shortened relapse free survival interval. High cellularity, and high mitotic rate retained their prognostic significance by multivariate analysis. Conclusion Our data suggest that a number of histologic parameters in combination with immunohistochemical expression of cell cycle regulators can facilitate risk categorization and predict biologic behavior in GIST. Importantly this study demonstrates, for the first time, that Skp2 expression correlates with Ki67 expression and high risk in GIST.
Collapse
Affiliation(s)
- Dolores Di Vizio
- Department of Functional and Biomorphological Science, University "Federico II", Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hershko DD. Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer 2008; 112:1415-24. [PMID: 18260093 DOI: 10.1002/cncr.23317] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The expression of Skp2, the ubiquitin ligase subunit that targets p27(Kip1) for degradation, is commonly overexpressed in human cancers. p27(Kip1) is a negative regulator of the cell cycle that plays an important role in tumor suppression. Loss of p27(Kip1) secondary to enhanced ubiquitin-mediated degradation results in uncontrolled proliferation and promotes tumor progression. In the present study the prognostic implications of Skp2 are reviewed and the mechanisms that regulate its expression in different human cancers. A review and analysis of the English literature was undertaken. Overexpression of Skp2 mRNA and protein levels was observed in many aggressive cancers and was commonly associated with down-regulation of p27(Kip1) levels and loss of tumor differentiation. Skp2 is an independent prognostic marker for disease-free and overall survival and may provide additional predictive information to that provided by p27(Kip1) alone. Targeting Skp2 in experimental models resulted in up-regulation of p27(Kip1) and arrested cellular proliferation. Alterations in Skp2 expression have profound effects on cancer progression and may serve as an accurate and independent prognostic marker. Thus, determination of levels of Skp2 and p27(Kip1) by readily available immunohistochemical studies may be a useful tool in the assessment of prognosis, especially in patients with intermediate disease, and may potentially assist in the planning of adjuvant therapy. Skp2 may be an attractive target for the development of novel interventional therapy.
Collapse
Affiliation(s)
- Dan D Hershko
- Department of Surgery and Breast Health Institute, Rambam Health Care Campus and the Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
46
|
Zlobec I, Minoo P, Baumhoer D, Baker K, Terracciano L, Jass JR, Lugli A. Multimarker phenotype predicts adverse survival in patients with lymph node-negative colorectal cancer. Cancer 2008; 112:495-502. [PMID: 18076013 DOI: 10.1002/cncr.23208] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The heterogeneity of stage II colon cancer underlines the need for identifying high-risk, lymph node-negative patients. The objective of this study was to define a multimarker prognostic model of 5-year survival in patients with lymph node-negative, mismatch repair (MMR)-proficient colorectal cancer (CRC). METHODS Immunohistochemistry for 13 tumor markers was performed on 587 lymph node-negative, MMR-proficient CRC samples by using a tissue microarray. Immunoreactivity was evaluated semiquantitatively. A receiver-operating characteristic-based approach was used to detect clinically relevant tumor markers and to determine cutoff scores for tumor positivity. Univariate and multivariate analyses stratified by pathologic T3 (pT3) or pT4 tumor classification were performed. RESULTS In univariate analysis, the absence of CD8+ tumor infiltrating lymphocytes (TILs) (P < .001), loss of p27 (P = .006), positive urokinase-type plasminogen activator (uPA) expression (P = .002), and positive uPA receptor (uPAR) expression (P = .037) were associated with an adverse prognosis. In multivariate analysis, CD8 (P = .001), p27 (P = .031), and uPA (P = .014) were independent prognostic factors. The multimarker phenotype of negative CD8, loss of p27, and positive uPA expression led to significantly worse survival compared with all other combinations of these features. Stratified by pT3 or pT4 stage, CD8 (P = .006) and uPA (P = .011) had independent prognostic value. Combined CD8 negativity and uPA positivity led to a more adverse prognosis in both patients with pT3 tumors and patients with pT4 tumors (P < .001). No difference was observed in the length of survival between patients with pT3 tumors who had CD8 negativity and uPA positivity and patients with pT4 tumors (P = .267). CONCLUSIONS The multimarker phenotype of the absence of CD8+ TILs, loss of p27, and positive uPA expression was predictive of an adverse prognosis in patients with lymph node-negative, MMR-proficient CRC. The current findings suggested that a subgroup of patients with high-risk, lymph node-negative pT3 tumors should be considered for adjuvant therapy.
Collapse
Affiliation(s)
- Inti Zlobec
- Institute of Pathology, University Hospital of Basel, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhang L, Yu HG, Yu JP, Luo HS. PI3K/Akt/p27kip1 pathway mediates chemoresistance to Etoposide and Doxorubicin in gastric carcinoma cell line BGC-823 and its mechanism. Shijie Huaren Xiaohua Zazhi 2008; 16:575-581. [DOI: 10.11569/wcjd.v16.i6.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of chemo-resistance to Etoposide and Doxorubicin mediated by the PI3K/Akt/p27 pathway on human gastric carcinoma cell line BGC-823 and its mechanism.
