1
|
Yan B, Liao P, Liu S, Lei P. Comprehensive pan-cancer analysis of inflammatory age-clock-related genes as prognostic and immunity markers based on multi-omics data. Sci Rep 2024; 14:10468. [PMID: 38714870 PMCID: PMC11076581 DOI: 10.1038/s41598-024-61381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Inflammatory age (iAge) is a vital concept for understanding the intricate interplay between chronic inflammation and aging in the context of cancer. However, the importance of iAge-clock-related genes (iAge-CRGs) across cancers remains unexplored. This study aimed to explore the mechanisms and applications of these genes across diverse cancer types. We analyzed profiling data from over 10,000 individuals, covering 33 cancer types, 750 small molecule drugs, and 24 immune cell types. We focused on DCBLD2's function at the single-cell level and computed an iAge-CRG score using GSVA. This score was correlated with cancer pathways, immune infiltration, and survival. A signature was then derived using univariate Cox and LASSO regression, followed by ROC curve analysis, nomogram construction, decision curve analysis, and immunocytochemistry. Our comprehensive analysis revealed epigenetic, genomic, and immunogenomic alterations in iAge-CRGs, especially DCBLD2, leading to abnormal expression. Aberrant DCBLD2 expression strongly correlated with cancer-associated fibroblast infiltration and prognosis in multiple cancers. Based on GSVA results, we developed a risk model using five iAge-CRGs, which proved to be an independent prognostic index for uveal melanoma (UVM) patients. We also systematically evaluated the correlation between the iAge-related signature risk score and immune cell infiltration. iAge-CRGs, particularly DCBLD2, emerge as potential targets for enhancing immunotherapy outcomes. The strong correlation between abnormal DCBLD2 expression, cancer-associated fibroblast infiltration, and patient survival across various cancers underscores their significance. Our five-gene risk signature offers an independent prognostic tool for UVM patients, highlighting the crucial role of these genes in suppressing the immune response in UVM.Kindly check and confirm whether the corresponding affiliation is correctly identified.I identified the affiliation is correctly.thank you.Per style, a structured abstract is not allowed so we have changed the structured abstract to an unstructured abstract. Please check and confirm.I confirm the abstract is correctly ,thank you.
Collapse
Affiliation(s)
- Bo Yan
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Pan Liao
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shan Liu
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
2
|
Yu S, Tu R, Chen Z, Song J, Li P, Hu F, Yuan G, Zhang R, Li Y. Association of PTGER4 and PRKAA1 genetic polymorphisms with gastric cancer. BMC Med Genomics 2023; 16:209. [PMID: 37670284 PMCID: PMC10478487 DOI: 10.1186/s12920-023-01645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignancies, affected by several genetic loci in the clinical phenotype. This study aimed to determine the association between PTGER4 and PRKAA1 gene polymorphisms and the risk of GC. METHODS A total of 509 GC patients and 507 age and sex-matched healthy controls were recruited to explore the association between PTGER4 and PRKAA1 genetic polymorphisms and GC susceptibility. Logistic regression analysis was used to study the correlation between these SNPs and GC, with odd ratio (OR) and 95% confidence interval (CI) as indicators. Multifactor dimensionality reduction was utilized to analyze the genetic relationships among SNPs. was conducted to predict gene expression, the impact of SNPs on gene expression, and the signaling pathways involved in PTGER4 and PRKAA1. RESULTS Overall, rs10036575 in PTGER4 (OR = 0.82, p = 0.029), rs10074991 (OR = 0.82, p = 0.024) and rs13361707 (OR = 0.82, p = 0.030) in PRKAA1 were associated with susceptibility to GC. Stratification analysis revealed that the effects of these SNPs in PTGER4 and PRKAA1 on GC susceptibility were dependent on smoking and were associated with a reduced risk of adenocarcinoma (p < 0.05). Bioinformatics analysis showed an association between SNPs and corresponding gene expression (p < 0.05), and PRKAA1 may affect GC by mediating RhoA. CONCLUSION This study suggests that PTGER4 and PRKAA1 SNPs might affect the susceptibility of GC, providing a new biological perspective for GC risk assessment, pathogenesis exploration, and personalized treatment.
