1
|
Ranjan A, Thoenen EA, Kaida A, Wood S, Van Dyke T, Iwakuma T. Characterization of an Mtbp Hypomorphic Allele in a Diethylnitrosamine-Induced Liver Carcinogenesis Model. Cancers (Basel) 2023; 15:4596. [PMID: 37760565 PMCID: PMC10526184 DOI: 10.3390/cancers15184596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
MTBP is implicated in cell cycle progression, DNA replication, and cancer metastasis. However, the function of MTBP remains enigmatic and is dependent on cellular contexts and its cellular localization. To understand the in vivo physiological role of MTBP, it is important to generate Mtbp knockout mice. However, complete deletion of the Mtbp gene in mice results in early embryonic lethality, while its heterozygous deletion shows modest biological phenotypes, including enhanced cancer metastasis. To overcome this and better characterize the in vivo physiological function of MTBP, we, for the first time, generated mice that carry an Mtbp hypomorphic allele (MtbpH) in which Mtbp protein is expressed at approximately 30% of that in the wild-type allele. We treated wild-type, Mtbp+/-, and MtbpH/- mice with a liver carcinogen, diethylnitrosamine (DEN), and found that the MtbpH/- mice showed worse overall survival when compared to the wild-type mice. Consistent with previous reports using human liver cancer cells, mouse embryonic fibroblasts (MEFs) from the MtbpH/- mice showed an increase in the nuclear localization of p-Erk1/2 and migratory potential. Thus, MtbpH/- mice and cells from MtbpH/- mice are valuable to understand the in vivo physiological role of Mtbp and validate the diverse functions of MTBP that have been observed in human cells.
Collapse
Affiliation(s)
- Atul Ranjan
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| | - Elizabeth A. Thoenen
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| | - Atsushi Kaida
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Stephanie Wood
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Tomoo Iwakuma
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Choudhary HB, Mandlik SK, Mandlik DS. Role of p53 suppression in the pathogenesis of hepatocellular carcinoma. World J Gastrointest Pathophysiol 2023; 14:46-70. [PMID: 37304923 PMCID: PMC10251250 DOI: 10.4291/wjgp.v14.i3.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/01/2023] Open
Abstract
In the world, hepatocellular carcinoma (HCC) is among the top 10 most prevalent malignancies. HCC formation has indeed been linked to numerous etiological factors, including alcohol usage, hepatitis viruses and liver cirrhosis. Among the most prevalent defects in a wide range of tumours, notably HCC, is the silencing of the p53 tumour suppressor gene. The control of the cell cycle and the preservation of gene function are both critically important functions of p53. In order to pinpoint the core mechanisms of HCC and find more efficient treatments, molecular research employing HCC tissues has been the main focus. Stimulated p53 triggers necessary reactions that achieve cell cycle arrest, genetic stability, DNA repair and the elimination of DNA-damaged cells’ responses to biological stressors (like oncogenes or DNA damage). To the contrary hand, the oncogene protein of the murine double minute 2 (MDM2) is a significant biological inhibitor of p53. MDM2 causes p53 protein degradation, which in turn adversely controls p53 function. Despite carrying wt-p53, the majority of HCCs show abnormalities in the p53-expressed apoptotic pathway. High p53 in-vivo expression might have two clinical impacts on HCC: (1) Increased levels of exogenous p53 protein cause tumour cells to undergo apoptosis by preventing cell growth through a number of biological pathways; and (2) Exogenous p53 makes HCC susceptible to various anticancer drugs. This review describes the functions and primary mechanisms of p53 in pathological mechanism, chemoresistance and therapeutic mechanisms of HCC.
Collapse
Affiliation(s)
- Heena B Choudhary
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Satish K Mandlik
- Department of Pharmaceutics, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Deepa S Mandlik
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| |
Collapse
|
3
|
Bouzid A, Al Ani M, de la Fuente D, Al Shareef ZM, Quadri A, Hamoudi R, Al-Rawi N. Identification of p53-target genes in human papillomavirus-associated head and neck cancer by integrative bioinformatics analysis. Front Oncol 2023; 13:1128753. [PMID: 37081989 PMCID: PMC10110890 DOI: 10.3389/fonc.2023.1128753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
IntroductionHead and neck cancer (HNC) is a highly prevalent and heterogeneous malignancy. Although extensive efforts have been made to advance its treatment, the prognosis remained poor with increased mortality. Human papillomaviruses (HPV) have been associated with high risk in HNC. TP53, a tumor suppressor, is the most frequently altered gene in HNC, therefore, investigating its target genes for the identification of novel biomarkers or therapeutic targets in HPV-related HNC progression is highly recommended.MethodsTranscriptomic profiles from three independent gene expression omnibus (GEO) datasets, including 44 HPV+ and 70 HPV- HNC patients, were subjected to integrative statistical and Bioinformatics analyses. For the top-selected marker, further in-silico validation in TCGA and GTEx databases and experimental validation in 65 (51 HPV- and 14 HPV+) subjects with histologically confirmed head and neck squamous cell carcinoma (HNSCC) have been performed.ResultsA total of 498 differentially expressed genes (DEGs) were identified including 291 up-regulated genes and 207 down-regulated genes in HPV+ compared to HPV- HNSCC patients. Functional annotations and gene set enrichment analysis (GSEA) showed that the up-regulated genes were significantly involved in p53-related pathways. The integrative analysis between the Hub-genes identified in the complex protein-protein network and the top frequent genes resulting from GSEA showed an intriguing correlation with five biomarkers which are EZH2, MDM2, PCNA, STAT5A and TYMS. Importantly, the MDM2 gene showed the highest gene expression difference between HPV+ and HPV- HNSCC (Average log2FC = 1.89). Further in-silico validation in a large HNSCC cohort from TCGA and GTEx databases confirmed the over-expression of MDM2 in HPV+ compared to HPV- HNSCC patients (p = 2.39E-05). IHC scoring showed that MDM2 protein expression was significantly higher in HPV+ compared to HPV- HNSCC patients (p = 0.031).DiscussionOur findings showed evidence that over-expression of MDM2, proto-oncogene, may affect the occurrence and proliferation of HPV-associated HNSCC by disturbing the p53-target genes and consequently the p53-related pathways.
