1
|
Lill CB, Fitter S, Zannettino ACW, Vandyke K, Noll JE. Molecular and cellular mechanisms of chemoresistance in paediatric pre-B cell acute lymphoblastic leukaemia. Cancer Metastasis Rev 2024:10.1007/s10555-024-10203-9. [PMID: 39102101 DOI: 10.1007/s10555-024-10203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Paediatric patients with relapsed B cell acute lymphoblastic leukaemia (B-ALL) have poor prognosis, as relapse-causing clones are often refractory to common chemotherapeutics. While the molecular mechanisms leading to chemoresistance are varied, significant evidence suggests interactions between B-ALL blasts and cells within the bone marrow microenvironment modulate chemotherapy sensitivity. Importantly, bone marrow mesenchymal stem cells (BM-MSCs) and BM adipocytes are known to support B-ALL cells through multiple distinct molecular mechanisms. This review discusses the contribution of integrin-mediated B-ALL/BM-MSC signalling and asparagine supplementation in B-ALL chemoresistance. In addition, the role of adipocytes in sequestering anthracyclines and generating a BM niche favourable for B-ALL survival is explored. Furthermore, this review discusses the role of BM-MSCs and adipocytes in promoting a quiescent and chemoresistant B-ALL phenotype. Novel treatments which target these mechanisms are discussed herein, and are needed to improve dismal outcomes in patients with relapsed/refractory disease.
Collapse
Affiliation(s)
- Caleb B Lill
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
2
|
Korzhenevich J, Janowska I, van der Burg M, Rizzi M. Human and mouse early B cell development: So similar but so different. Immunol Lett 2023; 261:1-12. [PMID: 37442242 DOI: 10.1016/j.imlet.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Early B cell development in the bone marrow ensures the replenishment of the peripheral B cell pool. Immature B cells continuously develop from hematopoietic stem cells, in a process guided by an intricate network of transcription factors as well as chemokine and cytokine signals. Humans and mice possess somewhat similar regulatory mechanisms of B lymphopoiesis. The continuous discovery of monogenetic defects that impact early B cell development in humans substantiates the similarities and differences with B cell development in mice. These differences become relevant when targeted therapeutic approaches are used in patients; therefore, predicting potential immunological adverse events is crucial. In this review, we have provided a phenotypical classification of human and murine early progenitors and B cell stages, based on surface and intracellular protein expression. Further, we have critically compared the role of key transcription factors (Ikaros, E2A, EBF1, PAX5, and Aiolos) and chemo- or cytokine signals (FLT3, c-kit, IL-7R, and CXCR4) during homeostatic and aberrant B lymphopoiesis in both humans and mice.
Collapse
Affiliation(s)
- Jakov Korzhenevich
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, 2333, ZA Leiden, The Netherlands
| | - Marta Rizzi
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria; Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
3
|
Hughes AM, Kuek V, Kotecha RS, Cheung LC. The Bone Marrow Microenvironment in B-Cell Development and Malignancy. Cancers (Basel) 2022; 14:2089. [PMID: 35565219 PMCID: PMC9102980 DOI: 10.3390/cancers14092089] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
B lymphopoiesis is characterized by progressive loss of multipotent potential in hematopoietic stem cells, followed by commitment to differentiate into B cells, which mediate the humoral response of the adaptive immune system. This process is tightly regulated by spatially distinct bone marrow niches where cells, including mesenchymal stem and progenitor cells, endothelial cells, osteoblasts, osteoclasts, and adipocytes, interact with B-cell progenitors to direct their proliferation and differentiation. Recently, the B-cell niche has been implicated in initiating and facilitating B-cell precursor acute lymphoblastic leukemia. Leukemic cells are also capable of remodeling the B-cell niche to promote their growth and survival and evade treatment. Here, we discuss the major cellular components of bone marrow niches for B lymphopoiesis and the role of the malignant B-cell niche in disease development, treatment resistance and relapse. Further understanding of the crosstalk between leukemic cells and bone marrow niche cells will enable development of additional therapeutic strategies that target the niches in order to hinder leukemia progression.
Collapse
Affiliation(s)
- Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
4
|
Walther F, Berther JL, Lalos A, Ramser M, Eichelberger S, Mechera R, Soysal S, Muenst S, Posabella A, Güth U, Stadlmann S, Terracciano L, Droeser RA, Zeindler J, Singer G. High ratio of pCXCR4/CXCR4 tumor infiltrating immune cells in primary high grade ovarian cancer is indicative for response to chemotherapy. BMC Cancer 2022; 22:376. [PMID: 35397601 PMCID: PMC8994232 DOI: 10.1186/s12885-022-09374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Ovarian cancer (OC) is the fifth most common malignant female cancer with a high mortality, mainly because of aggressive high-grade serous carcinomas (HGSOC), but also due to absence of specific early symptoms and effective detection strategies. The CXCL12-CXCR4 axis is considered to have a prognostic impact and to serve as potential therapeutic target. Therefore we investigated the role of pCXCR4 and CXCR4 expression of the tumor cells and of tumor infiltrating immune cells (TIC) in high-grade serous OC and their association with the recurrence-free (RFS) and overall survival (OS).
Methods
A tissue microarray of 47 primary high grade ovarian serous carcinomas and their recurrences was stained with primary antibodies directed against CXCR4 and pCXCR4. Beside the evaluation of the absolute tumor as well as TIC expression in primary and recurrent cancer biopsies the corresponding ratios for pCXCR4 and CXCR4 were generated and analyzed. The clinical endpoints were response to chemotherapy, OS as well as RFS.
Results
Patients with a high pCXCR4/CXCR4 TIC ratio in primary cancer biopsies showed a significant longer RFS during the first two years (p = 0.025). However, this effect was lost in the long-term analysis including a follow-up period of 5 years (p = 0.128). Interestingly, the Multivariate Cox regression analysis showed that a high pCXCR4/CXCR4 TIC ratio in primary cancer independently predicts longer RFS (HR 0.33; 95CI 0.13 - 0.81; p = 0.015). Furthermore a high dichotomized distribution of CXCR4 positive tumor expression in recurrent cancer biopsies showed a significantly longer 6-month RFS rate (p = 0.018) in comparison to patients with low CXCR4 positive tumor expression. However, this effect was not independent of known risk factors in a Multivariate Cox regression (HR 0.57; 95CI 0.24 - 1.33; p = 0.193).
Conclusions
To the best of our knowledge we show for the first time that a high pCXCR4/CXCR4 TIC ratio in primary HGSOC biopsies is indicative for better RFS and response to chemotherapy.
Highlights
• We observed a significant association between high pCXCR4/CXCR4 TIC ratio and better RFS in primary cancer biopsies, especially during the early postoperative follow-up and independent of known risk factors for recurrence.
• High CXCR4 tumor expression in recurrent HGSOC biopsies might be indicative for sensitivity to chemotherapy. We found evidence that at the beginning of the disease (early follow-up) the role of the immune response seems to be the most crucial factor for progression. On the other hand in recurrent/progressive disease the biology of the tumor itself becomes more important for prognosis.
• We explored for the first time the predictive and prognostic role of pCXCR4/CXCR4 TIC ratio in high-grade serous ovarian cancer.
