1
|
Sharma S, Rana R, Prakash P, Ganguly NK. Drug target therapy and emerging clinical relevance of exosomes in meningeal tumors. Mol Cell Biochem 2024; 479:127-170. [PMID: 37016182 PMCID: PMC10072821 DOI: 10.1007/s11010-023-04715-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Meningioma is the most common central nervous system (CNS) tumor. In recent decades, several efforts have been made to eradicate this disease. Surgery and radiotherapy remain the standard treatment options for these tumors. Drug therapy comes to play its role when both surgery and radiotherapy fail to treat the tumor. This mostly happens when the tumors are close to vital brain structures and are nonbenign. Although a wide variety of chemotherapeutic drugs and molecular targeted drugs such as tyrosine kinase inhibitors, alkylating agents, endocrine drugs, interferon, and targeted molecular pathway inhibitors have been studied, the roles of numerous drugs remain unexplored. Recent interest is growing toward studying and engineering exosomes for the treatment of different types of cancer including meningioma. The latest studies have shown the involvement of exosomes in the theragnostic of various cancers such as the lung and pancreas in the form of biomarkers, drug delivery vehicles, and vaccines. Proper attention to this new emerging technology can be a boon in finding the consistent treatment of meningioma.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062 India
| | | |
Collapse
|
2
|
Yarabarla V, Mylarapu A, Han TJ, McGovern SL, Raza SM, Beckham TH. Intracranial meningiomas: an update of the 2021 World Health Organization classifications and review of management with a focus on radiation therapy. Front Oncol 2023; 13:1137849. [PMID: 37675219 PMCID: PMC10477988 DOI: 10.3389/fonc.2023.1137849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023] Open
Abstract
Meningiomas account for approximately one third of all primary intracranial tumors. Arising from the cells of the arachnoid mater, these neoplasms are found along meningeal surfaces within the calvarium and spinal canal. Many are discovered incidentally, and most are idiopathic, although risk factors associated with meningioma development include age, sex, prior radiation exposure, and familial genetic diseases. The World Health Organization grading system is based on histologic criteria, and are as follows: grade 1 meningiomas, a benign subtype; grade 2 meningiomas, which are of intermediately aggressive behavior and usually manifest histologic atypia; and grade 3, which demonstrate aggressive malignant behavior. Management is heavily dependent on tumor location, grade, and symptomatology. While many imaging-defined low grade appearing meningiomas are suitable for observation with serial imaging, others require aggressive management with surgery and adjuvant radiotherapy. For patients needing intervention, surgery is the optimal definitive approach with adjuvant radiation therapy guided by extent of resection, tumor grade, and location in addition to patient specific factors such as life expectancy. For grade 1 lesions, radiation can also be used as a monotherapy in the form of stereotactic radiosurgery or standard fractionated radiation therapy depending on tumor size, anatomic location, and proximity to dose-limiting organs at risk. Optimal management is paramount because of the generally long life-expectancy of patients with meningioma and the morbidity that can arise from tumor growth and recurrence as well as therapy itself.
Collapse
Affiliation(s)
- Varun Yarabarla
- Philadelphia College of Osteopathic Medicine, Suwanee, GA, United States
| | - Amrutha Mylarapu
- Department of Internal Medicine, Advent Health Redmond, Rome, GA, United States
| | - Tatiana J. Han
- Department of Internal Medicine, WellSpan Health, York, PA, United States
| | - Susan L. McGovern
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shaan M. Raza
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas H. Beckham
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
3
|
Caccese M, Busato F, Guerriero A, Padovan M, Cerretti G, Gardiman MP, Zagonel V, Lombardi G. The role of radiation therapy and systemic treatments in meningioma: The present and the future. Cancer Med 2023; 12:16041-16053. [PMID: 37366279 PMCID: PMC10469847 DOI: 10.1002/cam4.6254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Meningiomas are the most prevalent tumors of the central nervous system. Their standard treatment is surgery, which can be curative. Adjuvant radiotherapy treatment is reserved for newly diagnosed cases of grade II and grade III meningiomas in cases of recurrent disease or when surgery is not radical or feasible. However, around 20% of these patients cannot undergo further surgical and/or radiotherapy treatment. Systemic oncological therapy can find its place in this setting. Several tyrosine kinase inhibitors have been tested (gefitinib, erlotinib, sunitinib) with unsatisfactory or negative results. Bevacizumab has shown encouraging results in these settings of patients. Immunotherapy with immune checkpoint inhibitors has reported interesting results with modest objective response rates. Several ongoing studies are assessing different target therapies and multimodal therapies; the results are to be disclosed. Not only a better understanding of the molecular characteristics in meningiomas has allowed the gathering of more information regarding pathogenesis and prognosis, but in addition, the availability of new target therapy, immunotherapy, and biological drugs has widened the scope of potentially effective treatments in this patient population. The aim of this review was to explore the radiotherapy and systemic treatments of meningioma with an analysis of ongoing trials and future therapeutic perspectives.
Collapse
Affiliation(s)
- Mario Caccese
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Fabio Busato
- Department of Radiation OncologyAbano Terme HospitalPaduaItaly
| | - Angela Guerriero
- General Pathology and Cytopathology Unit, Department of Medicine‐DMEDUniversity of PaduaPaduaItaly
| | - Marta Padovan
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Giulia Cerretti
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Marina Paola Gardiman
- General Pathology and Cytopathology Unit, Department of Medicine‐DMEDUniversity of PaduaPaduaItaly
| | - Vittorina Zagonel
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Giuseppe Lombardi
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| |
Collapse
|
4
|
Azab MA, Cole K, Earl E, Cutler C, Mendez J, Karsy M. Medical Management of Meningiomas. Neurosurg Clin N Am 2023; 34:319-333. [PMID: 37210123 DOI: 10.1016/j.nec.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Meningiomas represent the most common type of benign tumor of the extra-axial compartment. Although most meningiomas are benign World Health Organization (WHO) grade 1 lesions, the increasingly prevalent of WHO grade 2 lesion and occasional grade 3 lesions show worsened recurrence rates and morbidity. Multiple medical treatments have been evaluated but show limited efficacy. We review the status of medical management in meningiomas, highlighting successes and failures of various treatment options. We also explore newer studies evaluating the use of immunotherapy in management.
