1
|
Guengerich FP. Roles of Individual Human Cytochrome P450 Enzymes in Drug Metabolism. Pharmacol Rev 2024; 76:1104-1132. [PMID: 39054072 PMCID: PMC11549934 DOI: 10.1124/pharmrev.124.001173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Our knowledge of the roles of individual cytochrome P450 (P450) enzymes in drug metabolism has developed considerably in the past 30 years, and this base has been of considerable use in avoiding serious issues with drug interactions and issues due to variations. Some newer approaches are being considered for "phenotyping" metabolism reactions with new drug candidates. Endogenous biomarkers are being used for noninvasive estimation of levels of individual P450 enzymes. There is also the matter of some remaining "orphan" P450s, which have yet to be assigned reactions. Practical problems that continue in drug development include predicting drug-drug interactions, predicting the effects of polymorphic and other P450 variations, and evaluating interspecies differences in drug metabolism, particularly in the context of "metabolism in safety testing" regulatory issues ["disproportionate (human) metabolites"]. SIGNIFICANCE STATEMENT: Cytochrome P450 enzymes are the major catalysts involved in drug metabolism. The characterization of their individual roles has major implications in drug development and clinical practice.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
2
|
He J, Song J, Zhou XH, Hou Y. A screening method for ultra-high dimensional features with overlapped partition structures. Stat Methods Med Res 2023; 32:22-40. [PMID: 36177601 DOI: 10.1177/09622802221129043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ultra-high dimensional data, such as gene and neuroimaging data, are becoming increasingly important in biomedical science. Identifying important biomarkers from the huge number of features can help us gain better insights into further researches. Variable screening is an efficient tool to achieve this goal under the large scale cases, which reduces the dimension of features into a moderate size by removing the major part of inactive ones. Developing novel variable screening methods for high-dimensional features with group structures is challenging, especially under the overlapped cases. For example, the huge-scaled genes usually can be partitioned into hundreds of pathways according to background knowledge. One primary characteristic for this type of data is that many genes may appear across more than one pathway, which means that different pathways are overlapped. However, existing variable screening methods only could deal with disjoint group structure cases. To fill this gap, we propose a novel variable screening method for the generalized linear model by incorporating overlapped partition structures with theoretical guarantee. Besides the sure screening property, we also test the performance of the proposed method through a series of numerical studies and apply it to statistical analysis of a breast cancer data.
Collapse
Affiliation(s)
- Jie He
- Department of Biostatistics, School of Public Health, 33133Peking University Health Science Center, Beijing, China
| | - Jiali Song
- Department of Biostatistics, School of Public Health, 33133Peking University Health Science Center, Beijing, China
| | - Xiao-Hua Zhou
- Department of Biostatistics, School of Public Health, 33133Peking University Health Science Center, Beijing, China.,Beijing International Center for Mathematical Research, 12465Peking University, Beijing, China
| | - Yan Hou
- Department of Biostatistics, School of Public Health, 33133Peking University Health Science Center, Beijing, China
| |
Collapse
|
3
|
Wei QY, Lau ATY, Mo HY, Zhong QH, Zhao XY, Yu FY, Han J, Wu YY, Xu YM. Effects of CYP3A43 Expression on Cell Proliferation and Migration of Lung Adenocarcinoma and Its Clinical Significance. Int J Mol Sci 2022; 24:ijms24010113. [PMID: 36613552 PMCID: PMC9820144 DOI: 10.3390/ijms24010113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022] Open
Abstract
The cytochrome P450s (CYP450s) include key oxidative enzymes involved in the metabolism of various carcinogens and anticancer drugs. Bioinformatic studies have demonstrated the association of CYP3A43 with liver cancer and ovarian cancer. However, the biological function of CYP3A43 in tumor progression remains unclear. To further reveal the role of CYP3A43 in tumor progression, we first analyzed the data from the UALCAN database and found that CYP3A43 was negatively correlated to the cancer staging and lymph node metastasis of lung adenocarcinoma (LUAD). We established stable CYP3A43-knockdown LUAD H1299 cell line and found that its knockdown enhanced cell proliferation, colony formation, and migration in vitro, and promoted the growth of tumor xenograft in vivo. Interestingly, when CYP3A43 was ectopically-expressed in the LUAD cell lines, decreased cell proliferation and ERK1/2 phosphorylation level were observed. Lastly, we also identified CYP3A43 co-expressed genes in LUAD from LinkedOmics database followed by GO and KEGG analyses. In conclusion, our results indicate the unprecedented role of CYP3A43 in the suppression of LUAD and provide new possibilities for targeted therapy of this life-threatening disease.
Collapse
Affiliation(s)
- Qi-Yao Wei
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Hai-Ying Mo
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Qiu-Hua Zhong
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Yun Zhao
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Fei-Yuan Yu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Jin Han
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Yu-Yao Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
4
|
Molina-Ortiz D, Torres-Zárate C, Santes-Palacios R. Human Orphan Cytochromes P450: An Update. Curr Drug Metab 2022; 23:942-963. [PMID: 36503398 DOI: 10.2174/1389200224666221209153032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.