Collapse
Affiliation(s)
- Amal Bouzid
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Amal Bouzid, ; Rifat Hamoudi, ; Natheer Al-Rawi,
| | - Muwaffaq Al Ani
- Ear Nose and Throat (ENT) Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - David de la Fuente
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Zainab Mohamed Al Shareef
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Asif Quadri
- Department of Anatomic Pathology, National Reference lab, Abu Dhabi, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- *Correspondence: Amal Bouzid, ; Rifat Hamoudi, ; Natheer Al-Rawi,
| | - Natheer Al-Rawi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Amal Bouzid, ; Rifat Hamoudi, ; Natheer Al-Rawi,
| |
Collapse
|
4
|
Grieb BC, Eischen CM. MTBP and MYC: A Dynamic Duo in Proliferation, Cancer, and Aging. BIOLOGY 2022; 11:881. [PMID: 35741402 PMCID: PMC9219613 DOI: 10.3390/biology11060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022]
Abstract
The oncogenic transcription factor c-MYC (MYC) is highly conserved across species and is frequently overexpressed or dysregulated in human cancers. MYC regulates a wide range of critical cellular and oncogenic activities including proliferation, metabolism, metastasis, apoptosis, and differentiation by transcriptionally activating or repressing the expression of a large number of genes. This activity of MYC is not carried out in isolation, instead relying on its association with a myriad of protein cofactors. We determined that MDM Two Binding Protein (MTBP) indirectly binds MYC and is a novel MYC transcriptional cofactor. MTBP promotes MYC-mediated transcriptional activity, proliferation, and cellular transformation by binding in a protein complex with MYC at MYC-bound promoters. This discovery provided critical context for data linking MTBP to aging as well as a rapidly expanding body of evidence demonstrating MTBP is overexpressed in many human malignancies, is often linked to poor patient outcomes, and is necessary for cancer cell survival. As such, MTBP represents a novel and potentially broad reaching oncologic drug target, particularly when MYC is dysregulated. Here we have reviewed the discovery of MTBP and the initial controversy with its function as well as its associations with proliferation, MYC, DNA replication, aging, and human cancer.
Collapse
Affiliation(s)
- Brian C. Grieb
- Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christine M. Eischen
- Department of Cancer Biology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Zaffar E, Ferreira P, Sanchez-Pulido L, Boos D. The Role of MTBP as a Replication Origin Firing Factor. BIOLOGY 2022; 11:biology11060827. [PMID: 35741348 PMCID: PMC9219753 DOI: 10.3390/biology11060827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
Abstract
The initiation step of replication at replication origins determines when and where in the genome replication machines, replisomes, are generated. Tight control of replication initiation helps facilitate the two main tasks of genome replication, to duplicate the genome accurately and exactly once each cell division cycle. The regulation of replication initiation must ensure that initiation occurs during the S phase specifically, that no origin fires more than once per cell cycle, that enough origins fire to avoid non-replicated gaps, and that the right origins fire at the right time but only in favorable circumstances. Despite its importance for genetic homeostasis only the main molecular processes of eukaryotic replication initiation and its cellular regulation are understood. The MTBP protein (Mdm2-binding protein) is so far the last core replication initiation factor identified in metazoan cells. MTBP is the orthologue of yeast Sld7. It is essential for origin firing, the maturation of pre-replicative complexes (pre-RCs) into replisomes, and is emerging as a regulation focus targeted by kinases and by regulated degradation. We present recent insight into the structure and cellular function of the MTBP protein in light of recent structural and biochemical studies revealing critical molecular details of the eukaryotic origin firing reaction. How the roles of MTBP in replication and other cellular processes are mutually connected and are related to MTBP's contribution to tumorigenesis remains largely unclear.