Collapse
Affiliation(s)
- Shuyong Yu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Ruisha Tu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Zhaowei Chen
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China
| | - Jian Song
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China.
| | - Ping Li
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Feixiang Hu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Guihong Yuan
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China
| | - Ronglin Zhang
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Yini Li
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| |
Collapse
|
3
|
Liang X, Wang J, Liu Y, Wei L, Tian F, Sun J, Han G, Wang Y, Ding C, Guo Z. Polymorphisms of COX/PEG2 pathway-related genes are associated with the risk of lung cancer: A case–control study in China. Int Immunopharmacol 2022; 108:108763. [DOI: 10.1016/j.intimp.2022.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 12/24/2022]
|
4
|
Du N, Dong D, Sun L, Che L, Li X, Liu Y, Wang B. Identification of ACOT13 and PTGER2 as novel candidate genes of autosomal dominant polycystic kidney disease through whole exome sequencing. Eur J Med Res 2021; 26:142. [PMID: 34886911 PMCID: PMC8656035 DOI: 10.1186/s40001-021-00613-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disorder. Half of the patients would slowly progress to end-stage renal disease. However, the potential target for ADPKD treatment is still lacking. Methods Four ADPKD patients and two healthy family members were included in this study. The peripheral blood samples were obtained and tested by the whole exome sequencing (WES). The autosomal mutations in ADPKD patients were retained as candidate sites. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein–protein interaction network (PPI) analyses were performed by clusterProfiler R package. A dataset containing 18 ADPKD patients and three normal samples were downloaded from the Gene Expression Omnibus (GEO) database and analyzed using the limma R package. Results A total of six mutant genes were identified based on the dominant genetic pattern and most of them had not been reported to be associated with ADPKD. Furthermore, 19 harmful genes were selected according to the harmfulness of mutation. GO and KEGG enrichment analyses showed that the processes of single-organism cellular process, response to stimulus, plasma membrane, cell periphery, and anion binding as well as cyclic adenosine monophosphate (cAMP) signaling pathway and pathways in cancer were significantly enriched. Through integrating PPI and gene expression analyses, acyl-CoA thioesterase 13 (ACOT13), which has not been reported to be related to ADPKD, and prostaglandin E receptor 2 (PTGER2) were identified as potential genes associated with ADPKD. Conclusions Through combination of WES, gene expression, and PPI network analyses, we identified ACOT13 and PTGER2 as potential ADPKD-related genes. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-021-00613-8.
Collapse
Affiliation(s)
- Na Du
- Infectious Diseases Department, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Dan Dong
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Luyao Sun
- Infectious Diseases Department, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Lihe Che
- Infectious Diseases Department, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Xiaohua Li
- Infectious Diseases Department, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Yong Liu
- Genetic Diagnosis Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Bin Wang
- Infectious Diseases Department, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
5
|
Dietlmeier S, Ye Y, Kuhn C, Vattai A, Vilsmaier T, Schröder L, Kost BP, Gallwas J, Jeschke U, Mahner S, Heidegger HH. The prostaglandin receptor EP2 determines prognosis in EP3-negative and galectin-3-high cervical cancer cases. Sci Rep 2020; 10:1154. [PMID: 31980713 PMCID: PMC6981231 DOI: 10.1038/s41598-020-58095-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022] Open
Abstract
Recently our study identified EP3 receptor and galectin-3 as prognosticators of cervical cancer. The aim of the present study was the analysis of EP2 as a novel marker and its association to EP3, galectin-3, clinical pathological parameters and the overall survival rate of cervical cancer patients. Cervical cancer tissues (n = 250), as also used in our previous study, were stained with anti-EP2 antibodies employing a standardized immunohistochemistry protocol. Staining results were analyzed by the IRS scores and evaluated for its association with clinical-pathological parameters. H-test of EP2 percent-score showed significantly different expression in FIGO I-IV stages and tumor stages. Kaplan-Meier survival analyses indicated that EP3-negative/EP2-high staining patients (EP2 IRS score ≥2) had a significantly higher survival rate than the EP3-negative/EP2-low staining cases (p = 0.049). In the subgroup of high galectin-3 expressing patients, the group with high EP2 levels (IRS ≥2) had significantly better survival rates compared to EP2-low expressing group (IRS <2, p = 0.044). We demonstrated that the EP2 receptor is a prognostic factor for the overall survival in the subgroup of negative EP3 and high galectin-3 expressed cervical cancer patients. EP2 in combination with EP3 or galectin-3 might act as prognostic indicators of cervical cancer. EP2, EP3, and galectin-3 could be targeted for clinical diagnosis or endocrine treatment in cervical cancer patients, which demands future investigations.