Collapse
|
5
|
Mehrpouri M. The contributory roles of the CXCL12/CXCR4/CXCR7 axis in normal and malignant hematopoiesis: A possible therapeutic target in hematologic malignancies. Eur J Pharmacol 2022; 920:174831. [DOI: 10.1016/j.ejphar.2022.174831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
|
6
|
Fertal SA, Zaidi SK, Stein JL, Stein GS, Heath JL. CXCR4 Mediates Enhanced Cell Migration in CALM-AF10 Leukemia. Front Oncol 2022; 11:708915. [PMID: 35070954 PMCID: PMC8767107 DOI: 10.3389/fonc.2021.708915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Leukemia transformed by the CALM-AF10 chromosomal translocation is characterized by a high incidence of extramedullary disease, central nervous system (CNS) relapse, and a poor prognosis. Invasion of the extramedullary compartment and CNS requires leukemia cell migration out of the marrow and adherence to the cells of the local tissue. Cell adhesion and migration are increasingly recognized as contributors to leukemia development and therapeutic response. These processes are mediated by a variety of cytokines, chemokines, and their receptors, forming networks of both secreted and cell surface factors. The cytokines and cytokine receptors that play key roles in CALM-AF10 driven leukemia are unknown. We find high cell surface expression of the cytokine receptor CXCR4 on leukemia cells expressing the CALM-AF10 oncogenic protein, contributing to the migratory nature of this leukemia. Our discovery of altered cytokine receptor expression and function provides valuable insight into the propagation and persistence of CALM-AF10 driven leukemia.
Collapse
Affiliation(s)
- Shelby A Fertal
- Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Sayyed K Zaidi
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, United States.,University of Vermont Cancer Center, Burlington, VT, United States
| | - Janet L Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, United States.,University of Vermont Cancer Center, Burlington, VT, United States
| | - Gary S Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, United States.,University of Vermont Cancer Center, Burlington, VT, United States
| | - Jessica L Heath
- Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, VT, United States.,Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, United States.,University of Vermont Cancer Center, Burlington, VT, United States
| |
Collapse
|
7
|
Tampakis A, Weixler B, Rast S, Tampaki EC, Cremonesi E, Kancherla V, Tosti N, Kettelhack C, Ng CKY, Delko T, Soysal SD, von Holzen U, Felekouras E, Nikiteas N, Bolli M, Tornillo L, Terracciano L, Eppenberger-Castori S, Spagnoli GC, Piscuoglio S, von Flüe M, Däster S, Droeser RA. Nestin and CD34 expression in colorectal cancer predicts improved overall survival. Acta Oncol 2021; 60:727-734. [PMID: 33734917 DOI: 10.1080/0284186x.2021.1891280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Nestin, a class VI intermediate filament protein of the cytoskeleton, and CD34, a transmembrane phosphoglycoprotein, are markers of progenitor cells. This study aimed to evaluate their expression and clinical significance in colorectal cancer. METHODS A clinically annotated tissue microarray, including 599 patients with colorectal cancer, was analyzed by immunohistochemistry. Furthermore, nestin and CD34 correlations with HIF-1a and a panel of cytokines and chemokines were assessed using quantitative reverse transcription PCR and The Cancer Genome Atlas dataset. RESULTS Expression of nestin and CD34 was observed only in the tumor stroma. Patients displaying high expression of nestin and CD34 demonstrated higher rates of T1 and T2 tumors (p = .020), lower vascular invasion (p < .001) and improved 5-year overall survival (65%; 95% CI = 55-73 vs 45%; 95% CI = 37-53) after adjusting for clinicopathological characteristics (HR: 0.67; 95% CI = 0.46-0.96). A moderate to strong correlation (r = 0.37-0.78, p < .03) of nestin and CD34 was demonstrated for the following markers; HIF-1α, CD4, CD8, FOXP3, IRF1, GATA3, CCL2, CCL3, CXCL12 and CCL21. CONCLUSIONS Combined expression of nestin and CD34 expression is associated with better overall survival possibly by modulating a favorable immune response.
Collapse
Affiliation(s)
- Athanasios Tampakis
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Benjamin Weixler
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
- Department of Surgery, Charité University Hospital, Campus Benjamin Franklin, Berlin, Germany
| | - Silvan Rast
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Ekaterini-Christina Tampaki
- National Organization for the Provision of Healthcare Services, Department of Planning and Monitoring of Medicines Dispencing, Medicines Division, Athens, Greece
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | | | | | - Nadia Tosti
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Christoph Kettelhack
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Charlotte K. Y. Ng
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Tarik Delko
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Savas D. Soysal
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Urs von Holzen
- Indiana University School of Medicine South Bend, Goshen Center for Cancer Care, Goshen, IN, USA
- Harper Cancer Research Institute, South Bend, IN, USA
- School of Medicine, University of Basel, Basel, Switzerland
| | - Evangelos Felekouras
- 1st Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Nikolaos Nikiteas
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Martin Bolli
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Luigi Tornillo
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | | | - Salvatore Piscuoglio
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, Visceral Surgery Research Laboratory, Clarunis, Basel, Switzerland
| | - Markus von Flüe
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
- Department of Biomedicine, Visceral Surgery Research Laboratory, Clarunis, Basel, Switzerland
| | - Silvio Däster
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Raoul A. Droeser
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Su L, Hu Z, Yang YG. Role of CXCR4 in the progression and therapy of acute leukaemia. Cell Prolif 2021; 54:e13076. [PMID: 34050566 PMCID: PMC8249790 DOI: 10.1111/cpr.13076] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
CXCR4 is expressed on leukaemia cells and haematopoietic stem cells (HSCs), and its ligand stromal-derived factor 1 (SDF-1) is produced abundantly by stromal cells in the bone marrow (BM). The SDF-1/CXCR4 axis plays important roles in homing to and retention in the protective BM microenvironment of malignant leukaemia cells and normal HSCs. CXCR4 expression is regulated by multiple mechanisms and the level of CXCR4 expression on leukaemia cells has prognostic indications in patients with acute leukaemia. CXCR4 antagonists can mobilize leukaemia cells from BM to circulation, which render them effectively eradicated by chemotherapeutic agents, small molecular inhibitors or hypomethylating agents. Therefore, such combinational therapies have been tested in clinical trials. However, new evidence emerged that drug-resistant leukaemia cells were not affected by CXCR4 antagonists, and the migration of certain leukaemia cells to the leukaemia niche was independent of SDF-1/CXCR4 axis. In this review, we summarize the role of CXCR4 in progression and treatment of acute leukaemia, with a focus on the potential of CXCR4 as a therapeutic target for acute leukaemia. We also discuss the potential value of using CXCR4 antagonists as chemosensitizer for conditioning regimens and immunosensitizer for graft-vs-leukaemia effects of allogeneic haematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Long Su
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China.,Department of Hematology, The First Hospital, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| |
Collapse
|
9
|
Simioni C, Conti I, Varano G, Brenna C, Costanzi E, Neri LM. The Complexity of the Tumor Microenvironment and Its Role in Acute Lymphoblastic Leukemia: Implications for Therapies. Front Oncol 2021; 11:673506. [PMID: 34026651 PMCID: PMC8131840 DOI: 10.3389/fonc.2021.673506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The microenvironment that surrounds a tumor, in addition to the tumor itself, plays an important role in the onset of resistance to molecularly targeted therapies. Cancer cells and their microenvironment interact closely between them by means of a molecular communication that mutually influences their biological characteristics and behavior. Leukemia cells regulate the recruitment, activation and program of the cells of the surrounding microenvironment, including those of the immune system. Studies on the interactions between the bone marrow (BM) microenvironment and Acute Lymphoblastic Leukemia (ALL) cells have opened a scenario of potential therapeutic targets which include cytokines and their receptors, signal transduction networks, and hypoxia-related proteins. Hypoxia also enhances the formation of new blood vessels, and several studies show how angiogenesis could have a key role in the pathogenesis of ALL. Knowledge of the molecular mechanisms underlying tumor-microenvironment communication and angiogenesis could contribute to the early diagnosis of leukemia and to personalized molecular therapies. This article is part of a Special Issue entitled: Innovative Multi-Disciplinary Approaches for Precision Studies in Leukemia edited by Sandra Marmiroli (University of Modena and Reggio Emilia, Modena, Italy) and Xu Huang (University of Glasgow, Glasgow, United Kingdom).