Collapse
Affiliation(s)
- Mohammed A Azab
- Biomolecular Sciences Graduate Program, Boise State University, 1910 University Drive, Boise, ID 83725, USA
| | - Kyril Cole
- School of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Emma Earl
- School of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Chris Cutler
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 N Green Bay Rd., North Chicago, IL 60064, USA
| | - Joe Mendez
- Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Dr., Salt Lake City, UT 84112, USA
| | - Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT 84132, USA.
| |
Collapse
|
5
|
Khan M, Hanna C, Findlay M, Lucke-Wold B, Karsy M, Jensen RL. Modeling Meningiomas: Optimizing Treatment Approach. Neurosurg Clin N Am 2023; 34:479-492. [PMID: 37210136 DOI: 10.1016/j.nec.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Preclinical meningioma models offer a setting to test molecular mechanisms of tumor development and targeted treatment options but historically have been challenging to generate. Few spontaneous tumor models in rodents have been established, but cell culture and in vivo rodent models have emerged along with artificial intelligence, radiomics, and neural networks to differentiate the clinical heterogeneity of meningiomas. We reviewed 127 studies using PRISMA guideline methodology, including laboratory and animal studies, that addressed preclinical modeling. Our evaluation identified that meningioma preclinical models provide valuable molecular insight into disease progression and effective chemotherapeutic and radiation approaches for specific tumor types.
Collapse
Affiliation(s)
- Majid Khan
- Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Chadwin Hanna
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Matthew Findlay
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT 84132, USA.
| | - Randy L Jensen
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT 84132, USA
| |
Collapse
|
6
|
Li Y, Drappatz J. Advances in the systemic therapy for recurrent meningiomas and the challenges ahead. Expert Rev Neurother 2023; 23:995-1004. [PMID: 37695700 DOI: 10.1080/14737175.2023.2254498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION Meningiomas represent the most common primary neoplasms of the central nervous system (CNS). 20% present with atypical (WHO grade II) or malignant (grade III) meningiomas, which show aggressive biologic behavior and high recurrence. Although surgical resection and radiation therapy are the primary treatment options for these tumors, there is a subgroup of patients who do not respond well to or are poor candidates for these approaches, leading to the exploration of systemic therapies as an alternative. AREAS COVERED The literature on different therapeutic groups of systemic drugs for recurrent meningiomas is reviewed, with a focus on the different molecular targets. Past and current ongoing clinical trials are also discussed. EXPERT OPINION To date, there is no recognized treatment that has demonstrated a substantial increase in progression-free or overall survival rates. Nonetheless, therapies targeting anti-VEGF have exhibited more encouraging results in general. The examination of genomic and epigenomic traits of meningiomas, along with the integration of molecular markers into the latest WHO tumor grading system, has provided valuable insights. This has opened avenues for exploring numerous intracellular and extracellular pathways, as well as mutations, that have been targeted in ongoing clinical trials.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology and Medicine, Division of Hematology and Oncology, Center for Neuro-Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jan Drappatz
- Department of Neurology and Medicine, Division of Hematology and Oncology, Center for Neuro-Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Mair MJ, Berghoff AS, Brastianos PK, Preusser M. Emerging systemic treatment options in meningioma. J Neurooncol 2023; 161:245-258. [PMID: 36181606 PMCID: PMC9989003 DOI: 10.1007/s11060-022-04148-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Meningiomas are the most frequently diagnosed intracranial neoplasms. Usually, they are treated by surgical resection in curative intent. Radiotherapy and stereotactic radiosurgery are commonly applied in the adjuvant setting in newly diagnosed atypical (CNS WHO grade 2), and anaplastic (CNS WHO grade 3) meningioma, especially if gross total resection is not feasible, and in recurrent cases. Conversely, the evidence for pharmacotherapy in meningioma is scarce. METHODS The available literature of systemic treatment in meningioma was screened using PubMed, and ongoing clinical trials were explored using ClinicalTrials.gov. RESULTS Classical cytotoxic agents, somatostatin analogs, and antihormone treatments have shown only limited efficacy. In contrast, tyrosine kinase inhibitors and monoclonal antibodies, especially those targeting angiogenic signaling such as sunitinib and bevacizumab, have shown promising antitumoral activity in small phase 2 trials. Moreover, results of recent landmark studies on (epi-)genetic alterations in meningioma revealed potential therapeutic targets which are currently under investigation. These include inhibitors of mammalian target of rapamycin (mTOR), focal adhesion kinase (FAK), cyclin-dependent kinases (CDK), phosphoinositide-3-kinase (PI3K), sonic hedgehog signaling, and histone deacetylases. In addition, clinical trials evaluating immune checkpoint inhibitors such as ipilimumab, nivolumab, pembrolizumab and avelumab are currently being conducted and early results suggest clinically meaningful responses in a subset of patients. CONCLUSIONS There is a paucity of high-level evidence on systemic treatment options in meningioma. However, interesting novel treatment targets have been identified in the last decade. Positive signals of anti-angiogenic agents, genomically targeted agents and immunotherapy in early phase trials should be confirmed in large prospective controlled trials.