Collapse
Affiliation(s)
- Sebastian Dietlmeier
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Yao Ye
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Lennard Schröder
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Bernd P Kost
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Julia Gallwas
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany. .,Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Großhadern, Munich, Germany.
| | - Sven Mahner
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany.,Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Großhadern, Munich, Germany
| | - Helene Hildegard Heidegger
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| |
Collapse
|
6
|
Misawa K, Mima M, Satoshi Y, Imai A, Mochizuki D, Ishikawa R, Kita J, Yamaguchi Y, Endo S, Misawa Y, Mineta H. Prostanoid receptor genes confer poor prognosis in head and neck squamous cell carcinoma via epigenetic inactivation. J Transl Med 2020; 18:31. [PMID: 31969157 PMCID: PMC6977280 DOI: 10.1186/s12967-020-02214-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Chronic inflammation is a risk factor for head and neck squamous cell carcinoma (HNSCC) and other diseases. Prostanoid receptors are clearly involved in the development of many types of cancer. However, their role is not simple and is poorly understood in HNSCC. Methods Methylation profiles of prostanoid receptor family genes were generated for tumour samples obtained from 274 patients with HNSCC, including 69 hypopharynx, 51 larynx, 79 oral cavity, and 75 oropharynx tumour samples, by quantitative methylation-specific PCR. Promoter methylation was then evaluated with respect to various clinical characteristics and patient survival. Results The mean number of methylated genes per sample was 2.05 ± 2.59 (range 0 to 9). Promoters of PTGDR1, PTGDR2, PTGER1, PTGER2, PTGER3, PTGER4, PTGFR, PTGIR, and TBXA2R were methylated in 43.8%, 18.2%, 25.5%, 17.5%, 41.2%, 8.0%, 19.3%, 20.4%, and 11.3% of the samples, respectively. Methylation indices for prostanoid receptor family genes tended to be higher as the number of TET methylation events increased. Patients with 5–9 methylated genes had a significantly lower survival rate than that of patients with 0–4 methylated genes (log-rank test, P= 0.007). In multivariate analyses, PTGDR1 methylation was most highly correlated with recurrence in patients with hypopharyngeal cancer (P = 0.014). A similar correlation was observed for PTGER4 in patients with laryngeal cancer (P = 0.046). Methylation of the PTGIR and TBXA2R promoters was positively correlated with recurrence in oropharyngeal cancer (P = 0.028 and P = 0.006, respectively). Moreover, Patients with 5–9 methylated genes were extremely lower of 5hmC levels (P = 0.035) and was correlated with increasing expression of DNMT3A and DNMT3B (P < 0.05 and P < 0.05, respectively). Conclusion We characterised the relationship between the methylation status of prostanoid receptor genes and recurrence in HNSCC. These results provide new perspectives for the development of molecular targeted treatment approaches.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Shizuoka, 431-3192, Japan.
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Shizuoka, 431-3192, Japan
| | - Yamada Satoshi
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Shizuoka, 431-3192, Japan
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Shizuoka, 431-3192, Japan
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Shizuoka, 431-3192, Japan
| | - Ryuji Ishikawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Shizuoka, 431-3192, Japan
| | - Junya Kita
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Shizuoka, 431-3192, Japan
| | - Yuki Yamaguchi
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Shizuoka, 431-3192, Japan
| | - Shiori Endo
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Shizuoka, 431-3192, Japan
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Shizuoka, 431-3192, Japan
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Shizuoka, 431-3192, Japan
| |
Collapse
|
7
|
Yu D, Zhuang Z, Ren J, Hu X, Wang Z, Zhang J, Luo Y, Wang K, He R, Wang Y. Hyaluronic acid-curcumin conjugate suppresses the fibrotic functions of myofibroblasts from contractive joint by the PTGER2 demethylation. Regen Biomater 2019; 6:269-277. [PMID: 31616564 PMCID: PMC6783700 DOI: 10.1093/rb/rbz016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Joint contracture is a fibrotic complication induced by joint immobilization and trauma, which is characterized as excessive myofibroblast proliferation in joint capsule. The treatments of joint contracture are unsatisfied and patients are suffered from joint dysfunction. Our previous study has shown that curcumin can inhibit myofibroblast proliferation in vitro, but the major challenge is the low aqueous solubility and biological activity of curcumin. In this study, hyaluronic acid-curcumin (HA-Cur) conjugate was synthesized to suppress myofibroblasts in joint contracture. Cells were isolated from the joint capsules of joint contracture patients and induced to active myofibroblasts by transforming growth factor-β (TGF-β). The anti-fibrotic function and mechanisms of HA-Cur were investigated by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (PCR), methylation-specific PCR, western blot, transwell migration assay and proliferation assay. Results showed that 30 μM HA-Cur significantly attenuated the fibrotic functions of myofibroblast in joint contracture in vitro by regulating the methylation of prostaglandin E receptor 2 (PTGER2) and inhibiting TGF-β signaling. This may provide a mechanism for the treatment of joint contracture, and provide a molecular target PTGER2 for therapy during the pathogenesis of joint contracture.