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA) - Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Ilaria Conti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Eva Costanzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Laboratory for Technologies of Advanced Therapies (LTTA) - Electron Microscopy Center, University of Ferrara, Ferrara, Italy.,Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Hong Z, Wei Z, Xie T, Fu L, Sun J, Zhou F, Jamal M, Zhang Q, Shao L. Targeting chemokines for acute lymphoblastic leukemia therapy. J Hematol Oncol 2021; 14:48. [PMID: 33743810 PMCID: PMC7981899 DOI: 10.1186/s13045-021-01060-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy characterized by the malignant clonal expansion of lymphoid hematopoietic precursors. It is regulated by various signaling molecules such as cytokines and adhesion molecules in its microenvironment. Chemokines are chemotactic cytokines that regulate migration, positioning and interactions of cells. Many chemokine axes such as CXCL12/CXCR4 and CCL25/CCR9 have been proved to play important roles in leukemia microenvironment and further affect ALL outcomes. In this review, we summarize the chemokines that are involved in ALL progression and elaborate on their roles and mechanisms in leukemia cell proliferation, infiltration, drug resistance and disease relapse. We also discuss the potential of targeting chemokine axes for ALL treatments, since many related inhibitors have shown promising efficacy in preclinical trials, and some of them have entered clinical trials.
Collapse
Affiliation(s)
- Zixi Hong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zimeng Wei
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Tian Xie
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Lin Fu
- The First Clinical School of Wuhan University, Wuhan, China
| | - Jiaxing Sun
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China.
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Kaiser LM, Hunter ZR, Treon SP, Buske C. CXCR4 in Waldenström's Macroglobulinema: chances and challenges. Leukemia 2021; 35:333-345. [PMID: 33273682 PMCID: PMC7862063 DOI: 10.1038/s41375-020-01102-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/09/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
It is one of the major aims in cancer research to improve our understanding of the underlying mechanisms which initiate and maintain tumor growth and to translate these findings into novel clinical diagnostic and therapeutic concepts with the ultimate goal to improve patient care. One of the greater success stories in this respect has been Waldenström's Macroglobulinemia (WM), which is an incurable B-cell neoplasm characterized by serum monoclonal immunoglobulin M (IgM) and clonal lymphoplasmacytic cells infiltrating the bone marrow. Recent years have succeeded to describe the molecular landscape of WM in detail, highlighting two recurrently mutated genes, the MYD88 and the CXCR4 genes: MYD88 with an almost constant and recurrent point mutation present in over 90% of patients and CXCR4 with over 40 different mutations in the coding region affecting up to 40% of patients. Intriguingly, both mutations are activating mutations leading in the case of CXCR4 to an indelible activation and perpetual signaling of the chemokine receptor. These data have shed light on the essential role of CXCR4 in this disease and have paved the way to use these findings for predicting treatment response to the Bruton tyrosine kinase (BTK) inhibitor ibrutinib and novel therapeutic approaches in WM, which might be transferable to other related CXCR4 positive diseases. Well known for its central role in cancer progression and distribution, CXCR4 is highlighted in this review with regard to its biology, prognostic and predictive relevance and therapeutic implications in WM.
Collapse
Affiliation(s)
- Lisa Marie Kaiser
- Institute of Experimental Cancer Research, CCC and University Hospital Ulm, Germany, 89081, Ulm, Germany
| | - Zachary R Hunter
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Steven P Treon
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Christian Buske
- Institute of Experimental Cancer Research, CCC and University Hospital Ulm, Germany, 89081, Ulm, Germany.
| |
Collapse
|
12
|
Delahaye MC, Salem KI, Pelletier J, Aurrand-Lions M, Mancini SJC. Toward Therapeutic Targeting of Bone Marrow Leukemic Niche Protective Signals in B-Cell Acute Lymphoblastic Leukemia. Front Oncol 2021; 10:606540. [PMID: 33489914 PMCID: PMC7820772 DOI: 10.3389/fonc.2020.606540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) represents the malignant counterpart of bone marrow (BM) differentiating B cells and occurs most frequently in children. While new combinations of chemotherapeutic agents have dramatically improved the prognosis for young patients, disease outcome remains poor after relapse or in adult patients. This is likely due to heterogeneity of B-ALL response to treatment which relies not only on intrinsic properties of leukemic cells, but also on extrinsic protective cues transmitted by the tumor cell microenvironment. Alternatively, leukemic cells have the capacity to shape their microenvironment towards their needs. Most knowledge on the role of protective niches has emerged from the identification of mesenchymal and endothelial cells controlling hematopoietic stem cell self-renewal or B cell differentiation. In this review, we discuss the current knowledge about B-ALL protective niches and the development of therapies targeting the crosstalk between leukemic cells and their microenvironment.
Collapse
|
13
|
Cancilla D, Rettig MP, DiPersio JF. Targeting CXCR4 in AML and ALL. Front Oncol 2020; 10:1672. [PMID: 33014834 PMCID: PMC7499473 DOI: 10.3389/fonc.2020.01672] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
The interaction of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) blasts with the bone marrow microenvironment regulates self-renewal, growth signaling, as well as chemotherapy resistance. The chemokine receptor, CXC receptor 4 (CXCR4), with its ligand chemokine ligand 12 (CXCL12), plays a key role in the survival and migration of normal and malignant stem cells to the bone marrow. High expression of CXCR4 on AML and ALL blasts has been shown to be a predictor of poor prognosis for these diseases. Several small molecule inhibitors, short peptides, antibodies, and antibody drug conjugates have been developed for the purposes of more effective targeting and killing of malignant cells expressing CXCR4. In this review we will discuss recent results and strategies in targeting CXCR4 with these agents in patients with AML or ALL.
Collapse
Affiliation(s)
| | | | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
14
|
Wang S, Wang X, Liu S, Zhang S, Wei X, Song Y, Yin Q. The CXCR4 Antagonist, AMD3100, Reverses Mesenchymal Stem Cell-Mediated Drug Resistance in Relapsed/Refractory Acute Lymphoblastic Leukemia. Onco Targets Ther 2020; 13:6583-6591. [PMID: 32753894 PMCID: PMC7352451 DOI: 10.2147/ott.s249425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose To investigate the role of the CXCR4/CXCL12 axis in chemotherapy resistance in refractory/relapsed (R/R) ALL patients. Methods CXCR4 expression on ALL cells from newly diagnosed or R/R ALL patients were detected using flow cytometry. The CXCR4/CXCL12 signaling pathway was blocked by the CXCR4 inhibitor AMD3100 in a co-culture model of primary drug-resistant ALL cells and umbilical cord mesenchymal stem cells (UCMSCs). Surface CXCR4 expression, apoptosis rate, and apoptosis-related protein expression in primary ALL cells under various treatments were detected. Results Of the 37 ALL patients examined, CXCR4 expression was higher in R/R patients than that in those with newly diagnosed disease. Similarly, in in vitro co-cultures of drug-resistant ALL cells with UCMSCs, the expression of CXCR4 was increased in the presence of vincristine (VCR), but reduced when VCR was combined with the CXCR4 antagonist AMD3100. Additionally, the supernatants of ALL-UCMSC co-cultures contained high CXCL12 concentrations, which were upregulated by VCR and significantly decreased by the combination of VCR plus AMD3100. Furthermore, the apoptosis rate of ALL cells significantly decreased, Bax expression was downregulated, and Bcl-2 was upregulated when ALL was co-cultured with UCMSCs compared with ALL cells alone. With the addition of VCR, the apoptosis rate mildly increased, Bax was upregulated, and Bcl-2 was downregulated. Nevertheless, the above results were further intensified, particularly Bax expression, when VCR was combined with AMD3100. Conclusion The CXCR4 antagonist could effectively reverse MSC-mediated drug resistance by blocking the CXCR4/CXCL12 axis and sensitizing leukemic cells from R/R ALL patients to chemotherapy drugs.