Collapse
Affiliation(s)
- Eman Zaffar
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
| | - Pedro Ferreira
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
| | - Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, IGC, University of Edinburgh, Edinburgh EH9 3JR, UK;
| | - Dominik Boos
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
- Correspondence: ; Tel.: +49-201-183-4132
| |
Collapse
|
6
|
Penteado CAS, Batista TBD, Chaiben CL, Bonacin BG, Ventura TMO, Dionizio A, Couto Souza PH, Buzalaf MAR, Azevedo-Alanis LR. Salivary protein candidates for biomarkers of oral disorders in alcohol and tobacco dependents. Oral Dis 2020; 26:1200-1208. [PMID: 32237000 DOI: 10.1111/odi.13337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/20/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To evaluate the oral condition of alcohol and tobacco dependents and identify salivary protein candidates for biomarkers of oral disorders. SUBJECTS AND METHODS Thirty-three male volunteers were evaluated for alcohol abuse rehabilitation; nine were selected for proteomic analysis. Intraoral examination was performed, and non-stimulated saliva was collected. Salivary proteins were extracted and processed for analysis. A list of proteins identified in saliva was generated from the database and manually revised, obtaining the total number of candidate biomarkers for oral disorders. RESULTS The mean age (n = 33) was 42.94 ± 8.61 years. Fourteen (42.4%) subjects presented with 23 oral mucosa changes, and 31 (94%) had dental plaque. A total of 282 proteins were found in saliva (n = 9), of which 26 were identified as candidates for biomarkers of oral disorders. After manual review, 21 proteins were selected. The highest number of candidates for biomarkers was associated with carcinoma of head and neck (n = 10), nasopharyngeal carcinoma (n = 6), and periodontal disease (n = 6). CONCLUSION Alcohol and tobacco dependents showed gingival inflammation, and less than half of them showed oral mucosa changes. Twenty-one protein candidates for biomarkers of oral disorders were identified in saliva. The two major oral disorders in number of candidates for biomarkers were head and neck cancer and periodontal disease.
Collapse
Affiliation(s)
| | - Thiago Beltrami Dias Batista
- Graduate Program in Dentistry, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Cassiano Lima Chaiben
- Graduate Program in Dentistry, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Bruna Guedes Bonacin
- Dentistry, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Aline Dionizio
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brasil
| | - Paulo Henrique Couto Souza
- Graduate Program in Dentistry, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Luciana Reis Azevedo-Alanis
- Graduate Program in Dentistry, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
7
|
Pan B, Han H, Wu L, Xiong Y, Zhang J, Dong B, Yang Y, Chen J. MTBP promotes migration and invasion by regulation of ZEB2-mediated epithelial-mesenchymal transition in lung cancer cells. Onco Targets Ther 2018; 11:6741-6756. [PMID: 30349307 PMCID: PMC6188014 DOI: 10.2147/ott.s167963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background It is clearly necessary to discover prognostic biomarkers to identify stage I patients at risk of recurrence and give them timely postoperative treatment. Materials and methods Data of stage I lung adenocarcinoma were retrieved from four gene series in Gene Expression Omnibus (GEO) database (GSE50081, GSE30219, GSE37745, and GSE13213). Partek Genomics Suite software was used to identify survival-related genes for finding candidate indicators for early-stage patients at risk of recurrence. Differential expression of MTBP (MDM2 binding protein) in early-stage lung adenocarcinoma tissues was determined by immunohistochemical staining. The effects of MTBP interference expression and overexpression on viability, migration, and invasion capacity of lung cells were evaluated using Cell Counting Kit-8, wound healing, and Transwell assays. The tumor growth and lung metastasis in vivo were observed in chick embryo chorioallantoic membrane model. Human Exon 2.0 ST Array was used to analyze downstream regulation genes of MTBP in lung cancer cells. Involvement of ZEB2 and epithelial–mesenchymal transition (EMT) markers was investigated by Western blot. Results By mining GEO database, we identified MTBP as a poor prognostic indicator of stage I lung adenocarcinomas. In addition, increased expression of MTBP was also associated with poor survival in our early-stage lung adenocarcinoma cohort. Further experiment suggested that knockdown of MTBP suppressed the migration and invasion of A549 and H1975 cells in vitro and in vivo, whereas overexpression of MTBP in HCC827 and PC9 cells promoted the migration and invasion in vitro and in vivo. Furthermore, ZEB2 upregulation directly activated EMT to mediate the downstream effects of MTBP involved in lung cancer cells metastasis. Conclusion MTBP is an independent indicator for poor prognosis in stage I lung adenocarcinomas and might promote the aggressive phenotype of non-small-cell lung cancer by inducing the EMT process through upregulating ZEB2 expression.