Collapse
Affiliation(s)
- Dongjie Yu
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ze Zhuang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianhua Ren
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Zhe Wang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yuansen Luo
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Wang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ronghan He
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Whole genome MBD-seq and RRBS analyses reveal that hypermethylation of gastrointestinal hormone receptors is associated with gastric carcinogenesis. Exp Mol Med 2018; 50:1-14. [PMID: 30510283 PMCID: PMC6277407 DOI: 10.1038/s12276-018-0179-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/16/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is a regulatory mechanism in epigenetics that is frequently altered during human carcinogenesis. To detect critical methylation events associated with gastric cancer (GC), we compared three DNA methylomes from gastric mucosa (GM), intestinal metaplasia (IM), and gastric tumor (GT) cells that were microscopically dissected from an intestinal-type early gastric cancer (EGC) using methylated DNA binding domain sequencing (MBD-seq) and reduced representation bisulfite sequencing (RRBS) analysis. In this study, we focused on differentially methylated promoters (DMPs) that could be directly associated with gene expression. We detected 2,761 and 677 DMPs between the GT and GM by MBD-seq and RRBS, respectively, and for a total of 3,035 DMPs. Then, 514 (17%) of all DMPs were detected in the IM genome, which is a precancer of GC, supporting that some DMPs might represent an early event in gastric carcinogenesis. A pathway analysis of all DMPs demonstrated that 59 G protein-coupled receptor (GPCR) genes linked to the hypermethylated DMPs were significantly enriched in a neuroactive ligand–receptor interaction pathway. Furthermore, among the 59 GPCRs, six GI hormone receptor genes (NPY1R, PPYR1, PTGDR, PTGER2, PTGER3, and SSTR2) that play an inhibitory role in the secretion of gastrin or gastric acid were selected and validated as potential biomarkers for the diagnosis or prognosis of GC patients in two cohorts. These data suggest that the loss of function of gastrointestinal (GI) hormone receptors by promoter methylation may lead to gastric carcinogenesis because gastrin and gastric acid have been known to play a role in cell differentiation and carcinogenesis in the GI tract. A sequencing study reveals abnormal changes to DNA that set the stage for stomach cancer development. DNA methylation, the addition of methyl groups to alter DNA activity, is often disrupted in human cancers. Yong Sung Kim at the Korea Research Institute of Bioscience and Biotechnology (KRIBB) in Daejeon, South Korea, and co-workers used sequencing technogy to identify critical methylation changes in stomach epithelial cells, intestinal metaplasia lesion and tumor cells during early-stage gastric cancer. The team found 3,035 abnormally methylated DNA regions related to the expression of particular genes. Further analysis identified six hormone receptor genes directly involved with stomach acid secretion, whose altered expression was linked to over-methylated DNA regions. Loss of function within these six genes may lead to gastric cancer, and their expression levels could be valuable biomarkers for the disease.