Collapse
Affiliation(s)
- Shan Wang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, People's Republic of China
| | - Xiaojiao Wang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, People's Republic of China
| | - Sha Liu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, People's Republic of China
| | - Shengnan Zhang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, People's Republic of China
| | - Xudong Wei
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, People's Republic of China
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, People's Republic of China
| | - Qingsong Yin
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, People's Republic of China
| |
Collapse
|
15
|
Meyer LK, Hermiston ML. The bone marrow microenvironment as a mediator of chemoresistance in acute lymphoblastic leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1164-1177. [PMID: 35582273 PMCID: PMC9019215 DOI: 10.20517/cdr.2019.63] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/12/2019] [Accepted: 09/27/2019] [Indexed: 12/04/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignancy of immature lymphoid cells that arises due to clonal expansion of cells that undergo developmental arrest and acquisition of pathogenic mutations. With the introduction of intensive multi-agent chemotherapeutic regimens, survival rates for ALL have improved dramatically over the past several decades, though survival rates for adult ALL continue to lag behind those of pediatric ALL. Resistance to chemotherapy remains a significant obstacle in the treatment of ALL, and chemoresistance due to molecular alterations within ALL cells have been described. In addition to these cell-intrinsic factors, the bone marrow microenvironment has more recently been appreciated as a cell-extrinsic mediator of chemoresistance, and it is now known that stromal cells within the bone marrow microenvironment, through direct cell-cell interactions and through the release of lymphoid-acting soluble factors, contribute to ALL pathogenesis and chemoresistance. This review discusses mechanisms of chemoresistance mediated by factors within the bone marrow microenvironment and highlights novel therapeutic strategies that have been investigated to overcome chemoresistance in this context.
Collapse
Affiliation(s)
- Lauren K. Meyer
- Department of Pediatrics, University of California, San Francisco, SF 94158, USA
| | | |
Collapse
|
16
|
Notch/CXCR4 Partnership in Acute Lymphoblastic Leukemia Progression. J Immunol Res 2019; 2019:5601396. [PMID: 31346528 PMCID: PMC6620846 DOI: 10.1155/2019/5601396] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children. Recent advances in chemotherapy have made ALL a curable hematological malignancy. In children, there is 25% chance of disease relapse, typically in the central nervous system. While in adults, there is a higher chance of relapse. ALL may affect B-cell or T-cell lineages. Different genetic alterations characterize the two ALL forms. Deregulated Notch, either Notch1 or Notch3, and CXCR4 receptor signaling are involved in ALL disease development and progression. By analyzing their relevant roles in the pathogenesis of the two ALL forms, new molecular mechanisms able to modulate cancer cell invasion may be visualized. Notably, the partnership between Notch and CXCR4 may have considerable implications in understanding the complexity of T- and B-ALL. These two receptor pathways intersect other critical signals in the proliferative, differentiation, and metabolic programs of lymphocyte transformation. Also, the identification of the crosstalks in leukemia-stroma interaction within the tumor microenvironment may unveil new targetable mechanisms in disease relapse. Further studies are required to identify new challenges and opportunities to develop more selective and safer therapeutic strategies in ALL progression, possibly contributing to improve conventional hematological cancer therapy.
Collapse
|
17
|
Heath JL, Cohn GM, Zaidi SK, Stein GS. The role of cell adhesion in hematopoiesis and leukemogenesis. J Cell Physiol 2019; 234:19189-19198. [PMID: 30980400 DOI: 10.1002/jcp.28636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/26/2019] [Indexed: 01/23/2023]
Abstract
The cells of the bone marrow microenvironment are emerging as important contributors and regulators of normal hematopoiesis. This microenvironment is perturbed during leukemogenesis, and evidence points toward a bidirectional communication between leukemia cells and the normal cells of the bone marrow, mediated by direct cell-cell contact as well as soluble factors. These interactions are increasingly appreciated to play a role in leukemogenesis and possibly in resistance to chemotherapy. In fact, several compounds that specifically target the bone marrow microenvironment, including inhibitors of cell adhesion, are being tested as adjuncts to leukemia therapy.
Collapse
Affiliation(s)
- Jessica L Heath
- Department of Pediatrics, University of Vermont, Burlington, Vermont.,Department of Biochemistry, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - Gabriel M Cohn
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Sayyed K Zaidi
- Department of Biochemistry, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| |
Collapse
|
18
|
Fumagalli A, Zarca A, Neves M, Caspar B, Hill SJ, Mayor F, Smit MJ, Marin P. CXCR4/ACKR3 Phosphorylation and Recruitment of Interacting Proteins: Key Mechanisms Regulating Their Functional Status. Mol Pharmacol 2019; 96:794-808. [PMID: 30837297 DOI: 10.1124/mol.118.115360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/21/2019] [Indexed: 01/14/2023] Open
Abstract
The C-X-C motif chemokine receptor type 4 (CXCR4) and the atypical chemokine receptor 3 (ACKR3/CXCR7) are class A G protein-coupled receptors (GPCRs). Accumulating evidence indicates that GPCR subcellular localization, trafficking, transduction properties, and ultimately their pathophysiological functions are regulated by both interacting proteins and post-translational modifications. This has encouraged the development of novel techniques to characterize the GPCR interactome and to identify residues subjected to post-translational modifications, with a special focus on phosphorylation. This review first describes state-of-the-art methods for the identification of GPCR-interacting proteins and GPCR phosphorylated sites. In addition, we provide an overview of the current knowledge of CXCR4 and ACKR3 post-translational modifications and an exhaustive list of previously identified CXCR4- or ACKR3-interacting proteins. We then describe studies highlighting the importance of the reciprocal influence of CXCR4/ACKR3 interactomes and phosphorylation states. We also discuss their impact on the functional status of each receptor. These studies suggest that deeper knowledge of the CXCR4/ACKR3 interactomes along with their phosphorylation and ubiquitination status would shed new light on their regulation and pathophysiological functions.
Collapse
Affiliation(s)
- Amos Fumagalli
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Aurélien Zarca
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Maria Neves
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Birgit Caspar
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Stephen J Hill
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Federico Mayor
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Martine J Smit
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Philippe Marin
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| |
Collapse
|
19
|
Montaño A, Forero-Castro M, Hernández-Rivas JM, García-Tuñón I, Benito R. Targeted genome editing in acute lymphoblastic leukemia: a review. BMC Biotechnol 2018; 18:45. [PMID: 30016959 PMCID: PMC6050675 DOI: 10.1186/s12896-018-0455-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background Genome editing technologies offers new opportunities for tackling diseases such as acute lymphoblastic leukemia (ALL) that have been beyond the reach of previous therapies. Results We show how the recent availability of genome-editing tools such as CRISPR-Cas9 are an important means of advancing functional studies of ALL through the incorporation, elimination and modification of somatic mutations and fusion genes in cell lines and mouse models. These tools not only broaden the understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. Conclusions New approaches including CRISPR-Cas9 are crucial for functional studies of genetic aberrations driving cancer progression, and that may be responsible for treatment resistance and relapses. By using this approach, diseases can be more faithfully reproduced and new therapeutic targets and approaches found.