Collapse
Affiliation(s)
- Bo Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Haibo Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Biobank, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lina Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ying Xiong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Jianzhi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Jinfeng Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China, ,
| |
Collapse
|
8
|
MTBP inhibits the Erk1/2-Elk-1 signaling in hepatocellular carcinoma. Oncotarget 2018; 9:21429-21443. [PMID: 29765550 PMCID: PMC5940416 DOI: 10.18632/oncotarget.25117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/21/2018] [Indexed: 01/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the prognosis of HCC patients, especially those with metastasis, remains extremely poor. This is partly due to unclear molecular mechanisms underlying HCC metastasis. Our previous study indicates that MDM2 Binding Protein (MTBP) suppresses migration and metastasis of HCC cells. However, signaling pathways regulated by MTBP remain unknown. To identify metastasis-associated signaling pathways governed by MTBP, we have performed unbiased luciferase reporter-based signal array analyses and found that MTBP suppresses the activity of the ETS-domain transcription factor Elk-1, a downstream target of Erk1/2 MAP kinases. MTBP also inhibits phosphorylation of Elk-1 and decreases mRNA expression of Elk-1 target genes. Reduced Elk-1 activity is caused by inhibited nuclear translocation of phosphorylated Erk1/2 (p-Erk) by MTBP and subsequent inhibition of Elk-1 phosphorylation. We also reveal that MTBP inhibits the interaction of p-Erk with importin-7/RanBP7 (IPO7), an importin family member which shuttles p-Erk into the nucleus, by binding to IPO7. Moreover, high levels of MTBP in human HCC tissues are correlated with cytoplasmic localization of p-Erk1/2. Our study suggests that MTBP suppresses metastasis, at least partially, by down-modulating the Erk1/2-Elk-1 signaling pathway, thus identifying a novel regulatory mechanism of HCC metastasis by regulating the subcellular localization of p-Erk.
Collapse
|
9
|
MDM2-p53 Interactions in Human Hepatocellular Carcinoma: What Is the Role of Nutlins and New Therapeutic Options? J Clin Med 2018; 7:jcm7040064. [PMID: 29584707 PMCID: PMC5920438 DOI: 10.3390/jcm7040064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is the fifth most common cancer and is associated with poor prognosis worldwide. The molecular mechanisms underlying the pathogenesis of HCC have been an area of continuing interest, and recent studies using next generation sequencing (NGS) have revealed much regarding previously unsettled issues. Molecular studies using HCC samples have been mainly targeted with the aim to identify the fundamental mechanisms contributing to HCC and identify more effective treatments. In response to cellular stresses (e.g., DNA damage or oncogenes), activated p53 elicits appropriate responses that aim at DNA repair, genetic stability, cell cycle arrest, and the deletion of DNA-damaged cells. On the other hand, the murine double minute 2 (MDM2) oncogene protein is an important cellular antagonist of p53. MDM2 negatively regulates p53 activity through the induction of p53 protein degradation. However, current research has shown that the mechanisms underlying MDM2-p53 interactions are more complex than previously thought. Microarray data have added new insight into the transcription changes in HCC. Recently, Nutlin-3 has shown potency against p53-MDM2 binding and the enhancement of p53 stabilization as well as an increment of p53 cellular accumulation with potential therapeutic effects. This review outlines the molecular mechanisms involved in the p53-MDM2 pathways, the biological factors influencing these pathways, and their roles in the pathogenesis of HCC. It also discusses the action of Nutlin-3 treatment in inducing growth arrest in HCC and elaborates on future directions in research in this area. More research on the biology of p53-MDM2 interactions may offer a better understanding of these mechanisms and discover new biomarkers, sensitive prognostic indicators as well as new therapeutic interventions in HCC.