Collapse
|
9
|
Arakawa N, Sugai T, Habano W, Eizuka M, Sugimoto R, Akasaka R, Toya Y, Yamamoto E, Koeda K, Sasaki A, Matsumoto T, Suzuki H. Genome-wide analysis of DNA copy number alterations in early and advanced gastric cancers. Mol Carcinog 2016; 56:527-537. [PMID: 27312513 DOI: 10.1002/mc.22514] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022]
Abstract
To better understand progressive changes in gastric cancer (GC), early and advanced GCs (EGC and AGC, respectively) were examined for copy number alterations (CNAs). A crypt isolation method was used to isolate DNA from tumors and normal glands in 20 AGCs, and fresh tumor samples were obtained from 45 EGCs. We assessed CNAs for differentiated-type GCs using an Infinium HumanCytoSNP-12v2.1 BeadChip in EGCs and AGCs. The most frequent aberrations in EGC were gains at 8q23.3 (42.2%) and 8q23.2 (40%), and loss of heterozygosity (LOH) at 3p14.2 (24.2%), suggesting that these CNAs were involved in the development of EGC. On the other hand, the highest frequencies of gains in AGC were found at 8q24.21 (65%) and 8q24.3 (60%). The most frequent LOHs in AGC were at 11q24.3-25, 11q23.2-24.1, 11q14.1, and 12p11.21-13.33, whereas that in EGC was at 3p14.2. In addition, regions of copy-neutral LOHs in AGC were detected at 11q21, 11q13.3-14.3, 11q11, 11p13-15.3, 12q21.1, 12q12-13.3 and 5q33.3-35.1. Comparisons of gains in EGC and AGC showed significant differences at 12q22-q23.2, 12q21.33, 11p12, 11p14.1, 12q21.31-32.32, 3p12.3, 3p14.1, 10p15.1, 1q24.2 and 2q12.1. Copy neutral LOHs were significantly higher in AGC than in EGC at 14q32.11-32.33, 14q21.3, 14q11.2, 5q11.2, 5q 13.3, 14q21.1-23.2, 14q13.2-13.3, 5q12.1-12.3, 5q11.1, and 17p13.3. The total lengths of the CNAs were significantly greater in AGC than in EGC. We found that the pattern of CNAs in AGC was quite different from that in EGC. We suggest that increasing numbers of CNAs are associated with disease progression from EGC to AGC. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Noriyuki Arakawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Wataru Habano
- Department of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Makoto Eizuka
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Risaburo Akasaka
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yosuke Toya
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Cyuouku, Sapporo City, Japan
| | - Keisuke Koeda
- Department of Surgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Akira Sasaki
- Department of Surgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Cyuouku, Sapporo City, Japan
| |
Collapse
|
10
|
Epigenetic regulations of inflammatory cyclooxygenase-derived prostanoids: molecular basis and pathophysiological consequences. Mediators Inflamm 2015; 2015:841097. [PMID: 25944989 PMCID: PMC4402557 DOI: 10.1155/2015/841097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/29/2015] [Indexed: 12/21/2022] Open
Abstract
The potential relevance of prostanoid signaling in immunity and immunological disorders, or disease susceptibility and individual variations in drug responses, is an important area for investigation. The deregulation of Cyclooxygenase- (COX-) derived prostanoids has been reported in several immunoinflammatory disorders such as asthma, rheumatoid arthritis, cancer, and autoimmune diseases. In addition to the environmental factors and the genetic background to diseases, epigenetic mechanisms involved in the fine regulation of prostanoid biosynthesis and/or receptor signaling appeared to be an additional level of complexity in the understanding of prostanoid biology and crucial in controlling the different components of the COX pathways. Epigenetic alterations targeting inflammatory components of prostanoid biosynthesis and signaling pathways may be important in the process of neoplasia, depending on the tissue microenvironment and target genes. Here, we focused on the epigenetic modifications of inflammatory prostanoids in physiological immune response and immunological disorders. We described how major prostanoids and their receptors can be functionally regulated epigenetically and consequently the impact of these processes in the pathogenesis inflammatory diseases and the development of therapeutic approaches that may have important clinical applications.
Collapse
|
11
|
Burris HH, Baccarelli AA, Motta V, Byun HM, Just AC, Mercado-Garcia A, Schwartz J, Svensson K, Téllez-Rojo MM, Wright RO. Association between length of gestation and cervical DNA methylation of PTGER2 and LINE 1-HS. Epigenetics 2014; 9:1083-91. [PMID: 24827772 DOI: 10.4161/epi.29170] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Worldwide, more than 1 in 10 infants is born prior to 37 weeks gestation. Preterm birth can lead to increased mortality risk and poor life-long health and neurodevelopmental outcomes. Whether environmental risk factors affect preterm birth through epigenetic phenomena is largely unstudied. We sought to determine whether preterm risk factors, such as smoke exposure and education, were associated with cervical DNA methylation in the prostaglandin E receptor 2 gene (PTGER2) and a repetitive element, long interspersed nuclear element-1 Homo sapiens-specific (LINE 1-HS). Second, we aimed to determine whether mid-pregnancy DNA methylation of these regions in cervical samples could predict the length of gestation. We obtained a cervical swab between 16-19 weeks gestation from 80 women participating in a Mexico City birth cohort, used pyrosequencing to analyze DNA methylation of PTGER2 and LINE 1-HS, and examined associations with maternal covariates. We used accelerated failure time models to analyze associations of DNA methylation with the length of gestation. DNA methylation of both sequences was associated with Pap smear inflammation. LINE 1-HS methylation was associated with smoke exposure, BMI and parity. In adjusted models, gestations were 3.3 days longer (95%CI 0.6, 6.0) for each interquartile range of PTGER2 DNA methylation. Higher LINE 1-HS methylation was associated with shorter gestations (-3.3 days, 95%CI -6.5, -0.2). In conclusion, cervical DNA methylation was associated with risk factors for preterm birth and the length of gestation.