Collapse
Affiliation(s)
- Maximilian J Mair
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria
| | - Priscilla K Brastianos
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Okano A, Miyawaki S, Teranishi Y, Ohara K, Hongo H, Sakai Y, Ishigami D, Nakatomi H, Saito N. Advances in Molecular Biological and Translational Studies in World Health Organization Grades 2 and 3 Meningiomas: A Literature Review. Neurol Med Chir (Tokyo) 2022; 62:347-360. [PMID: 35871574 PMCID: PMC9464479 DOI: 10.2176/jns-nmc.2022-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
The treatment of World Health Organization (WHO) grades 2 and 3 meningiomas remains difficult and controversial. The pathogenesis of high-grade meningiomas was expected to be elucidated to improve treatment strategies. The molecular biology of meningiomas has been clarified in recent years. High-grade meningiomas have been linked to NF2 mutations and 22q deletion. CDKN2A/B homozygous deletion and TERT promoter mutations are independent prognostic factors for WHO grade 3 meningiomas. In addition to 22q loss, 1p, 14p, and 9q loss have been linked to high-grade meningiomas. Meningiomas enriched in copy number alterations may be biologically invasive. Furthermore, several new comprehensive classifications of meningiomas have been proposed based on these molecular biological features, including DNA methylation status. The new classifications may have implications for treatment strategies for refractory aggressive meningiomas because they provide a more accurate prognosis compared to the conventional WHO classification. Although several systemic therapies, including molecular targeted therapies, may be effective in treating refractory aggressive meningiomas, these drugs are being tested. Systemic drug therapy for meningioma is expected to be developed in the future. Thus, this review aims to discuss the distinct genomic alterations observed in WHO grade 2 and 3 meningiomas, as well as their diagnostic and therapeutic implications and systemic drug therapies for high-grade meningiomas.
Collapse
Affiliation(s)
- Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Yu Sakai
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Daiichiro Ishigami
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
- Department of Neurosurgery, Kyorin University
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| |
Collapse
|
9
|
Pellerino A, Bruno F, Palmiero R, Pronello E, Bertero L, Soffietti R, Rudà R. Clinical Significance of Molecular Alterations and Systemic Therapy for Meningiomas: Where Do We Stand? Cancers (Basel) 2022; 14:2256. [PMID: 35565385 PMCID: PMC9100910 DOI: 10.3390/cancers14092256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/25/2022] Open
Abstract
Meningiomas are common intracranial tumors that can be treated successfully in most cases with surgical resection and/or adjuvant radiotherapy. However, approximately 20% of patients show an aggressive clinical course with tumor recurrence or progressive disease, resulting in significant morbidity and increased mortality. Despite several studies that have investigated different cytotoxic agents in aggressive meningiomas in the past several years, limited evidence of efficacy and clinical benefit has been reported thus far. Novel molecular alterations have been linked to a particular clinicopathological phenotype and have been correlated with grading, location, and prognosis of meningiomas. In this regard, SMO, AKT, and PIK3CA mutations are typical of anterior skull base meningiomas, whereas KLF4 mutations are specific for secretory histology, and BAP1 alterations are common in progressive rhabdoid meningiomas. Alterations in TERT, DMD, and BAP1 correlate with poor outcomes. Moreover, some actionable mutations, including SMO, AKT1, and PIK3CA, regulate meningioma growth and are under investigation in clinical trials. PD-L1 and/or M2 macrophage expression in the microenvironment provides evidence for the investigation of immunotherapy in progressive meningiomas.
Collapse
Affiliation(s)
- Alessia Pellerino
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
| | - Francesco Bruno
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
| | - Rosa Palmiero
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
| | - Edoardo Pronello
- Department of Neurology Unit, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University and City of Health and Science Hospital, 10126 Turin, Italy;
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
| | - Roberta Rudà
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
- Department of Neurology, Castelfranco Veneto and Treviso Hospital, 31100 Treviso, Italy
| |
Collapse
|
10
|
Gemcitabine Cooperates with Everolimus to Inhibit the Growth of and Sensitize Malignant Meningioma Cells to Apoptosis Induced by Navitoclax, an Inhibitor of Anti-Apoptotic BCL-2 Family Proteins. Cancers (Basel) 2022; 14:cancers14071706. [PMID: 35406478 PMCID: PMC8997110 DOI: 10.3390/cancers14071706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Meningioma is the most common intracranial neoplasm derived from the arachnoid cap cells of the leptomeninges. Malignant meningioma is generally more aggressive than other meningioma and frequently recurs even after surgery and radiation therapy. Clinical trials have been performed on candidate drugs, including everolimus, an inhibitor of mammalian target of rapamycin. However, an effective standard systemic therapy has not yet been established and the prognosis of patients with malignant meningioma is still poor. We recently reported the radiosensitization effects of gemcitabine in malignant meningioma cells, which suggests its potential to enhance the efficacy of candidate drugs for meningioma. In the present study, we demonstrated that gemcitabine enhanced the therapeutic effects of everolimus in malignant meningioma cells, and these effects were further augmented by navitoclax, an inhibitor of anti-apoptotic BCL-2 family proteins, both in vitro and in vivo. The present results provide support for the clinical application of gemcitabine and navitoclax in combination with everolimus to the treatment of patients with malignant meningioma. Abstract Despite several clinical trials with encouraging findings, effective standard systemic therapies have yet to be established for malignant meningioma and the prognosis of these patients remains poor. Accumulating preclinical and clinical evidence suggests that gemcitabine is effective against malignant meningioma. To identify drugs with therapeutic effects that may be enhanced in combination with gemcitabine, we screened drugs that have been tested in preclinical and clinical trials for meningioma. In IOMM-Lee and HKBMM malignant meningioma cells, gemcitabine enhanced the growth inhibitory effects of the mTOR inhibitor everolimus, the clinical benefits of which have been demonstrated in patients with meningioma. The synergistic growth inhibitory effects of this combination were accompanied by cellular senescence characterized by an increase in senescence-associated β-galactosidase activity. To enhance the effects of this combination, we screened senolytic drugs that selectively kill senescent cells, and found that navitoclax, an inhibitor of anti-apoptotic BCL-2 family proteins, effectively reduced the number of viable malignant meningioma cells in combination with everolimus and gemcitabine by inducing apoptotic cell death. The suppression of tumor growth in vivo by the combination of everolimus with gemcitabine was significantly stronger than that by either treatment alone. Moreover, navitoclax, in combination with everolimus and gemcitabine, significantly reduced tumor sizes with an increase in the number of cleaved caspase-3-positive apoptotic cells. The present results suggest that the addition of gemcitabine with or without navitoclax to everolimus is a promising strategy that warrants further evaluation in future clinical trials for malignant meningioma.