Collapse
|
10
|
Wang W, Chen Z, Jin J, Long Z, Liu X, Cai H, Zhou Y, Huang H, Wang Y. MDM2 binding protein as a predictor of metastasis and a novel prognostic biomarker in patients with gastric cancer. Oncol Lett 2017; 14:6409-6416. [PMID: 29422956 PMCID: PMC5770606 DOI: 10.3892/ol.2017.7031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
MDM2 binding protein (MTBP) has been revealed to be involved in cancer progression and metastasis. However, the role and clinical implication of MTBP expression in gastric cancer (GC) remains poorly understood. The present study aimed to investigate the clinicopathological significance of MTBP and the prognostic determinant in GC. The expression level of MTBP was examined in cancerous and matched adjacent noncancerous gastric mucosa tissues by reverse transcription-quantitative polymerase chain reaction and western blotting. MTBP expression levels were evaluated by immunohistochemical analysis of tissue microarrays for 352 patients, and association between the expression levels and prognosis in patients with GC were investigated. Kaplan-Meier analysis and Cox's regression models were used to investigate the associations between MTBP expression and prognosis of GC patients. The results of the present study revealed decreased MTBP mRNA (P=0.005) and protein (P=0.001) expression levels in tumor tissue compared with in matched adjacent normal tissue mucosa. MTBP expression level in GC was associated with gender (P=0.026), lymph node metastasis (P<0.001), distant metastasis (P=0.026) and pathological tumor-node-metastasis stage (P<0.001). Kaplan-Meier survival analysis demonstrated that patients with high MTBP expression levels exhibited longer survival times compared with patients with low MTBP expression levels. The multivariate logistic regression analysis revealed that MTBP was independently associated with the presence of lymph node [OR, 0.282; 95% confidence interval (CI), 0.161–0.494; P<0.001] and distant metastasis (OR, 0.365; 95% CI, 0.138–0.965; P=0.042). Furthermore, the multivariate Cox analysis revealed that low MTBP expression level was significantly associated with longer overall survival time and was recognized as an independent prognostic factor of patient's survival. MTBP expression level was significantly associated with progression and metastasis in GC, suggesting that MTBP may be used as a predictive marker for patient prognosis of GC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Jiejie Jin
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ziwen Long
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiaowen Liu
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hong Cai
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ye Zhou
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hua Huang
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yanong Wang
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
11
|
Modifying effect of mouse double minute-2 promoter variants on risk of recurrence for patients with squamous cell carcinoma of oropharynx. Sci Rep 2017; 7:39765. [PMID: 28045062 PMCID: PMC5206622 DOI: 10.1038/srep39765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
Functional mouse double minute-2 (MDM2) promoter variants may alter MDM2 expression and thus affect radiotherapy response and prognosis of squamous cell carcinoma of oropharynx (SCCOP). Thus we assessed association of 2 functional MDM2 promoter variants with recurrence risk of SCCOP. The disease-free survival (DFS) of patients with MDM2rs2279744 TT or MDM2rs937283 AA genotypes was significantly reduced compared with that of patients with corresponding GT/GG or AG/GG genotypes. Multivariable analysis showed patients with TT or AA genotypes had a significantly higher risk of SCCOP recurrence than those with corresponding GT/GG or AG/GG genotypes did. Furthermore, patients with combined risk genotypes of the 2 polymorphisms had significantly worse DFS and a higher recurrence risk than patients with fewer combined risk genotypes did (Ptrend < 0.001). Compared with patients with 0 risk genotypes, patients with 1 or 2 risk genotypes had an approximately 3- or 11-fold increased risk of SCCOP recurrence, respectively. Notably, for both individual and combined polymorphisms, the above similar recurrence risks were particularly higher among patients with human papilloma virus (HPV)-positive tumors. Taken together, our findings suggest that MDM2 promoter variants individually, or more likely jointly, play a role in determining the risk of recurrence of SCCOP, particularly HPV-positive SCCOP.
Collapse
|
12
|
Yu H, Li H, Zhang J, Liu G. Influence of MDM2 polymorphisms on squamous cell carcinoma susceptibility: a meta-analysis. Onco Targets Ther 2016; 9:6211-6224. [PMID: 27785069 PMCID: PMC5067019 DOI: 10.2147/ott.s113417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Controversial associations between single-nucleotide polymorphisms (rs2279744, rs937283, rs3730485) of the MDM2 gene and the etiology of squamous cell carcinomas (SCCs) have been reported. This merits further comprehensive assessment. MATERIALS AND METHODS We systematically reviewed the available data and conducted an updated meta-analysis to evaluate the genetic effect of MDM2 polymorphisms in SCC susceptibility, using Stata/SE 12.0 software. RESULTS After screening, 7,987 SCC cases and 12,954 controls from 26 eligible case-control studies were enrolled. Overall, compared with the control group, a significantly increased SCC risk was observed for the MDM2 rs2279744 polymorphism in the Asian population (test of association: odds ratio [OR] 1.12, P=0.027 for G vs T; OR 1.26, P=0.016 for GG vs TT; OR 1.25, P<0.001 for GG vs TT + TG; and OR 1.08, P=0.023 for carrier G vs T). In subgroup analysis by SCC type, a similarly increased esophageal SCC risk was detected (OR 1.19, P<0.001 for G vs T; OR 1.46, P<0.001 for GG vs TT; and OR 1.48, P=0.005 for GG vs TT + TG). Furthermore, MDM2-TP53 double mutation was statistically associated with increased SCC susceptibility overall (OR 1.52, P=0.001), especially in the Asian population (OR 1.49, P=0.022). However, no significant difference between the control and case groups was obtained for MDM2 rs937283 or rs3730485 under any genetic model (all P>0.05). CONCLUSION Our results highlight a positive association between the GG genotype of MDM2 rs2279744 polymorphism and an increased risk of esophageal SCC in the Asian population, which needs to be clarified by more large-scale studies.