Collapse
Affiliation(s)
- Heather H Burris
- Department of Neonatology; Beth Israel Deaconess Medical Center and Division of Newborn Medicine; Boston Children's Hospital and Harvard Medical School; Boston, MA USA
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics; Exposure Epidemiology and Risk Program; Harvard School of Public Health; Boston, MA USA; Department of Environmental Health; Harvard School of Public Health; Boston, MA USA
| | - Valeria Motta
- Laboratory of Environmental Epigenetics; Exposure Epidemiology and Risk Program; Harvard School of Public Health; Boston, MA USA; Department of Clinical Sciences and Community Health; University of Milan, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico; Milan, Italy
| | - Hyang-Min Byun
- Laboratory of Environmental Epigenetics; Exposure Epidemiology and Risk Program; Harvard School of Public Health; Boston, MA USA; Department of Environmental Health; Harvard School of Public Health; Boston, MA USA
| | - Allan C Just
- Department of Environmental Health; Harvard School of Public Health; Boston, MA USA
| | - Adriana Mercado-Garcia
- Center for Evaluation Research and Surveys; National Institute of Public Health; Cuernavaca, Mexico
| | - Joel Schwartz
- Department of Environmental Health; Harvard School of Public Health; Boston, MA USA
| | - Katherine Svensson
- Department of Pediatrics and Preventative Medicine; Icahn School of Medicine at Mount Sinai; New York, NY USA
| | - Martha M Téllez-Rojo
- Center for Evaluation Research and Surveys; National Institute of Public Health; Cuernavaca, Mexico
| | - Robert O Wright
- Department of Pediatrics and Preventative Medicine; Icahn School of Medicine at Mount Sinai; New York, NY USA
| |
Collapse
|
12
|
Suzuki M, Shiraishi K, Eguchi A, Ikeda K, Mori T, Yoshimoto K, Ohba Y, Yamada T, Ito T, Baba Y, Baba H. Aberrant methylation of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer. Oncol Rep 2013; 29:1308-14. [PMID: 23381221 PMCID: PMC3621652 DOI: 10.3892/or.2013.2266] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/21/2012] [Indexed: 12/23/2022] Open
Abstract
Genome-wide DNA hypomethylation and gene hypermethylation play important roles in instability and carcinogenesis. Methylation in long interspersed nucleotide element 1 (LINE-1) is a good indicator of the global DNA methylation level within a cell. Slit homolog 2 (SLIT2), myelin and lymphocyte protein gene (MAL) and insulin-like growth factor binding protein 7 (IGFBP7) are known to be hypermethylated in various malignancies. The aim of the present study was to assess the precise methylation levels of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer (NSCLC) using a pyrosequencing assay. Methylation of all regions was examined in 56 primary NSCLCs using a pyrosequencing assay. Changes in mRNA expression levels of SLIT2, MAL and IGFBP7 were measured before and after treatment with a demethylating agent. Methylation of these genes was also examined in 9 lung cancer cell lines using RT-PCR and a pyrosequencing assay. Frequencies of hypomethylation of LINE-1 and hypermethylation of SLIT2, MAL and IGFBP7, defined by predetermined cut off values, were 55, 64, 46 and 54% in NSCLCs, respectively and exhibited tumor-specific features. The hypermethylation of all genes was well correlated with changes in expression. The methylation level and frequency of MAL were significantly higher in smokers and in patients without EGFR mutations. Through accurate measurement of methylation levels using pyrosequencing, hypomethylation of LINE-1 and hypermethylation of SLIT2, MAL and IGFBP7 were frequently detected in NSCLCs and associated with various clinical features. Analysis of the methylation profiles of these genes may, therefore, provide novel opportunities for the therapy of NSCLCs.