METHODS: Cultured BGC-823 gastric cancer cells were divided into control group, PI3K/Akt/p27 Kip1 channel inhibitor Wort (Wort) group, Etoposide (Eto) group, Doxorubicin (Dox) group, Eto + Wort group and Dox + Wort group. Cell survival was assessed with MTT method. Cell cycle and apoptosis were detected using a flow cytometer (FCM). Expression level of p27 Kip1 and p27 gene mRNA was determined by Western blotting analysis and reverse transcription-polymerase chain reaction, respectively.
RESULTS: The cell survival rate at 24 h was lower in Wort group, Eto +Wort group and Dox +Wort group than in control group (57.8%, 46.5%, 44.3% vs 46.5%, 44.3%, P < 0.01). The cell ratio in G0-G1 phase was higher in Wort group, Eto +Wort group and Dox + Wort group than in control group (85.0 ± 3.54, 91.5 ± 3.63, 92.4 ± 3.64 vs 71.5 ± 3.25, P < 0.01) and the protein expression was increased at 12 h and 24 h. The cell survival rate in Eto and Dox groups was higher than that in control group, but no obvious change was found in G0 - G1 phase. The p27 mRNA expression was similar in different groups.
CONCLUSION: Activation of PI3K/Akt/p27 channel can mediate chemo-resistance to tumor cells.
Collapse
|
48
|
|
49
|
Nozoe T, Oyama T, Mori E, Uramoto H, Takenoyama M, Hanagiri T, Sugio K, Yasumoto K. Clinicopathologic significance of an immunohistochemical expression of p27 in scirrhous carcinoma of the breast. Breast Cancer 2007; 14:277-80. [PMID: 17690504 DOI: 10.2325/jbcs.14.277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Scirrhous carcinoma has been known to have more aggressive biological behavior than other histologic subtypes of invasive ductal carcinoma of the breast. The significance of expression of p27kip1, which is thought to be a tumor suppressor gene, in breast carcinoma remains controversial. The aim of the current study was to clarify clinicopathologic significance of scirrhous carcinoma of the breast with special reference to p27 expression. METHODS Clinicopathologic features including immunohistochemical expression of p27 were compared between scirrhous carcinoma (n=42) and non-scirrhous invasive ductal carcinoma (papillotubular and solid-tubular carcinoma, n=63) of the breast. RESULTS The proportion of pathologic lymph node metastasis among scirrhous carcinomas was significantly higher than that among carcinomas of other histologic types (papillotubular or solid-tubular carcinomas, p=0.029). The proportion of strong expression of p27 among scirrhous carcinomas was significantly lower than that among tumors of other histologic types (p<0.0001). CONCLUSIONS Biological behavior of scirrhous carcinoma was found to be aggressive. The aggressiveness and poor cellular differentiation of scirrhous carcinoma of the breast might be related to low p27 expression.
Collapse
Affiliation(s)
- Tadahiro Nozoe
- Second Department of Surgery, University of Environmental & Occupational Health, Iseigaoka, Kitakyushu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Voutsadakis IA. Pathogenesis of colorectal carcinoma and therapeutic implications: the roles of the ubiquitin-proteasome system and Cox-2. J Cell Mol Med 2007; 11:252-85. [PMID: 17488476 PMCID: PMC3822826 DOI: 10.1111/j.1582-4934.2007.00032.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pathways of the molecular pathogenesis of colorectal carcinoma have been extensively studied and molecular lesions during the development of the disease have been revealed. High up in the list of colorectal cancer lesions are APC (adenomatous polyposis coli), K-ras, Smad4 (or DPC4-deleted in pancreatic cancer 4) and p53 genes. All these molecules are part of important pathways for the regulation of cell proliferation and apoptosis and as a result perturbation of these processes lead to carcinogenesis. The ubiquitin-proteasome system (UPS) is comprised of a multi-unit cellular protease system that regulates several dozens of cell proteins after their ligation with the protein ubiquitin. Given that among these proteins are regulators of the cell cycle, apoptosis, angiogenesis, adhesion and cell signalling, this system plays a significant role in cell fate and carcinogenesis. UPS inhibition has been found to be a pre-requisite for apoptosis and is already clinically exploited with the proteasome inhibitor bortezomib in multiple myeloma. Cyclooxygenase-2 (Cox-2) is the inducible form of the enzyme that metabolizes the lipid arachidonic acid to prostaglandin H2, the first step of prostaglandins production. This enzyme is up-regulated in colorectal cancer and in several other cancers. Inhibition of Cox-2 by aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has been found to inhibit proliferation of colorectal cancer cells and in epidemiologic studies has been shown to reduce colon polyp formation in genetically predisposed populations and in the general population. NSAIDs have also Cox-independent anti-proliferative effects. Targeted therapies, the result of increasingly understanding carcinogenesis in the molecular level, have entered the field of anti-neoplastic treatment and are used by themselves and in combination with chemotherapy drugs. Combinations of targeted drugs have started also to be investigated. This article reviews the molecular pathogenesis of colorectal cancer, the roles of UPS and Cox-2 in it and puts forward a rational for their combined inhibition in colorectal cancer treatment.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, University Hospital of Larissa, Larissa 41110, Greece.
| |
Collapse
|