Collapse
Affiliation(s)
- Adrián Montaño
- IBSAL, IBMCC, University of Salamanca-CSIC, Cancer Research Center, Salamanca, Spain
| | - Maribel Forero-Castro
- School of Biological Sciences (GICBUPTC Research group), Universidad Pedagógica y Tecnológica de Colombia, Boyacá, Colombia
| | - Jesús-María Hernández-Rivas
- IBSAL, IBMCC, University of Salamanca-CSIC, Cancer Research Center, Salamanca, Spain. .,Department of Medicine, University of Salamanca, Spain, Department of Hematology, University Hospital of Salamanca, Salamanca, Spain. .,IBMCC, CIC University of Salamanca-CSIC, University Hospital of Salamanca, Salamanca, Spain.
| | - Ignacio García-Tuñón
- IBSAL, IBMCC, University of Salamanca-CSIC, Cancer Research Center, Salamanca, Spain
| | - Rocío Benito
- IBSAL, IBMCC, University of Salamanca-CSIC, Cancer Research Center, Salamanca, Spain
| |
Collapse
|
20
|
Weixler B, Renetseder F, Facile I, Tosti N, Cremonesi E, Tampakis A, Delko T, Eppenberger-Castori S, Tzankov A, Iezzi G, Kettelhack C, Soysal SD, von Holzen U, Spagnoli GC, Terracciano L, Tornillo L, Droeser RA, Däster S. Phosphorylated CXCR4 expression has a positive prognostic impact in colorectal cancer. Cell Oncol (Dordr) 2017; 40:609-619. [PMID: 28936810 DOI: 10.1007/s13402-017-0348-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The CXCL12-CXCR4 chemokine axis plays an important role in cell trafficking as well as in tumor progression. In colorectal cancer (CRC), the chemokine receptor CXCR4 has been shown to be an unfavorable prognostic factor in some studies, however, the role of its activated (phosphorylated) form, pCXCR4, has not yet been evaluated. Here, we aimed to investigate the prognostic value of CXCR4 and pCXCR4 in a large cohort of CRC patients. PATIENTS AND METHODS A tissue microarray (TMA) of 684 patient specimens of primary CRCs was analyzed by immunohistochemistry (IHC) for the expression of CXCR4 and pCXCR4 by tumor cells and tumor-infiltrating immune cells (TICs). RESULTS The combined high expression of CXCR4 and pCXCR4 showed a favorable 5-year overall survival rate (68%; 95%CI = 59-76%) compared to tumors showing a high expression of CXCR4 only (48%; 95%CI = 41-54%). High expression of pCXCR4 was significantly associated with a favorable prognosis in a test and validation group (p = 0.015 and p = 0.0001). Moreover, we found that CRCs with a high density of pCXCR4+ tumor-infiltrating immune cells (TICs) also showed a favorable prognosis in a test and validation group (p = 0.054 and p = 0.004). Univariate Cox regression analysis for TICs revealed that a high density of pCXCR4+ TICs was a favorable prognostic marker for overall survival (HR = 0.97,95%CI = 0.96-1.00; p = 0.01). In multivariate Cox regression survival analyses a high expression of pCXCR4 in tumor cells lost its association with a better overall survival (HR = 0.99; 95%CI = 0.99-1.00, p = 0.098). CONCLUSION Our results show that high densities of CXCR4 and pCXCR4 positive TICs are favorable prognostic factors in CRC.
Collapse
Affiliation(s)
- B Weixler
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - F Renetseder
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - I Facile
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - N Tosti
- Institute of Pathology, University of Basel, Basel, Switzerland
| | - E Cremonesi
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - A Tampakis
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - T Delko
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | | | - A Tzankov
- Institute of Pathology, University of Basel, Basel, Switzerland
| | - G Iezzi
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - C Kettelhack
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - S D Soysal
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - U von Holzen
- Goshen Center for Cancer Care, Indiana University School of Medicine South Bend, Goshen, IN, USA.,Harper Cancer Research Institute, South Bend, IN, USA
| | - G C Spagnoli
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - L Terracciano
- Institute of Pathology, University of Basel, Basel, Switzerland
| | - L Tornillo
- Institute of Pathology, University of Basel, Basel, Switzerland
| | - Raoul A Droeser
- Department of Surgery, University Hospital Basel, Basel, Switzerland.
| | - S Däster
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
21
|
Evangelisti C, Cappellini A, Oliveira M, Fragoso R, Barata JT, Bertaina A, Locatelli F, Simioni C, Neri LM, Chiarini F, Lonetti A, Buontempo F, Orsini E, Pession A, Manzoli L, Martelli AM, Evangelisti C. Phosphatidylinositol 3-kinase inhibition potentiates glucocorticoid response in B-cell acute lymphoblastic leukemia. J Cell Physiol 2017; 233:1796-1811. [DOI: 10.1002/jcp.26135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences; University of Cassino; Cassino Italy
| | - Mariana Oliveira
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - João T. Barata
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - Alice Bertaina
- Department of Pediatric Hematology-Oncology, IRCCS; Bambino Gesù Children's Hospital; Rome Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS; Bambino Gesù Children's Hospital; Rome Italy
| | - Carolina Simioni
- Department of Morphology; Surgery and Experimental Medicine; University of Ferrara; Ferrara Italy
| | - Luca M. Neri
- Department of Morphology; Surgery and Experimental Medicine; University of Ferrara; Ferrara Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics; Rizzoli Orthopedic Institute, National Research Council; Bologna Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Andrea Pession
- Department of Medical and Surgical Sciences; University of Bologna; Bologna Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | | | - Camilla Evangelisti
- Institute of Molecular Genetics; Rizzoli Orthopedic Institute, National Research Council; Bologna Italy
| |
Collapse
|
22
|
Targeting the CXCR4/CXCL12 axis with the peptide antagonist E5 to inhibit breast tumor progression. Signal Transduct Target Ther 2017; 2:17033. [PMID: 29263923 PMCID: PMC5661635 DOI: 10.1038/sigtrans.2017.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/14/2017] [Accepted: 04/25/2017] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence has demonstrated that stromal cell-derived factor 1 (SDF-1) and its cognate receptor CXCR4 have critical roles in tumorigenesis, angiogenesis and metastasis. In this study, we demonstrated the significant inhibitory effects of a novel chemically synthetic peptide (E5) on the CXCR4/CXCL12 axis in breast cancer both in vitro and in vivo. E5 was capable of specifically binding to the murine breast cancer cell line 4T1, remarkably inhibiting CXCL12- or stromal cell (MS-5)-induced migration, and adhesion and sensitizing 4T1 cells to multiple chemotherapeutic drugs. Furthermore, E5 combined with either paclitaxel or cyclophosphamide significantly inhibited tumor growth in a breast cancer model. Mechanistic studies implied that E5 can inhibit the expression of CXCR4 to block the CXCL12-mediated recruitment of endothelial progenitor cells and repress CXCR4 downstream of the Akt and Erk signaling pathway, which are involved in tumor angiogenesis and progression. Further pharmacokinetic evaluation suggested that E5 has an acceptable stability, with a half-life of 10 h in healthy mice. In conclusion, E5 demonstrates a promising anti-tumor effect and could be a potential chemotherapeutic sensitizer to improve current clinical breast cancer therapies.
Collapse
|
23
|
Randhawa S, Cho BS, Ghosh D, Sivina M, Koehrer S, Müschen M, Peled A, Davis RE, Konopleva M, Burger JA. Effects of pharmacological and genetic disruption of CXCR4 chemokine receptor function in B-cell acute lymphoblastic leukaemia. Br J Haematol 2016; 174:425-36. [PMID: 27071778 DOI: 10.1111/bjh.14075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/26/2016] [Indexed: 12/14/2022]
Abstract
B cell acute lymphoblastic leukaemia (B-ALL) cells express high levels of CXCR4 chemokine receptors for homing and retention within the marrow microenvironment. Bone marrow stromal cells (BMSC) secrete CXCL12, the ligand for CXCR4, and protect B-ALL cells from cytotoxic drugs. Therefore, the therapeutic use of CXCR4 antagonists has been proposed to disrupt cross talk between B-ALL cells and the protective stroma. Because CXCR4 antagonists can have activating agonistic function, we compared the genetic and pharmacological deletion of CXCR4 in B-ALL cells, using CRISPR-Cas9 gene editing and CXCR4 antagonists that are in clinical use (plerixafor, BKT140). Both genetic and pharmacological CXCR4 inhibition significantly reduced B-ALL cell migration to CXCL12 gradients and beneath BMSC, and restored drug sensitivity to dexamethasone, vincristine and cyclophosphamide. NOD/SCID/IL-2rγnull mice injected with CXCR4 gene-deleted B-ALL cells had significant delay in disease progression and superior survival when compared to control mice injected with CXCR4 wild-type B-ALL cells. These findings indicate that anti-leukaemia activity of CXCR4 antagonists is primarily due to CXCR4 inhibition, rather than agonistic activity, and corroborate that CXCR4 is an important target to overcome stroma-mediated drug resistance in B-ALL.