Collapse
Affiliation(s)
- Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto 860-8556, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
To SQ, Takagi K, Miki Y, Suzuki K, Abe E, Yang Y, Sasano H, Simpson ER, Knower KC, Clyne CD. Epigenetic mechanisms regulate the prostaglandin E receptor 2 in breast cancer. J Steroid Biochem Mol Biol 2012; 132:331-8. [PMID: 22929011 DOI: 10.1016/j.jsbmb.2012.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/18/2012] [Accepted: 07/31/2012] [Indexed: 01/16/2023]
Abstract
The increase in local oestrogen production seen in oestrogen receptor positive (ER+) breast cancers is driven by increased activity of the aromatase enzyme. CYP19A1, the encoding gene for aromatase, is often overexpressed in the oestrogen-producing cells of the breast adipose fibroblasts (BAFs) surrounding an ER+ tumour, and the molecular processes underlying this upregulation is important in the development of breast-specific aromatase inhibitors for breast cancer therapy. Prostaglandin E2 (PGE2), a factor secreted by tumours, is known to stimulate CYP19A1 expression in human BAFs. The hormonal regulation of this process has been examined; however, what is less well understood is the emerging role of epigenetic mechanisms and how they modulate PGE2 signalling. This present study characterises the epigenetic processes underlying expression of the prostanoid receptor EP2 in the context of ER+ breast cancer. Sodium bisulphite sequencing of CpG methylation within the promoter region of EP2 revealed that an inverse correlation existed between methylation levels and relative EP2 expression in breast cancer cell lines MDA-MB-231, MCF7 and MCF10A but not in HS578t and T47D. Inhibition of DNA methylation with 5-aza-2'-deoxycytidine (5aza) and histone deacetylation with Trichostatin A (TSA) resulted in upregulation of EP2 mRNA in all cell lines with varying influences of each epigenetic process observed. Expression of EP2 was detected in human BAFs despite a natively methylated promoter, and this expression was further increased upon 5aza treatment. An examination of 3 triple negative, 3 ductal carcinoma in situ and 3 invasive ductal carcinoma samples revealed that there was no change in EP2 promoter methylation status between normal and cancer associated stroma, despite observed differences in relative mRNA levels. Although EP2 methylation status is inversely correlated to expression levels in established breast cancer cell lines, we could not identify that such a correlation existed in tumour-associated stroma cells.
Collapse
MESH Headings
- Adipose Tissue/cytology
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line, Tumor
- CpG Islands
- DNA Methylation
- Decitabine
- Epigenesis, Genetic
- Female
- Fibroblasts/metabolism
- Gene Expression Regulation, Neoplastic
- Histone Deacetylase Inhibitors/pharmacology
- Histones/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Promoter Regions, Genetic
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Reference Values
- Stromal Cells/metabolism
Collapse
Affiliation(s)
- Sarah Q To
- Cancer Drug Discovery Laboratory, Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Epigenetic deregulation of the COX pathway in cancer. Prog Lipid Res 2012; 51:301-13. [PMID: 22580191 DOI: 10.1016/j.plipres.2012.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 01/12/2023]
Abstract
Inflammation is a major cause of cancer and may condition its progression. The deregulation of the cyclooxygenase (COX) pathway is implicated in several pathophysiological processes, including inflammation and cancer. Although, its targeting with nonsteroidal antiinflammatory drugs (NSAIDs) and COX-2 selective inhibitors has been investigated for years with promising results at both preventive and therapeutic levels, undesirable side effects and the limited understanding of the regulation and functionalities of the COX pathway compromise a more extensive application of these drugs. Epigenetics is bringing additional levels of complexity to the understanding of basic biological and pathological processes. The deregulation of signaling and biosynthetic pathways by epigenetic mechanisms may account for new molecular targets in cancer therapeutics. Genes of the COX pathway are seldom mutated in neoplastic cells, but a large proportion of them show aberrant expression in different types of cancer. A growing body of evidence indicates that epigenetic alterations play a critical role in the deregulation of the genes of the COX pathway. This review summarizes the current knowledge on the contribution of epigenetic processes to the deregulation of the COX pathway in cancer, getting insights into how these alterations may be relevant for the clinical management of patients.