Collapse
|
11
|
Alvarez-Breckenridge CA, Cahill DP, Brastianos PK. Trabectedin for recurrent WHO grade 2 or 3 meningiomas-Paving the road for new opportunities. Neuro Oncol 2022; 24:768-769. [PMID: 35100424 PMCID: PMC9071327 DOI: 10.1093/neuonc/noac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Priscilla K Brastianos
- Corresponding Author: Priscilla K. Brastianos, MD, Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA ()
| |
Collapse
|
12
|
Graillon T, Tabouret E, Chinot O. Chemotherapy and targeted therapies for meningiomas: what is the evidence? Curr Opin Neurol 2021; 34:857-867. [PMID: 34629433 DOI: 10.1097/wco.0000000000001002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Although most meningiomas are slow growing tumors mainly controlled by surgery with or without radiotherapy, aggressive meningiomas that fail these conventional treatments constitute a rare situation, a therapeutic challenge and an unmet need in neuro-oncology. RECENT FINDING Mutational landscape in recurrent high-grade meningiomas includes mainly NF2 mutation or 22q chromosomal deletion, whereas telomerase reverse transcriptase promoter, BAP-1 and CDK2NA mutations were also found in aggressive meningiomas. Pi3K-Akt-mTOR pathway is currently the most relevant intracellular signaling pathway target in meningiomas with preliminary clinical activity observed. Assessment of drug activity with progression free survival rate at 6 months is challenging in regard to meningioma growth rate heterogeneity, so that 3-dimensional growth rate before and during treatment could be considered in the future to selected new active drugs. SUMMARY Despite a low evidence level, some systemic therapies may be considered for patients with recurrent meningioma not amenable to further surgery or radiotherapy. In recurrent high-grade meningioma, everolimus-octreotide combination, bevacizumab, sunitinib and peptide receptor radionuclide therapy exhibit a signal of activity that may justify their clinical use. Despite a lack of clear signal of activity to date, immunotherapy may offer new perspectives in the treatment of these refractory tumors.
Collapse
Affiliation(s)
- Thomas Graillon
- Aix Marseille Univ, APHM, INSERM, MMG, UMR1251, La Timone Hospital, neurosurgery department Marseille, France
| | - Emeline Tabouret
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, La Timone Hospital, Neurooncology Department, Marseille, France
| | - Olivier Chinot
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, La Timone Hospital, Neurooncology Department, Marseille, France
| |
Collapse
|
13
|
Preusser M, Silvani A, Le Rhun E, Soffietti R, Lombardi G, Sepulveda JM, Brandal P, Brazil L, Bonneville-Levard A, Lorgis V, Vauleon E, Bromberg J, Erridge S, Cameron A, Lefranc F, Clement PM, Dumont S, Sanson M, Bronnimann C, Balaná C, Thon N, Lewis J, Mair MJ, Sievers P, Furtner J, Pichler J, Bruna J, Ducray F, Reijneveld JC, Mawrin C, Bendszus M, Marosi C, Golfinopoulos V, Coens C, Gorlia T, Weller M, Sahm F, Wick W. Trabectedin for recurrent WHO grade 2 or 3 meningioma: a randomized phase 2 study of the EORTC Brain Tumor Group (EORTC-1320-BTG). Neuro Oncol 2021; 24:755-767. [PMID: 34672349 DOI: 10.1093/neuonc/noab243] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND No systemic treatment has been established for meningioma progressing after local therapies. METHODS This randomized, multicenter, open-label, phase 2 study included adult patients with recurrent WHO grade 2 or 3 meningioma. Patients were 2:1 randomly assigned to intravenous trabectedin (1.5 mg/m 2 every three weeks) or local standard of care (LOC). The primary endpoint was progression-free survival (PFS). Secondary endpoints comprised overall survival (OS), objective radiological response, safety, quality of life (QoL) assessment using the QLQ-C30 and QLQ-BN20 questionnaires, and we performed tissue-based exploratory molecular analyses. RESULTS Ninety patients were randomized (n=29 in LOC, n=61 in trabectedin arm). With 71 events, median PFS was 4.17 months in the LOC and 2.43 months in the trabectedin arm (hazard ratio [HR]=1.42; 80% CI, 1.00-2.03; p=0.294) with a PFS-6 rate of 29.1% (95% CI, 11.9%-48.8%) and 21.1% (95% CI, 11.3%-32.9%), respectively. Median OS was 10.61 months in the LOC and 11.37 months in the trabectedin arm (HR=0.98; 95% CI, 0.54-1.76; p=0.94). Grade ≥3 adverse events occurred in 44.4% patients in the LOC and 59% of patients in the trabectedin arm. Enrolled patients had impeded global QoL and overall functionality and high fatigue before initiation of systemic therapy. DNA methylation class, performance status, presence of a relevant co-morbidity, steroid use, and right hemisphere involvement at baseline were independently associated with OS. CONCLUSIONS Trabectedin did not improve PFS and OS and was associated with higher toxicity than LOC treatment in patients with non-benign meningioma. Tumour DNA methylation class is an independent prognostic factor for OS.