Collapse
Affiliation(s)
- Shubhchintan Randhawa
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Byung S Cho
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Haematology, Catholic Blood and Marrow Transplantation Centre, Cancer Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dipanjan Ghosh
- Department of Lymphoma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Mariela Sivina
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Stefan Koehrer
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Markus Müschen
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Richard E Davis
- Department of Lymphoma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jan A Burger
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, Neri LM, McCubrey JA, Martelli AM. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:449-463. [PMID: 26334291 DOI: 10.1016/j.bbamcr.2015.08.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
The bone marrow (BM) microenvironment regulates the properties of healthy hematopoietic stem cells (HSCs) localized in specific niches. Two distinct microenvironmental niches have been identified in the BM, the "osteoblastic (endosteal)" and "vascular" niches. Nevertheless, these niches provide sanctuaries where subsets of leukemic cells escape chemotherapy-induced death and acquire a drug-resistant phenotype. Moreover, it is emerging that leukemia cells are able to remodel the BM niches into malignant niches which better support neoplastic cell survival and proliferation. This review focuses on the cellular and molecular biology of microenvironment/leukemia interactions in acute lymphoblastic leukemia (ALL) of both B- and T-cell lineage. We shall also highlight the emerging role of exosomes/microvesicles as efficient messengers for cell-to-cell communication in leukemia settings. Studies on the interactions between the BM microenvironment and ALL cells have led to the discovery of potential therapeutic targets which include cytokines/chemokines and their receptors, adhesion molecules, signal transduction pathways, and hypoxia-related proteins. The complex interplays between leukemic cells and BM microenvironment components provide a rationale for innovative, molecularly targeted therapies, designed to improve ALL patient outcome. A better understanding of the contribution of the BM microenvironment to the process of leukemogenesis and leukemia persistence after initial remission, may provide new targets that will allow destruction of leukemia cells without adversely affecting healthy HSCs. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis,Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
Affiliation(s)
- Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annalisa Lonetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
25
|
Abstract
Chemokines mediate numerous physiological and pathological processes related primarily to cell homing and migration. The chemokine CXCL12, also known as stromal cell-derived factor-1, binds the G-protein-coupled receptor CXCR4, which, through multiple divergent pathways, leads to chemotaxis, enhanced intracellular calcium, cell adhesion, survival, proliferation, and gene transcription. CXCR4, initially discovered for its involvement in HIV entry and leukocytes trafficking, is overexpressed in more than 23 human cancers. Cancer cell CXCR4 overexpression contributes to tumor growth, invasion, angiogenesis, metastasis, relapse, and therapeutic resistance. CXCR4 antagonism has been shown to disrupt tumor-stromal interactions, sensitize cancer cells to cytotoxic drugs, and reduce tumor growth and metastatic burden. As such, CXCR4 is a target not only for therapeutic intervention but also for noninvasive monitoring of disease progression and therapeutic guidance. This review provides a comprehensive overview of the biological involvement of CXCR4 in human cancers, the current status of CXCR4-based therapeutic approaches, as well as recent advances in noninvasive imaging of CXCR4 expression.
Collapse
Affiliation(s)
- Samit Chatterjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Babak Behnam Azad
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
26
|
de Lourdes Perim A, Amarante MK, Guembarovski RL, de Oliveira CEC, Watanabe MAE. CXCL12/CXCR4 axis in the pathogenesis of acute lymphoblastic leukemia (ALL): a possible therapeutic target. Cell Mol Life Sci 2015; 72:1715-23. [PMID: 25572297 PMCID: PMC11113340 DOI: 10.1007/s00018-014-1830-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/09/2014] [Accepted: 12/30/2014] [Indexed: 01/23/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the commonest childhood malignancy, accounting for approximately 80 % of leukemia in the pediatric group, and its etiology is unknown. This neoplasia is characterized by male predominance, high-risk features and poor outcome, mainly in recurrence patients and adults. In recent years, advances in the success of childhood ALL treatment were verified, and the rate of cure is over 80 % of individuals. However, there is a considerable scope for improving therapeutic outcome in this neoplasia. Improvements in ALL therapy might readily be achieved by developing additional biomarkers that can predict and refine prognosis in patients with ALL. In normal hematopoietic cells, cytokines provide the stimulus for proliferation, survival, self-renewal, differentiation and functional activation. Abnormalities of cytokines are characteristic in all forms of leukemia, including ALL. The stromal cell-derived factor-1 (SDF-1 or CXCL12) is a member of the CXC chemokine family that binds to CXC chemokine receptor 4 (CXCR4). The CXCL12/CXCR4 axis appears to play a role in dissemination of solid tumors and hematopoietic diseases. Understanding the mechanisms by which ALL cells are disseminated will provide additional information to expand therapeutic approach. Therefore, this review summarizes information relating to ALL cell biology, focusing specifically in a cytokine receptor important axis, CXCL12/CXCR4, that may have implications for novel treatment strategies to improve life expectancy of patients with this neoplasia.
Collapse
Affiliation(s)
- Aparecida de Lourdes Perim
- Laboratory of Hematology, Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, State University of Londrina, Av. Robert Koch, 60, Vila Operária, Londrina, PR 86038-440 Brazil
| | - Marla Karine Amarante
- Laboratory of Hematology, Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, State University of Londrina, Av. Robert Koch, 60, Vila Operária, Londrina, PR 86038-440 Brazil
| | - Roberta Losi Guembarovski
- Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Campus Universitário-Rod. Celso Garcia Cid (PR 445) Km 380, Londrina, PR 86051-970 Brazil
| | - Carlos Eduardo Coral de Oliveira
- Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Campus Universitário-Rod. Celso Garcia Cid (PR 445) Km 380, Londrina, PR 86051-970 Brazil
| | - Maria Angelica Ehara Watanabe
- Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Campus Universitário-Rod. Celso Garcia Cid (PR 445) Km 380, Londrina, PR 86051-970 Brazil
| |
Collapse
|
27
|
Extracts from Curcuma zedoaria Inhibit Proliferation of Human Breast Cancer Cell MDA-MB-231 In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:730678. [PMID: 24883070 PMCID: PMC4026840 DOI: 10.1155/2014/730678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 12/19/2022]
Abstract
Objective. To evaluate the effect of petroleum ether extracts of Curcuma zedoaria on the proliferation of human triple negative breast cancer cell line MDA-MB-231. Methods. The reagents were isolated from Curcuma zedoaria by petroleum ether fraction. It was assayed by CCK8 for MDA-MB-231 cellular viability with various concentrations and days, cell cycle analyses, Western Blot analysis, and Realtime Reverse Transcriptase PCR analyses for chemokines molecules including E-cadherin, and E-selectin, and adhesion molecules including CCR7, SLC, SDF-1, and CXCR4. Epirubicin was used as control in the study. Results. MDA-MB-231 cells were inhibited by petroleum ether extracts of Curcuma zedoaria (P < 0.05), and the inhibition rate was dependent on concentrations and time. Petroleum ether extracts of Curcuma zedoaria as well as Epirubicin produce a significant G0/G1 cell cycle arrest. The level of expression of proteins E-cadherin and E-cadherin mRNA was significantly increased, while proteins SDF-1, CCR7, and CXCR4 mRNA were decreased after being incubated with petroleum ether extracts of Curcuma zedoaria at the concentrations of 300 μg/mL than control (P < 0.05). The differences were that the protein CXCR4 mRNA expression level was higher than vehicle. Conclusions. MDA-MB-231 cells were inhibited by petroleum ether extracts of Curcuma zedoaria.