Collapse
|
15
|
Gene expression profiling of A549 cells exposed to Milan PM2.5. Toxicol Lett 2012; 209:136-45. [DOI: 10.1016/j.toxlet.2011.11.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 12/12/2022]
|
16
|
Epidermal growth factor receptor reactivation induced by E-prostanoid-3 receptor- and tumor necrosis factor-alpha-converting enzyme-dependent feedback exaggerates interleukin-8 production in airway cancer (NCI-H292) cells. Exp Cell Res 2011; 317:2650-60. [DOI: 10.1016/j.yexcr.2011.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/11/2011] [Accepted: 08/30/2011] [Indexed: 01/31/2023]
|
17
|
Kitano K, Watanabe K, Emoto N, Kage H, Hamano E, Nagase T, Sano A, Murakawa T, Nakajima J, Goto A, Fukayama M, Yatomi Y, Ohishi N, Takai D. CpG island methylation of microRNAs is associated with tumor size and recurrence of non-small-cell lung cancer. Cancer Sci 2011; 102:2126-31. [PMID: 21917081 DOI: 10.1111/j.1349-7006.2011.02101.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated whether the CpG island methylation of certain microRNAs was associated with the clinicopathological features and the prognosis of non-small-cell lung cancer. The methylation of mir-152, -9-3, -124-1, -124-2, and -124-3 was analyzed in 96 non-small-cell lung cancer specimens using a combined bisulfite restriction analysis. The median observation period was 49.5 months. The methylation of mir-9-3, -124-2, and -124-3 was individually associated with an advanced T factor independent of age, sex, and smoking habit. Moreover, the methylation of multiple microRNA loci was associated with a poorer progression-free survival in a univariate analysis. Our result enlightens the accumulation of aberrant DNA methylation which occurs in concordance with the tumor progression.
Collapse
Affiliation(s)
- Kentaro Kitano
- Department of Thoracic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bozyk PD, Moore BB. Prostaglandin E2 and the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol 2011; 45:445-52. [PMID: 21421906 DOI: 10.1165/rcmb.2011-0025rt] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prostaglandin (PG)E(2) is a bioactive eicosanoid that regulates many biologically important processes in part due to its ability to signal through four distinct G-protein-coupled receptors with differential signaling activity and unique expression patterns in different cell types. Although PGE(2) has been linked to malignancy in many organs, it is believed to play a beneficial role in the setting of fibrotic lung disease. This is in part due to the ability of PGE(2) to limit many of the pathobiologic features of lung fibroblasts and myofibroblasts, including the ability of PGE(2) to limit fibroblast proliferation, migration, collagen secretion, and, as originally reported in the Journal by us in 2003, the ability to limit transforming growth factor (TGF)-β-induced myofibroblast differentiation. In the setting of lung fibrosis, PGE(2) production and signaling is often diminished. In the last 8 years, significant advances have been made to better understand the dysregulation of PGE(2) production and signaling in the setting of lung fibrosis. We also have a clearer picture of how PGE(2) inhibits myofibroblast differentiation and the receptor signaling pathways that can influence fibroblast proliferation. This review highlights these recent advances and offers new insights into the potential ways that PGE(2) and its downstream signals can be regulated for therapeutic benefit in a disease that has no validated treatment options.
Collapse
Affiliation(s)
- Paul D Bozyk
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
19
|
Schatz P, Dietrich D, Koenig T, Burger M, Lukas A, Fuhrmann I, Kristiansen G, Stoehr R, Schuster M, Lesche R, Weiss G, Corman J, Hartmann A. Development of a diagnostic microarray assay to assess the risk of recurrence of prostate cancer based on PITX2 DNA methylation. J Mol Diagn 2010; 12:345-53. [PMID: 20304943 PMCID: PMC2860471 DOI: 10.2353/jmoldx.2010.090088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2009] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is among the most common cancers. Although it has a relatively good prognosis, 15 to 30% of men with prostate cancer experience a relapse after radical prostatectomy. Identifying patients with an aggressive tumor will therefore help to improve prostate cancer management. DNA methylation of PITX2 has been established in several studies as a prognostic biomarker for breast and prostate cancer. These case control studies were conducted using research assay components; to facilitate its use in a diagnostic setting, the PITX2 biomarker was transferred to a validated diagnostic platform, the Affymetrix GeneChip System. A customized microarray (Epichip PITX2) was designed using features in high redundancy to ensure a robust determination of the methylation state of the PITX2 promoter. The developed method allowed for accurate assessment of prognosis in prostate cancer patients who underwent radical prostatectomy. Determination of PITX2 methylation in formalin-fixed and paraffin-embedded tissue samples from a cohort of 157 prostatectomy patients resulted in an excellent level of concordance of the clinical classification, as well as the measured output between the research assay and the Epichip PITX2. These analytical performance results describe the Epichip PITX2 as a robust and reliable diagnostic tool for assessing the methylation status of PITX2, enabling an improved outcome prediction in cancer patients following radical prostatectomy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Robert Stoehr
- Institute of Pathology, University of Erlangen, Germany
| | | | | | | | - John Corman
- Virginia Mason Medical Center, Seattle, Washington
| | | |
Collapse
|