Collapse
Affiliation(s)
- Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Antonio Silvani
- Department of Neuro-oncology, IRCCS Fondazione Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133 Milan, Italy
| | - Emilie Le Rhun
- University of Lille, U-1192, F-59000 Lille, France; Inserm, U-1192, F-59000 Lille, France; CHU Lille, General and Stereotaxic Neurosurgery service, F-59000 Lille, France; Oscar Lambret Center, Medical Oncology Department, F-59000 Lille
| | - Riccardo Soffietti
- Dept. Neuro-Oncology, University and City of Health and Science Hospital, Via Cherasco 15, 10126 Turin, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV- IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Juan Manuel Sepulveda
- Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, 28041 Madrid, Spain
| | - Petter Brandal
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, P.O.Box 4950 Nydalen, 0424 Oslo, Norway
| | - Lucy Brazil
- St Thomas' Hospital, Westminster Bridge Rd, London SE1 7EH, United Kingdom
| | | | - Veronique Lorgis
- Department of Medical Oncology, Centre Georges François Leclerc, 1 Rue du Professeur Marion, 21000 Dijon, France
| | - Elodie Vauleon
- Department of Medical Oncology, Centre Eugene Marquis, Avenue de la Bataille Flandres Dunkerque, 25042 Rennes, France
| | - Jacoline Bromberg
- Department of Neuro-Oncology, Erasmus MC University Medical Center Cancer Center, Doctor Molewaterplein 40, 3015 Rotterdam, The Netherlands
| | - Sara Erridge
- Edinburgh Cancer Centre, Western General Hospital, Crewe Rd S, Edinburgh EH4 2XU, United Kingdom
| | - Alison Cameron
- Bristol Cancer Institute, University Hospitals Bristol, Marlborough St, Bristol BS1 3NU, United Kingdom
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Erasme; Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Paul M Clement
- Department of Oncology, KU Leuven and Department of General Medical Oncology, UZ Leuven, Leuven Cancer Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Sarah Dumont
- Institut Gustave-Roussy, Université Paris-Saclay, Medical Oncology Department, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 47-83 Boulevard del l'Hôpital, 75013, Paris, France
| | - Charlotte Bronnimann
- Department of Medical Oncology, Bordeaux University Hospital-CHU, Bordeaux, France, University of Bordeaux, Place Amélie Raba Léon, 33000 Bordeaux, France
| | - Carmen Balaná
- Department of Medical Oncology, Catalan Institute of Oncology, Carretera Canyet sn, 08916 Badalona , Barcelona, Spain
| | - Niklas Thon
- Department of Neurosurgery, Faculty of Medicine and University Hospital, University of Munich LMU), Marchioninistraße 15, 81377 Munich, Germany
| | - Joanne Lewis
- Freeman Hospital, Freeman Rd, High Heaton, Newcastle NE7 7DN, United Kingdom
| | - Maximilian J Mair
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany, Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research DKTK), German Cancer Research Center DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Julia Furtner
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Josef Pichler
- Department of Internal Medicine and Neurooncology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University of Linz, Wagner-Jauregg-Weg 15, 4020 Linz, Austria
| | - Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-Institut Català D'Oncologia L'Hospitalet, Avinguda de la Granvia de l'Hospitalet, 199-203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francois Ducray
- Unit of Neuro-Oncology, Hospices Civils de Lyon and Department of Cancer Cell Plasticity, Cancer Research Center of Lyon, Claude Bernard University, 28 Rue Laennec, 69008 Lyon, France
| | - Jaap C Reijneveld
- Brain Tumor Center, Cancer Center Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands and Stichting Epilepsie Instellingen Nederland, Achterweg 3, 2103 SW Heemstede, Netherlands
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke-University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Christine Marosi
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Vassilis Golfinopoulos
- European Organisation for Research and Treatment of Cancer EORTCHeadquarter, Avenue E. Mounier 83/11, 1200 Brussels, Belgium
| | - Corneel Coens
- European Organisation for Research and Treatment of Cancer EORTCHeadquarter, Avenue E. Mounier 83/11, 1200 Brussels, Belgium
| | - Thierry Gorlia
- European Organisation for Research and Treatment of Cancer EORTCHeadquarter, Avenue E. Mounier 83/11, 1200 Brussels, Belgium
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany, Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research DKTK), German Cancer Research Center DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic, Heidelberg University Medical Center, Clinical Cooperation Unit, Neurooncology, German Cancer Research Center, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Maggio I, Franceschi E, Di Nunno V, Gatto L, Tosoni A, Angelini D, Bartolini S, Lodi R, Brandes AA. Discovering the Molecular Landscape of Meningioma: The Struggle to Find New Therapeutic Targets. Diagnostics (Basel) 2021; 11:1852. [PMID: 34679551 PMCID: PMC8534341 DOI: 10.3390/diagnostics11101852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Meningiomas are the most common primary CNS tumors. They are usually benign but can present aggressive behavior in about 20% of cases. The genetic landscape of meningioma is characterized by the presence (in about 60% of cases) or absence of NF2 mutation. Low-grade meningiomas can also present other genetic alterations, particularly affecting SMO, TRAF7, KLF4 AKT1 and PI3KCA. In higher grade meningiomas, mutations of TERT promoter and deletion of CDKN2A/B seem to have a prognostic value. Furthermore, other genetic alterations have been identified, such as BAP1, DMD and PBRM1. Different subgroups of DNA methylation appear to be correlated with prognosis. In this review, we explored the genetic landscape of meningiomas and the possible therapeutic implications.
Collapse
Affiliation(s)
- Ilaria Maggio
- Medical Oncology Department, Azienda USL, Via Altura n. 3, 40139 Bologna, Italy; (I.M.); (V.D.N.); (L.G.)
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCSS Istituto di Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (A.T.); (D.A.); (S.B.); (A.A.B.)
| | - Vincenzo Di Nunno
- Medical Oncology Department, Azienda USL, Via Altura n. 3, 40139 Bologna, Italy; (I.M.); (V.D.N.); (L.G.)
- Nervous System Medical Oncology Department, IRCSS Istituto di Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (A.T.); (D.A.); (S.B.); (A.A.B.)
| | - Lidia Gatto
- Medical Oncology Department, Azienda USL, Via Altura n. 3, 40139 Bologna, Italy; (I.M.); (V.D.N.); (L.G.)
- Nervous System Medical Oncology Department, IRCSS Istituto di Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (A.T.); (D.A.); (S.B.); (A.A.B.)
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCSS Istituto di Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (A.T.); (D.A.); (S.B.); (A.A.B.)
| | - Daniele Angelini
- Nervous System Medical Oncology Department, IRCSS Istituto di Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (A.T.); (D.A.); (S.B.); (A.A.B.)