Collapse
Affiliation(s)
- Huanxin Yu
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, Tianjin, People's Republic of China
| | - Haiyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, Tianjin, People's Republic of China
| | - Jinling Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, Tianjin, People's Republic of China
| | - Gang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, Tianjin, People's Republic of China
| |
Collapse
|
13
|
miR-150 inhibits terminal erythroid proliferation and differentiation. Oncotarget 2016; 6:43033-47. [PMID: 26543232 PMCID: PMC4767489 DOI: 10.18632/oncotarget.5824] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/22/2015] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding linear RNAs, have been shown to play a crucial role in erythropoiesis. To evaluate the indispensable role of constant suppression of miR-150 during terminal erythropoiesis, we performed miR-150 gain- and loss-of-function experiments on hemin-induced K562 cells and EPO-induced human CD34+ cells. We found that forced expression of miR-150 suppresses commitment of hemoglobinization and CD235a labeling in both cell types. Erythroid proliferation is also inhibited via inducing apoptosis and blocking the cell cycle when miR-150 is overexpressed. In contrast, miR-150 inhibition promotes terminal erythropoiesis. 4.1 R gene is a new target of miR-150 during terminal erythropoiesis, and its abundance ensures the mechanical stability and deformability of the membrane. However, knockdown of 4.1 R did not affect terminal erythropoiesis. Transcriptional profiling identified more molecules involved in terminal erythroid dysregulation derived from miR-150 overexpression. These results shed light on the role of miR-150 during human terminal erythropoiesis. This is the first report highlighting the relationship between miRNA and membrane protein and enhancing our understanding of how miRNA works in the hematopoietic system.
Collapse
|
14
|
Ranjan A, Bera K, Iwakuma T. Murine double minute 2, a potential p53-independent regulator of liver cancer metastasis. HEPATOMA RESEARCH 2016; 2:114-121. [PMID: 28944296 PMCID: PMC5609474 DOI: 10.20517/2394-5079.2015.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) has emerged as one of the most commonly diagnosed forms of human cancer; yet, the mechanisms underlying HCC progression remain unclear. Unlike other cancers, systematic chemotherapy is not effective for HCC patients, while surgical resection and liver transplantation are the most viable treatment options. Thus, identifying factors or pathways that suppress HCC progression would be crucial for advancing treatment strategies for HCC. The murine double minute 2 (MDM2)-p53 pathway is impaired in most of the cancer types, including HCC, and MDM2 is overexpressed in approximately 30% of HCC. Overexpression of MDM2 is reported to be well correlated with metastasis, drug resistance, and poor prognosis of multiple cancer types, including HCC. Importantly, these correlations are observed even when p53 is mutated. Indeed, p53-independent functions of overexpressed MDM2 in cancer progression have been suitably demonstrated. In this review article, we summarize potential effectors of MDM2 that promote or suppress cancer metastasis and discuss the p53-independent roles of MDM2 in liver cancer metastasis from clinical as well as biological perspectives.
Collapse
Affiliation(s)
- Atul Ranjan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kaustav Bera
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
15
|
Bi Q, Ranjan A, Fan R, Agarwal N, Welch DR, Weinman SA, Ding J, Iwakuma T. MTBP inhibits migration and metastasis of hepatocellular carcinoma. Clin Exp Metastasis 2015; 32:301-11. [PMID: 25759210 DOI: 10.1007/s10585-015-9706-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/07/2015] [Indexed: 01/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with increasing incidence. Despite curative surgical resection and advanced chemotherapy, its survival rate remains low. The presence of microvascular invasion and occult metastasis is one of the major causes for this poor outcome. MDM2 Binding Protein (MTBP) has been implicated in the suppression of cell migration and cancer metastasis. However, clinical significance of MTBP, particularly in human cancer, is poorly understood. Specifically, clinical relevance of MTBP in human HCC has never been investigated. Here we demonstrated that expression of MTBP was significantly reduced in human HCC tissues compared to adjacent non-tumor tissues. MTBP expression was negatively correlated with capsular/vascular invasion and lymph node metastasis. Overexpression of MTBP resulted in the suppression of the migratory and metastatic potential of HCC cells, while its downregulation increased the migration. Consistent with the previous report, MTBP endogenously bound to alpha-actinin 4 (ACTN4) and suppressed ACTN4-mediated cell migration in multiple HCC cell lines. However, MTBP also inhibited migratory potential of PLC/PRF/5 HCC cells whose migration was not altered by manipulation of ACTN4 expression. These results suggest that mechanisms behind MTBP-mediated migration suppression may not be limited to the pathway involving ACTN4 in certain cellular contexts. Additionally, as a potential mechanism for reduced MTBP expression in tumors, we found that MTBP expression was increased following the treatment with histone deacetylase inhibitors (HDIs). Our study, for the first time, provides clinical relevance of MTBP in the suppression of HCC metastasis.