Collapse
Affiliation(s)
- Dora Molina-Ortiz
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Carmen Torres-Zárate
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Rebeca Santes-Palacios
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| |
Collapse
|
5
|
Mycoplasma gallisepticum (HS strain) surface lipoprotein pMGA interacts with host apolipoprotein A-I during infection in chicken. Appl Microbiol Biotechnol 2015; 100:1343-1354. [DOI: 10.1007/s00253-015-7117-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 01/01/2023]
|
6
|
Brandl EJ, Chowdhury NI, Tiwari AK, Lett TAP, Meltzer HY, Kennedy JL, Müller DJ. Genetic variation in CYP3A43 is associated with response to antipsychotic medication. J Neural Transm (Vienna) 2014; 122:29-34. [PMID: 25150845 DOI: 10.1007/s00702-014-1298-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Genetic variation in cytochrome enzymes is known to affect drug metabolism and influence treatment response. Recently, the rs472660 variant in CYP3A43 has been associated with olanzapine response and clearance. In this study, we investigated the impact of rs472660 and the putatively functional marker rs680055 on antipsychotic response. We genotyped the rs472660 and rs680055 single nucleotide polymorphisms (SNPs) in N = 152 schizophrenia patients of European descent collected at two sample sites who were predominately treated with second generation antipsychotics for up to 6 months. Treatment response was assessed prospectively using Brief Psychiatric Rating Scale (BPRS) scores. Statistical analysis was performed using Chi square and analysis of covariance. The rs680055 SNP was significantly associated with treatment response. Carriers of the minor allele had significantly lower BPRS scores at study end (p = 5.9 × 10(-4)) with 8 % of the variance being explained by rs680055 genotype. Post hoc analyses revealed that this effect was present in both samples and in both genders. The rs472660 SNP was also associated with response (p = 0.027); however, this finding was not significant after multiple test correction. This is the first evidence that the rs680055 missense mutation influences antipsychotic response. Although our finding for rs472660 was only a non-significant trend after correction, our results still support the notion that this SNP may play a role in antipsychotic response. Despite the fact that the functional role of CYP3A43 in antipsychotic metabolism is not fully understood yet, our study provides an important contribution to understanding genetic factors of antipsychotic response.
Collapse
Affiliation(s)
- Eva J Brandl
- Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College Street, Toronto, ON, M5T1R8, Canada,
| | | | | | | | | | | | | |
Collapse
|
7
|
Justenhoven C, Obazee O, Winter S, Rabstein S, Lotz A, Harth V, Pesch B, Brüning T, Baisch C, Hartikainen JM, Mannermaa A, Kosma VM, Kataja V, Winqvist R, Pylkäs K, Jukkola-Vuorinen A, Grip M, Fasching PA, Beckmann M, Ekici AB, Hein A, Hall P, Li J, Chang-Claude J, Flesch-Janys D, Seibold P, Rudolph A, Hamann U, Ko YD, Brauch H. The UGT1A6_19_GG genotype is a breast cancer risk factor. Front Genet 2013; 4:104. [PMID: 23781229 PMCID: PMC3677984 DOI: 10.3389/fgene.2013.00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/22/2013] [Indexed: 11/27/2022] Open
Abstract
Validation of an association between the UGT1A6_19_T>G (rs6759892) polymorphism and overall breast cancer risk. A pilot study included two population-based case-control studies from Germany (MARIE-GENICA). An independent validation study comprised four independent breast cancer case-control studies from Finland (KBCP, OBCS), Germany (BBCC), and Sweden (SASBAC). The pooled analysis included 7418 cases and 8720 controls from all six studies. Participants were of European descent. Genotyping was done by MALDI-TOF MS and statistical analysis was performed by logistic regression adjusted for age and study. The increased overall breast cancer risk for women with the UGT1A6_19_GG genotype which was observed in the pilot study was confirmed in the set of four independent study collections (OR 1.13, 95% CI 1.05–1.22; p = 0.001). The pooled study showed a similar effect (OR 1.09, 95% CI 1.04–1.14; p = 0.001). The risk effect on the basis of allele frequencies was highly significant, the pooled analysis showed an OR of 1.11 (95% CI 1.06–1.16; p = 5.8 × 10−6). We confirmed the association of UGT1A6_19_GG with increased overall breast cancer risk and conclude that our result from a well powered multi-stage study adds a novel candidate to the panel of validated breast cancer susceptibility loci.
Collapse
Affiliation(s)
- Christina Justenhoven
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, University of Tuebingen Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Justenhoven C. Polymorphisms of Phase I and Phase II Enzymes and Breast Cancer Risk. Front Genet 2012; 3:258. [PMID: 23226154 PMCID: PMC3508624 DOI: 10.3389/fgene.2012.00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/05/2012] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is a complex disease which is provoked by a multitude of exogenous and endogenous factors including genetic variations. Recent genome-wide association studies identified a set of more than 18 novel low penetrant susceptibility loci, however, a limitation of this powerful approach is the hampered analysis of polymorphisms in DNA sequences with a high degree of similarity to other genes or pseudo genes. Since this common feature affects the majority of the highly polymorphic genes encoding phase I and II enzymes the retrieval of specific genotype data requires adapted amplification methods. With regard to breast cancer these genes are of certain interest due to their involvement in the metabolism of carcinogens like exogenous genotoxic compounds or steroid hormones. The present review summarizes the observed effects of functional genetic variants of phase I and II enzymes in well designed case control studies to shed light on their contribution to breast cancer risk.
Collapse
Affiliation(s)
- Christina Justenhoven
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology Stuttgart, Germany ; University of Tübingen Tübingen, Germany
| |
Collapse
|
9
|
Dong N, Yu J, Wang C, Zheng X, Wang Z, Di L, Song G, Zhu B, Che L, Jia J, Jiang H, Zhou X, Wang X, Ren J. Pharmacogenetic assessment of clinical outcome in patients with metastatic breast cancer treated with docetaxel plus capecitabine. J Cancer Res Clin Oncol 2012; 138:1197-203. [DOI: 10.1007/s00432-012-1183-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|