Collapse
|
28
|
Ko SY, Park CJ, Park SH, Cho YU, Jang S, Seo EJ, Kim N, Kim DY, Koh KN, Im HJ, Seo JJ, Chi HS. High CXCR4 and low VLA-4 expression predicts poor survival in adults with acute lymphoblastic leukemia. Leuk Res 2013; 38:65-70. [PMID: 24239175 DOI: 10.1016/j.leukres.2013.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 12/24/2022]
Abstract
Data regarding the prognostic significance of CXCR4 and VLA-4 in ALL are limited. Especially, VLA-4 has not been evaluated at the time of diagnosis in both adult and childhood ALL patients. We prospectively analyzed the expression of VLA-4 and CXCR4 in 54 patients (VLA-4 in 29 adults and 25 children and CXCR4 in 22 adults and 24 children) newly diagnosed with ALL by flow cytometry. Expression levels of VLA-4 and CXCR4 were not different between adults and children with ALL. High CXCR4 and low VLA-4 expression each correlated with worse prognosis in adults; patients with high CXCR4 expression had shorter disease-free survival (p=0.01) and overall survival (p=0.04) and patients with low VLA-4 expression had shorter disease-free survival (p=0.02). Expression levels of CXCR4 and VLA-4 did not predict patient prognosis in children. Analysis of CXCR4 and VLA-4 expression at diagnosis in adults with ALL can provide useful information on patient prognosis.
Collapse
Affiliation(s)
- Sun-Young Ko
- Department of Laboratory Medicine, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, South Korea
| | - Chan-Jeoung Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, 86 Asanbyungwon-gil, Songpa-gu, Seoul 138-736, South Korea.
| | - Sang-Hyuk Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, 86 Asanbyungwon-gil, Songpa-gu, Seoul 138-736, South Korea
| | - Young-Uk Cho
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, 86 Asanbyungwon-gil, Songpa-gu, Seoul 138-736, South Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, 86 Asanbyungwon-gil, Songpa-gu, Seoul 138-736, South Korea
| | - Eul-Ju Seo
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, 86 Asanbyungwon-gil, Songpa-gu, Seoul 138-736, South Korea
| | - Nayoung Kim
- Asan Institue for Life Sciences, Asan Medical Center, 86 Asanbyungwon-gil, Songpa-gu, Seoul 138-736, South Korea
| | - Dae-Young Kim
- Department of Internal Medicine, University of Ulsan College of Medicine and Asan Medical Center, 86 Asanbyungwon-gil, Songpa-gu, Seoul 138-736, South Korea
| | - Kyung Nam Koh
- Department of Pediatrics, University of Ulsan College of Medicine and Asan Medical Center, 86 Asanbyungwon-gil, Songpa-gu, Seoul 138-736, South Korea
| | - Ho Joon Im
- Department of Pediatrics, University of Ulsan College of Medicine and Asan Medical Center, 86 Asanbyungwon-gil, Songpa-gu, Seoul 138-736, South Korea
| | - Jong-Jin Seo
- Department of Pediatrics, University of Ulsan College of Medicine and Asan Medical Center, 86 Asanbyungwon-gil, Songpa-gu, Seoul 138-736, South Korea
| | - Hyun-Sook Chi
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, 86 Asanbyungwon-gil, Songpa-gu, Seoul 138-736, South Korea
| |
Collapse
|
29
|
Konoplev S, Lin P, Yin CC, Lin E, Nogueras González GM, Kantarjian HM, Andreeff M, Medeiros LJ, Konopleva M. CXC chemokine receptor 4 expression, CXC chemokine receptor 4 activation, and wild-type nucleophosmin are independently associated with unfavorable prognosis in patients with acute myeloid leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2013; 13:686-92. [PMID: 24035716 DOI: 10.1016/j.clml.2013.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/05/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND CXC chemokine receptor 4 (CXCR4) is activated by phosphorylation and essential for migration of hematopoietic precursors to bone marrow. CXCR4 overexpression predicts unfavorable prognosis in patients with acute myeloid leukemia (AML). Nucleophosmin (NPM1) mutation is the most frequent genetic abnormality in patients with AML and predicts a favorable prognosis. In vitro studies have suggested that mutant nucleophosmin (NPM) decreases CXCR4-mediated chemotaxis by downregulating CXCR4, thereby linking the NPM and CXCR4 pathways. PATIENTS AND METHODS In a group of 117 untreated adults with AML, we used immunohistochemistry to assess bone marrow specimens for CXCR4 and phosphorylated CXCR4 (pCXCR4) expression. All cases also were analyzed for NPM1 mutations using polymerase chain reaction-based methods. RESULTS CXCR4 expression was detected in 75 patients (64%), and pCXCR4 expression was detected in 31 patients (26%). NPM1 mutations were detected in 63 patients (54%). NPM1 mutations did not correlate with CXCR4 (P = .212) or pCXCR4 (P = .355) expression. The median 5-year overall survival was 27% (95% confidence interval, 19-36), with a median follow-up of 8 months (95% confidence interval, 6-15). In a multivariate Cox proportional hazards model, reduced overall and progression-free survival rates were associated with a history of antecedent hematologic disorder, failure to achieve complete remission, thrombocytopenia, unfavorable cytogenetics, CXCR4 expression, and wild-type NPM1. pCXCR4 expression was independently associated with shorter progression-free survival. CONCLUSIONS There is no correlation between NPM1 mutations and CXCR4 or pCXCR4 expression, suggesting that the CXCR4 and NPM pathways act independently in adult AML.
Collapse
Affiliation(s)
- Sergej Konoplev
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brault L, Rovó A, Decker S, Dierks C, Tzankov A, Schwaller J. CXCR4-SERINE339 regulates cellular adhesion, retention and mobilization, and is a marker for poor prognosis in acute myeloid leukemia. Leukemia 2013; 28:566-76. [PMID: 23817178 DOI: 10.1038/leu.2013.201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 01/20/2023]
Abstract
The CXCR4 receptor is a major regulator of hematopoietic cell migration. Overexpression of CXCR4 has been associated with poor prognosis in acute myelogenous leukemia (AML). We have previously shown that ligand-mediated phosphorylation of the Serine339 (CXCR4-S339) residue of the intracellular domain by PIM1 is implicated in surface re-expression of this receptor. Here, we report that phosphorylation of CXCR4-S339 in bone marrow (BM) biopsies correlated with poor prognosis in a cohort of AML patients. To functionally address the impact of CXCR4-S339 phosphorylation, we generated cell lines-expressing CXCR4 mutants that mimic constitutive phosphorylation (S339E) or abrogate phosphorylation (S339A). Whereas the expression of CXCR4 significantly increased, both CXCR4-S339E and the CXCR4-S339A mutants significantly reduced the BM homing and engraftment of Kasumi-1 AML cells in immunodeficient mice. In contrast, only expression of the CXCR4-S339E mutant increased the BM retention of the cells and resistance to cytarabine treatment, and impaired detachment capacity and AMD3100-induced mobilization of engrafted leukemic cells. These observations suggest that the poor prognosis in AML patients displaying CXCR4-S339 phosphorylation can be the consequence of an increased retention to the BM associated with an enhanced chemoresistance of leukemic cells. Therefore, CXCR4-S339 phosphorylation could serve as a novel prognostic marker in human AML.