Collapse
Affiliation(s)
- Qian Bi
- Diagnosis and Treatment Center for Liver Cirrhosis, 302 Military Hospital of China, Beijing, 10039, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Grieb BC, Chen X, Eischen CM. MTBP is overexpressed in triple-negative breast cancer and contributes to its growth and survival. Mol Cancer Res 2014; 12:1216-24. [PMID: 24866769 PMCID: PMC4163510 DOI: 10.1158/1541-7786.mcr-14-0069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer commonly resistant to therapeutics that have been successful in increasing survival in patients with estrogen receptor-positive (ER(+)) and HER2(+) breast cancer. As such, identifying factors that contribute to poor patient outcomes and mediate the growth and survival of TNBC cells remain important areas of investigation. MTBP (MDM2-binding protein), a gene linked to cellular proliferation and a transcriptional target of the MYC oncogene, is overexpressed in human malignancies, yet its contribution to cancer remains unresolved. Evaluation of mRNA expression and copy number variation data from The Cancer Genome Atlas (TCGA) revealed that MTBP is commonly overexpressed in breast cancer and 19% show amplification of MTBP. Increased transcript or gene amplification of MTBP significantly correlated with reduced breast cancer patient survival. Further analysis revealed that while MTBP mRNA is overexpressed in both ER(+) and HER2(+) breast cancers, its expression is highest in TNBC. MTBP mRNA and protein levels were also significantly elevated in a panel of human TNBC cell lines. Knockdown of MTBP in TNBC cells induced apoptosis and significantly reduced TNBC cell growth and soft agar colony formation, which was rescued by expression of shRNA-resistant Mtbp. Notably, inducible knockdown of MTBP expression significantly impaired TNBC tumor growth, in vivo, including in established tumors. Thus, these data emphasize that MTBP is important for the growth and survival of TNBC and warrants further investigation as a potential novel therapeutic target. IMPLICATIONS MTBP significantly contributes to breast cancer survival and is a potential novel therapeutic target in TNBC.
Collapse
Affiliation(s)
- Brian C Grieb
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M Eischen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
17
|
Grieb BC, Gramling MW, Arrate MP, Chen X, Beauparlant SL, Haines DS, Xiao H, Eischen CM. Oncogenic protein MTBP interacts with MYC to promote tumorigenesis. Cancer Res 2014; 74:3591-602. [PMID: 24786788 DOI: 10.1158/0008-5472.can-13-2149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite its involvement in most human cancers, MYC continues to pose a challenge as a readily tractable therapeutic target. Here we identify the MYC transcriptional cofactors TIP48 and TIP49 and MYC as novel binding partners of Mdm2-binding protein (MTBP), a functionally undefined protein that we show is oncogenic and overexpressed in many human cancers. MTBP associated with MYC at promoters and increased MYC-mediated transcription, proliferation, neoplastic transformation, and tumor development. In breast cancer specimens, we determined overexpression of both MYC and MTBP was associated with a reduction in 10-year patient survival compared with MYC overexpression alone. MTBP was also frequently co-amplified with MYC in many human cancers. Mechanistic investigations implicated associations with TIP48/TIP49 as well as MYC in MTBP function in cellular transformation and the growth of human breast cancer cells. Taken together, our findings show MTBP functions with MYC to promote malignancy, identifying this protein as a novel general therapeutic target in human cancer.
Collapse
Affiliation(s)
- Brian C Grieb
- Authors' Affiliations: Departments of Pathology, Microbiology and Immunology and
| | - Mark W Gramling
- Authors' Affiliations: Departments of Pathology, Microbiology and Immunology and
| | - Maria Pia Arrate
- Authors' Affiliations: Departments of Pathology, Microbiology and Immunology and
| | - Xi Chen
- Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephen L Beauparlant
- Department of Biochemistry, Temple University; Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Dale S Haines
- Department of Biochemistry, Temple University; Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Hua Xiao
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Christine M Eischen
- Authors' Affiliations: Departments of Pathology, Microbiology and Immunology and
| |
Collapse
|
18
|
Abstract
Despite the tremendous number of studies of prognostic molecular markers in cancer, only a few such markers have entered clinical practise. The lack of clinical prognostic markers clearly reflects limitations in or an inappropriate approach to prognostic studies. This situation should be of great concern for the research community, clinicians and patients. In the present review, we evaluate immunohistochemical prognostic marker studies in oral squamous cell carcinomas (OSCC) from 2006 to 2012. We comment upon general issues such as study design, assay methods and statistical methods, applicable to prognostic marker studies irrespective of cancer type. The three most frequently studied markers in OSCC are reviewed. Our analysis revealed that most new molecular markers are reported only once. To draw conclusions of clinical relevance based on the few markers that appeared in more than one study was problematic due to between-study heterogeneity. Currently, much valuable tissue material, time and money are wasted on irrelevant studies.