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCSS Istituto di Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (A.T.); (D.A.); (S.B.); (A.A.B.)
| | - Raffaele Lodi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; or
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCSS Istituto di Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (A.T.); (D.A.); (S.B.); (A.A.B.)
| |
Collapse
|
15
|
Maggio I, Franceschi E, Tosoni A, Nunno VD, Gatto L, Lodi R, Brandes AA. Meningioma: not always a benign tumor. A review of advances in the treatment of meningiomas. CNS Oncol 2021; 10:CNS72. [PMID: 34015955 PMCID: PMC8162186 DOI: 10.2217/cns-2021-0003] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/30/2021] [Indexed: 11/21/2022] Open
Abstract
Meningiomas are the most common primary intracranial tumors. The majority of meningiomas are benign, but they can present different grades of dedifferentiation from grade I to grade III (anaplastic/malignant) that are associated with different outcomes. Radiological surveillance is a valid option for low-grade asymptomatic meningiomas. In other cases, the treatment is usually surgical, aimed at achieving a complete resection. The use of adjuvant radiotherapy is the gold standard for grade III, is debated for grade II and is not generally indicated for radically resected grade I meningiomas. The use of systemic treatments is not standardized. Here we report a review of the literature on the clinical, radiological and molecular characteristics of meningiomas, available treatment strategies and ongoing clinical trials.
Collapse
Affiliation(s)
- Ilaria Maggio
- Medical Oncology Department, Azienda USL, Via Altura 3, 40139, Bologna, Italy
| | - Enrico Franceschi
- Medical Oncology Department, Azienda USL, Via Altura 3, 40139, Bologna, Italy
| | - Alicia Tosoni
- Medical Oncology Department, Azienda USL, Via Altura 3, 40139, Bologna, Italy
| | - Vincenzo Di Nunno
- Medical Oncology Department, Azienda USL, Via Altura 3, 40139, Bologna, Italy
| | - Lidia Gatto
- Medical Oncology Department, Azienda USL, Via Altura 3, 40139, Bologna, Italy
| | - Raffaele Lodi
- IRCSS Istituto di Scienze Neurologiche di Bologna, Bologna 40139, Italy
| | - Alba A Brandes
- Medical Oncology Department, Azienda USL, Via Altura 3, 40139, Bologna, Italy
| |
Collapse
|
16
|
Chukwueke UN, Wen PY. Medical management of meningiomas. HANDBOOK OF CLINICAL NEUROLOGY 2021; 170:291-302. [PMID: 32586501 DOI: 10.1016/b978-0-12-822198-3.00048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Meningiomas are the most frequently occurring primary brain tumors in adults, representing almost one-third of all primary central nervous system tumors. Several factors have been suggested as an underlying cause in the development of meningiomas, such as ionizing radiation (therapeutic or other incidental exposure), hormonal factors, and genetic predisposition syndromes. Other established factors associated with meningiomas include age, female gender, and those from non-Hispanic Black backgrounds. Though the 2016 World Health Organization Classification of Brain Tumors largely preserves the existing grading scheme for organization of meningioma, there is increasing understanding of the molecular factors underlying the development of meningioma, some of which now form the basis for active clinical investigation. The mainstay of treatment has been the combination of radiation therapy and surgery, with a limited role for systemic therapy due to low efficacy, short duration of treatment response, and lack of uniform response criteria. Similar to other primary and metastatic brain tumors, immune-based therapies hold promise and are still under investigation.
Collapse
Affiliation(s)
- Ugonma N Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
17
|
Costea CF, Cucu AI, Bogdănici CM, Scripcariu DV, Dumitrescu GF, Sava A, Ghiciuc CM, Tănase DM, Turliuc MD, Nicoară SD, Schmitzer S, Ciocoiu M, Dragomir RA, Turliuc Ş. The Myth of Prometheus in metastatic meningioma to the liver: from craniotomy to hepatectomy. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2021; 62:351-359. [PMID: 35024723 PMCID: PMC8848289 DOI: 10.47162/rjme.62.2.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metastases from intracranial meningiomas are rare, and among them, meningiomas with hepatic dissemination are extremely rare. Therefore, there are currently no guidelines for staging and treatment of metastatic disease in meningioma, a disease that is a challenge for both the clinician and the pathologist. Our literature review revealed 24 cases of liver metastases originating from intracranial meningiomas. We used them to analyze the pathological patterns of dissemination and to assess the different management strategies available, the most efficient and beneficial being surgery and chemotherapy, especially in the case of meningiomas with hepatic and∕or systemic dissemination.
Collapse
Affiliation(s)
- Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Andrei Ionuţ Cucu
- Faculty of Medicine and Biological Sciences, Ştefan cel Mare University of Suceava, Romania
- Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, Iaşi, Romania
| | - Camelia Margareta Bogdănici
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Dragoş Viorel Scripcariu
- Department of General Surgery, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | | | - Anca Sava
- Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, Iaşi, Romania
- Department of Anatomy, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Cristina Mihaela Ghiciuc
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Daniela Maria Tănase
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Mihaela Dana Turliuc
- Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, Iaşi, Romania
- Department of Neurosurgery, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Simona Delia Nicoară
- Department of Ophthalmology, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Speranţa Schmitzer
- Department of Ophthalmology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Raluca Alina Dragomir
- Department of Anesthesiology and Oral Surgery, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Şerban Turliuc
- Department of Psychiatry, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|
18
|
Brastianos PK, Galanis E, Butowski N, Chan JW, Dunn IF, Goldbrunner R, Herold-Mende C, Ippen FM, Mawrin C, McDermott MW, Sloan A, Snyder J, Tabatabai G, Tatagiba M, Tonn JC, Wen PY, Aldape K, Nassiri F, Zadeh G, Jenkinson MD, Raleigh DR. Advances in multidisciplinary therapy for meningiomas. Neuro Oncol 2020; 21:i18-i31. [PMID: 30649489 DOI: 10.1093/neuonc/noy136] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Surgery has long been established as the first-line treatment for the majority of symptomatic and enlarging meningiomas, and evidence for its success is derived from retrospective case series. Despite surgical resection, a subset of meningiomas display aggressive behavior with early recurrences that are difficult to treat. The decision to radically resect meningiomas and involved structures is balanced against the risk for neurological injury in patients. Radiation therapy has largely been used as a complementary and safe therapeutic strategy in meningiomas with evidence primarily stemming from retrospective, single-institution reports. Two of the first cooperative group studies (RTOG 0539 and EORTC 22042) evaluating the outcomes of adjuvant radiation therapy in higher-risk meningiomas have shown promising preliminary results. Historically, systemic therapy has resulted in disappointing results in meningiomas. However, several clinical trials are under way evaluating the efficacy of chemotherapies, such as trabectedin, and novel molecular agents targeting Smoothened, AKT1, and focal adhesion kinase in patients with recurrent meningiomas.