Collapse
Affiliation(s)
- L Brault
- Department of Biomedicine, University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
| | - A Rovó
- Department of Hematology, University Hospital Basel, Basel, Switzerland
| | - S Decker
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - C Dierks
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - A Tzankov
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | - J Schwaller
- Department of Biomedicine, University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
| |
Collapse
|
31
|
Ling X, Spaeth E, Chen Y, Shi Y, Zhang W, Schober W, Hail N, Konopleva M, Andreeff M. The CXCR4 antagonist AMD3465 regulates oncogenic signaling and invasiveness in vitro and prevents breast cancer growth and metastasis in vivo. PLoS One 2013; 8:e58426. [PMID: 23484027 PMCID: PMC3590173 DOI: 10.1371/journal.pone.0058426] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/05/2013] [Indexed: 01/12/2023] Open
Abstract
CXCR4, the receptor for stromal-derived factor-1, is reportedly involved in breast carcinogenesis. However, the mechanisms through which CXCR4 contributes to breast cancer cell growth and metastases are poorly understood. In this study, we examined the putative in vitro and in vivo anti-cancer effects of the specific CXCR4 inhibitor AMD3465. Here, we report that AMD3465 triggers a reduction in breast cancer cell invasiveness in vitro, and promotes marked changes in oncogenic signaling proteins including a reduction in STAT3, JAK2, AKT, and CXCR4 phosphorylation and the reduced expression of GSK3 and cMYC. Using three breast cancer cell lines as murine syngeneic immunocompetent breast cancer models, we found that AMD3465 inhibited breast tumor formation and reduced tumor cell metastases to the lung and liver. Furthermore, treatment with AMD3465 significantly reduced the infiltration of myeloid CD11b positive cells at the aforementioned metastatic sites as well as the spleen implying this agent could regulate the formation of the tumor microenvironment and conceivably the premetastatic niche. In conclusion, our studies suggest that AMD3465 inhibits breast cancer growth and metastases by acting on tumor cells as well as immune cells that constitute the tumor microenvironment. This process appears to be regulated, at least in part, through the modulation of oncogenic signaling that includes the STAT3 pathway. Thus, CXCR4 could be a novel target for breast cancer therapy.
Collapse
Affiliation(s)
- Xiaoyang Ling
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Erika Spaeth
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ye Chen
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Yuexi Shi
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Weiguo Zhang
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Wendy Schober
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Numsen Hail
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Marina Konopleva
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael Andreeff
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
32
|
Sison EAR, Rau RE, McIntyre E, Li L, Small D, Brown P. MLL-rearranged acute lymphoblastic leukaemia stem cell interactions with bone marrow stroma promote survival and therapeutic resistance that can be overcome with CXCR4 antagonism. Br J Haematol 2013; 160:785-97. [PMID: 23294096 DOI: 10.1111/bjh.12205] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/28/2012] [Indexed: 02/05/2023]
Abstract
Infants with MLL-rearranged (MLL-R) acute lymphoblastic leukaemia (ALL) have a dismal prognosis. While most patients achieve remission, approximately half of patients recur with a short latency to relapse. This suggests that chemotherapy-resistant leukaemia stem cells (LSCs) survive and can recapitulate the leukaemia. We hypothesized that interactions between LSCs and the bone marrow microenvironment mediate survival and chemotherapy resistance in MLL-R ALL. Using primary samples of infant MLL-R ALL, we studied the influence of bone marrow stroma on apoptosis, proliferation, and cytotoxicity induced by the FLT3 inhibitor lestaurtinib. MLL-R ALL were differentially protected by stroma from spontaneous apoptosis compared to non-MLL-R ALL. Co-culture of bulk MLL-R ALL in direct contact with stroma or with stroma-produced soluble factors promoted proliferation and cell cycle entry. Stroma also protected bulk MLL-R ALL cells and MLL-R ALL LSCs from lestaurtinib-mediated cytotoxicity. Previous studies have demonstrated that CXCR4 mediates bone marrow microenvironment signalling. Using a xenograft model of MLL-R ALL, we demonstrated that CXCR4 inhibition with AMD3100 (plerixafor) led to markedly enhanced efficacy of lestaurtinib. Therefore, the bone marrow microenvironment is a mediator of chemotherapy resistance in MLL-R ALL and targeting leukaemia-stroma interactions with CXCR4 inhibitors may prove useful in this high-risk subtype of paediatric ALL.
Collapse
Affiliation(s)
- Edward Allan R Sison
- Oncology and Pediatrics, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
G-protein-coupled receptors (GPCRs), which represent the largest gene family in the human genome, play a crucial role in multiple physiological functions as well as in tumor growth and metastasis. For instance, various molecules like hormones, lipids, peptides and neurotransmitters exert their biological effects by binding to these seven-transmembrane receptors coupled to heterotrimeric G-proteins, which are highly specialized transducers able to modulate diverse signaling pathways. Furthermore, numerous responses mediated by GPCRs are not dependent on a single biochemical route, but result from the integration of an intricate network of transduction cascades involved in many physiological activities and tumor development. This review highlights the emerging information on the various responses mediated by a selected choice of GPCRs and the molecular mechanisms by which these receptors exert a primary action in cancer progression. These findings provide a broad overview on the biological activity elicited by GPCRs in tumor cells and contribute to the identification of novel pharmacological approaches for cancer patients.
Collapse
|
34
|
Luker KE, Lewin SA, Mihalko LA, Schmidt BT, Winkler JS, Coggins NL, Thomas DG, Luker GD. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene 2012; 31:4750-8. [PMID: 22266857 PMCID: PMC3337948 DOI: 10.1038/onc.2011.633] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemokine CXCL12 and receptor CXCR4 control multiple steps in primary tumor growth and metastasis in breast cancer and more than 20 other human malignancies. Mechanisms that regulate availability of CXCL12 in tumor microenvironments will substantially impact cancer progression and ongoing efforts to target the CXCL12-CXCR4 pathway for cancer chemotherapy. We used dual luciferase imaging to investigate CXCR7 dependent scavenging of CXCL12 in breast tumors in vivo and quantify effects of CXCR7 on tumor growth and metastasis of a separate population of CXCR4+ breast cancer cells. In a mouse xenograft model of human breast cancer, in vivo imaging showed that malignant cells expressing CXCR7 reduced bioluminescent CXCL12 secreted in the primary tumor microenvironment. Capitalizing on sensitive detection of bioluminescent CXCL12, we also demonstrated that CXCR7+ cells reduced amounts of chemokine released from orthotopic tumors into the circulation. Immunofluorescence staining of human primary breast cancers showed expression of CXCR4 and CXCR7 on malignant cells in ≈ 30% of cases. In most cases, CXCR4 and CXCR7 predominantly were expressed on separate populations of malignant cells in a tumor. We modeled these cases of human breast cancer by co-implanting tumor xenografts with CXCR4+ breast cancer cells, human mammary fibroblasts secreting CXCL12, and CXCR7+ or control breast cancer cells. Bioluminescence imaging showed that CXCR7+ breast cancer cells enhanced proliferation of CXCR4+ breast cancer cells in orthotopic tumors and spontaneous metastases. Treatment with a small molecule inhibitor of CXCR7 chemokine scavenging limited growth of CXCR4+ breast cancer cells in tumors that also contained malignant CXCR7+ cells. These studies establish a new in vivo imaging method to quantify chemokine scavenging by CXCR7 in the tumor microenvironment and identify that CXCR7+ cells promote growth and metastasis of CXCR4+ breast cancer cells.
Collapse
Affiliation(s)
- K E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | | | | | |
Collapse
|