Collapse
Affiliation(s)
- Tine M Søland
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo
| | | |
Collapse
|
19
|
Abstract
MDM2 binding protein (MTBP) is a protein that interacts with oncoprotein murine double minute (MDM2), a major inhibitor of the tumor suppressor p53. Overexpression of MTBP leads to p53-independent cell proliferation arrest, which is in turn blocked by simultaneous overexpression of MDM2. Importantly, reduced expression of MTBP in mice increases tumor metastasis and enhances migratory potential of mouse embryonic fibroblasts regardless of the presence of p53. Clinically, loss of MTBP expression in head and neck squamous cell carcinoma is associated with reduced patient survival, and is shown to serve as an independent prognostic factor when p53 is mutated in tumors. These results indicate the involvement of MTBP in suppressing tumor progression. Our recent findings demonstrate that overexpression of MTBP in human osteosarcoma cells lacking wild-type p53 inhibits metastasis, but not primary tumor growth, when cells are transplanted in femurs of immunocompromised mice. These data indicate that MTBP functions as a metastasis suppressor independent of p53 status. Furthermore, overexpression of MTBP suppresses cell migration and filopodia formation, in part, by inhibiting function of an actin crosslinking protein α-actinin-4. Thus, increasing evidence indicates the significance of MTBP in tumor progression. We summarize published results related to MTBP function and discuss caveats and future directions in this review article.
Collapse
Affiliation(s)
- Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow blvd., Wahl East, Room 2005, Kansas City, KS 66160, USA.
| | | |
Collapse
|
20
|
Poage GM, Butler RA, Houseman EA, McClean MD, Nelson HH, Christensen BC, Marsit CJ, Kelsey KT. Identification of an epigenetic profile classifier that is associated with survival in head and neck cancer. Cancer Res 2012; 72:2728-37. [PMID: 22507853 DOI: 10.1158/0008-5472.can-11-4121-t] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Panels of prognostic biomarkers selected using candidate approaches often do not validate in independent populations, so additional strategies are needed to identify reliable classifiers. In this study, we used an array-based approach to measure DNA methylation and applied a novel method for grouping CpG dinucleotides according to well-characterized genomic sequence features. A hypermethylation profile among 13 CpG loci, characterized by polycomb group target genes, mammalian interspersed repeats, and transcription factor-binding sites (PcG/MIR/TFBS), was associated with reduced survival (HR, 3.98; P = 0.001) in patients with head and neck squamous cell carcinoma. This association was driven by CpGs associated with the TAP1 and ALDH3A1 genes, findings that were validated in an independent patient group (HR, 2.86; P = 0.04). Together, the data not only elucidate new potential targets for therapeutic intervention in head and neck cancer but also may aid in the identification of poor prognosis patients who may require more aggressive treatment regimens.
Collapse
Affiliation(s)
- Graham M Poage
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
MDM2 Binding Protein (MTBP) has been implicated in cancer progression. Here we demonstrate one mechanism by which MTBP inhibits cancer metastasis. Overexpression of MTBP in human osteosarcoma cell lines lacking wild-type p53 did not alter primary tumor growth in mice but significantly inhibited metastases. MTBP downregulation increased the migratory potential of MDM2−/−p53−/− mouse embryonic fibroblasts, suggesting that MTBP inhibited cell migration independently of the Mdm2-p53 pathway. Co-immunoprecipitation and mass spectrometric analysis identified alpha-actinin-4 (ACTN4) as a MTBP-interacting protein. Endogenous MTBP interacted with and partially colocalized with ACTN4. MTBP overexpression inhibited cell migration and filopodia formation mediated by ACTN4. Increased cell migration by MTBP downregulation was inhibited by concomitant downregulation of ACTN4. MTBP also inhibited ACTN4-mediated F-actin bundling. We furthermore demonstrated that nuclear localization of MTBP was dispensable for inhibiting ACTN4-mediated cell migration and filopodia formation. Thus, MTBP suppresses cell migration, at least partially, by inhibiting ACTN4 function. Our study not only provides a mechanism of metastasis suppression by MTBP, but also suggests MTBP as a potential biomarker for cancer progression.
Collapse
|
22
|
Denaro N, Lo Nigro C, Natoli G, Russi EG, Adamo V, Merlano MC. The Role of p53 and MDM2 in Head and Neck Cancer. ISRN OTOLARYNGOLOGY 2011; 2011:931813. [PMID: 23724261 PMCID: PMC3658475 DOI: 10.5402/2011/931813] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/29/2011] [Indexed: 01/17/2023]
Abstract
Head and neck cancer is a complex disorder that includes mostly squamous cell carcinomas that can develop in the throat, larynx, nose, sinuses, and mouth. Etiopathogenesis is due to tobacco and alcohol consumption and to infection by human papillomavirus (HPV) type 16/18. Tumors often develop within preneoplastic fields of genetically altered cells. Most head and neck cancers result from multistep accumulation of genetic alterationsm resulting in clonal outgrowth of transformed cells. These DNA changes are caused by a variety of mechanisms like endogenous mutations and exogenous mutations. Dysregulated molecular pathway includes alterations of critical inhibitor of cyclin CDK complexes, inactivating mutations of p53 gene, and activation of oncogenes and growth factors. This paper attempts to review the role of p53 and MDM2 genetic aberrations and pathways in head and neck cancer.
Collapse
Affiliation(s)
- N Denaro
- Oncology Department, ASO Santa Croce e Carle Cuneo, Via Michele Coppino 21, 12100 Cuneo, Italy
| | | | | | | | | | | |
Collapse
|