Collapse
Affiliation(s)
- Priscilla K Brastianos
- Divisions of Hematology/Oncology & Neuro-Oncology, Departments of Medicine & Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Evanthia Galanis
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Jason W Chan
- Department of Radiation Oncology, University of California, San Francisco, California, USA
| | - Ian F Dunn
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Roland Goldbrunner
- Department of General Neurosurgery, University Hospital Cologne, Cologne, Germany
| | | | - Franziska M Ippen
- Divisions of Hematology/Oncology & Neuro-Oncology, Departments of Medicine & Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christian Mawrin
- Institute of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael W McDermott
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Andrew Sloan
- Department of Neurological Surgery, University Hospital-Case Medical Center, Cleveland, Ohio, USA
| | - James Snyder
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Ghazaleh Tabatabai
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research & Centre for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.,MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Farshad Nassiri
- MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, University Health Network, University of Toronto, Ontario, Canada.,MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Michael D Jenkinson
- Department of Neurosurgery & Institute of Translational Medicine, The Walton Centre NHS Foundation Trust & University of Liverpool, Lower Lane, Liverpool, Merseyside, UK
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, California, USA.,Department of Radiation Oncology, University of California, San Francisco, California, USA
| | | |
Collapse
|
19
|
Szychot E, Goodden J, Whitfield G, Curry S. Children's Cancer and Leukaemia Group (CCLG): review and guidelines for the management of meningioma in children, teenagers and young adults. Br J Neurosurg 2020; 34:142-153. [PMID: 32116043 DOI: 10.1080/02688697.2020.1726286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Primary tumours of the meninges are rare accounting for only 0.4-4.6% of all paediatric tumours of the central nervous system. Due to the rarity of these tumours in children, and the consequent absence of collaborative prospective trials, there is no clear consensus on how the unique characteristics of paediatric meningiomas impact clinical status, management approach, and survival. Much of the evidence and treatment recommendations for paediatric meningiomas are extrapolated from adult data. Translating and adapting adult treatment recommendations into paediatric practice can be challenging and might inadvertently lead to inappropriate management. In 2009, Traunecker et al. published guidelines for the management of intracranial meningioma in children and young people on behalf of UK Children's Cancer and Leukaemia Group (CCLG). Ten years later we have developed the updated guidelines following a comprehensive appraisal of the literature. Complete surgical resection is the treatment of choice for symptomatic meningiomas, while radiotherapy remains the only available adjuvant therapy and may be necessary for those tumours that cannot be completely removed. However, significant advances have been made in the identification of the genetic and molecular alterations of meningioma, which has not only a potential value in the development of therapeutic agents but also in surveillance of childhood meningioma survivors. This guideline builds upon the CCLG 2009 guideline. We summarise recommendations for the diagnosis, treatment, surveillance and long-term follow-up of children and adolescents with meningioma.
Collapse
Affiliation(s)
- Elwira Szychot
- Paediatric Oncology Cinical Studies, The Institute of Cancer Research, Sutton, London.,The Royal Marsden Hospital, Sutton, London
| | - John Goodden
- Department of Neurosurgery, Leeds General Infirmary, Leeds, UK
| | - Gillian Whitfield
- Department of Clinical Neuro-oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Sarah Curry
- Department of Paediatric Oncology, Southampton Children's Hospital, Southampton, UK
| |
Collapse
|
20
|
Lisi L, Chiavari M, Ciotti GMP, Lacal PM, Navarra P, Graziani G. DNA inhibitors for the treatment of brain tumors. Expert Opin Drug Metab Toxicol 2020; 16:195-207. [PMID: 32067518 DOI: 10.1080/17425255.2020.1729352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: The worldwide incidence of central nervous system (CNS) primary tumors is increasing. Most of the chemotherapeutic agents used for treating these cancer types induce DNA damage, and their activity is affected by the functional status of repair systems involved in the detection or correction of DNA lesions. Unfortunately, treatment of malignant high-grade tumors is still an unmet medical need.Areas covered: We summarize the action mechanisms of the main DNA inhibitors used for the treatment of brain tumors. In addition, studies on new agents or drug combinations investigated for this indication are reviewed, focusing our attention on clinical trials that in the last 3 years have been completed, terminated or are still recruiting patients.Expert opinion: Much still needs to be done to render aggressive CNS tumors curable or at least to transform them from lethal to chronic diseases, as it is possible for other cancer types. Drugs with improved penetration in the CNS, toxicity profile, and activity against primary and recurrent tumors are eagerly needed. Targeted agents with innovative mechanisms of action and ability to harness the cells of the tumor microenvironment against cancer cells represent a promising approach for improving the clinical outcome of CNS tumors.
Collapse
Affiliation(s)
- Lucia Lisi
- Department of Safety and Bioethics, Catholic University Medical School, Rome, Italy
| | - Marta Chiavari
- Department of Safety and Bioethics, Catholic University Medical School, Rome, Italy
| | | | - Pedro M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - Pierluigi Navarra
- Department of Safety and Bioethics, Catholic University Medical School, Rome, Italy.,Department of Safety and Bioethics, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
21
|
Al-Rashed M, Foshay K, Abedalthagafi M. Recent Advances in Meningioma Immunogenetics. Front Oncol 2020; 9:1472. [PMID: 31970090 PMCID: PMC6960175 DOI: 10.3389/fonc.2019.01472] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
Meningiomas are relatively common, and typically benign intracranial tumors, which in many cases can be cured by surgical resection. However, less prevalent, high grade meningiomas, grow quickly, and recur frequently despite treatment, leading to poor patient outcomes. Across tumor grades, subjective guidelines for histological analysis can preclude accurate diagnosis, and an insufficient understanding of recurrence risk can cloud the choice of optimal treatment. Improved diagnostic and prognostic markers capable of discerning between the 15 heterogeneous WHO recognized meningioma subtypes are necessary to improve disease management and identify new targeted drug treatments. In this review, we show the advances in molecular profiling and immunophenotyping of meningiomas, which may lead to the development of new personalized therapeutic strategies.
Collapse
Affiliation(s)
- May Al-Rashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Kara Foshay
- Inova Neuroscience and Spine Institute, Inova Health Systems, Falls Church, VA, United States
- Virginia Commonwealth University School of Medicine, Inova Campus, Richmond, VA, United States
| | - Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Abstract
Meningiomas are the most frequent primary intracranial tumors. While about 80% are benign, slow-growing tumors, approximately 20% are characterized by aggressive biology, increased recurrence rate, and overall impaired prognosis. Over the last five years, several new findings on the molecular pathology of meningiomas have been published, suggesting a relationship between certain somatic mutations and both tumor localization and histological variant. The newly introduced methylation-based classification of prognostic subgroups will improve the assessment of the individual clinical course in meningioma patients.
Collapse
|
23
|
Ahsan SA, Chendeb K, Profyris C, Teo C, Sughrue ME. Pharmacotherapeutic options for atypical meningiomas. Expert Opin Pharmacother 2019; 20:1831-1836. [PMID: 31322413 DOI: 10.1080/14656566.2019.1643840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Atypical meningiomas are aggressive tumors associated with high rates of recurrence and mortality. Current therapy is surgical resection followed by radiotherapy which has reasonable success rates. However, there are cases where surgical resection is not possible, and radiotherapy is not advisable. Areas covered: In this short review, the authors have searched the current literature for explorations of adjuvant treatments such as chemotherapy and pharmaceutical agents. Most current chemotherapeutic agents have been unsuccessful in producing radiographic reduction or disease stabilization, although drugs like somatostatin analogs and plant-derived chemotherapeutics have shown some promise. The authors note that most of the studies in this field have been case series with a few randomized trials present. This makes it hard to ascertain the effectiveness of the drugs and so further research is required in the field. Expert opinion: Finding pharmacotherapies to combat atypical meningiomas needs Big data genomic analysis. This will assist in generating drug candidates and a multidrug approach to therapy that will exploit several of the pathological pathways of atypical meningiomas. Using multidrug therapy that affects several pathways also addresses the issue of meningioma heterogeneity and adaptability.
Collapse
Affiliation(s)
- Syed Ali Ahsan
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital , Sydney , Australia
| | - Kassem Chendeb
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital , Sydney , Australia
| | - Christos Profyris
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital , Sydney , Australia
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital , Sydney , Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital , Sydney , Australia
| |
Collapse
|
24
|
|
25
|
Ippen FM, Colman H, van den Bent MJ, Brastianos PK. Precision Medicine for Primary Central Nervous System Tumors: Are We There Yet? Am Soc Clin Oncol Educ Book 2018; 38:158-167. [PMID: 30231322 DOI: 10.1200/edbk_199247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, technologic advances have increased tremendously our understanding of the molecular characteristics and genetic drivers of a variety of brain tumors. These discoveries have led to paradigm shifts in the treatment of these tumor entities and may therefore have a considerable impact on the outcome of affected patients in the near future. Here, we provide a broad overview of recently discovered clinically actionable mutations that have been identified in three different primary brain tumors: gliomas, meningiomas, and craniopharyngiomas. We furthermore highlight the diagnostic and therapeutic implications of these findings and summarize recently published and ongoing trials.
Collapse
Affiliation(s)
- Franziska Maria Ippen
- From the Massachusetts General Hospital, Harvard Medical School, Boston, MA; Departments of Neurosurgery, Neurology, and Internal Medicine (Oncology), Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Department of Neurology, The Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, Netherlands; Division of Neuro-Oncology, Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Howard Colman
- From the Massachusetts General Hospital, Harvard Medical School, Boston, MA; Departments of Neurosurgery, Neurology, and Internal Medicine (Oncology), Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Department of Neurology, The Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, Netherlands; Division of Neuro-Oncology, Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Martin J. van den Bent
- From the Massachusetts General Hospital, Harvard Medical School, Boston, MA; Departments of Neurosurgery, Neurology, and Internal Medicine (Oncology), Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Department of Neurology, The Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, Netherlands; Division of Neuro-Oncology, Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Priscilla Kaliopi Brastianos
- From the Massachusetts General Hospital, Harvard Medical School, Boston, MA; Departments of Neurosurgery, Neurology, and Internal Medicine (Oncology), Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Department of Neurology, The Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, Netherlands; Division of Neuro-Oncology, Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
Peraldo Neia C, Cavalloni G, Chiorino G, Ostano P, Aglietta M, Leone F. Gene and microRNA modulation upon trabectedin treatment in a human intrahepatic cholangiocarcinoma paired patient derived xenograft and cell line. Oncotarget 2018; 7:86766-86780. [PMID: 27902465 PMCID: PMC5349952 DOI: 10.18632/oncotarget.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive and lethal malignancy with limited therapeutic options. Trabectedin has a high antitumor activity in preclinical models of biliary tract carcinoma (BTC), being a promising alternative treatment. Here, we studied the effect of trabectedin at transcriptomic level on an ICC patient derived xenograft (PDX) and on the derived cell line, MT-CHC01. Further, putative targets of trabectedin were explored in the in vitro model. In vitro, trabectedin inhibited genes involved in protein modification, neurogenesis, migration, and motility; it induced the expression of genes involved in keratinization, tissues development, and apoptotic processes. In the PDX model, trabectedin affected ECM-receptor interaction, focal adhesion, complement and coagulation cascades, Hedgehog, MAPK, EGFR signaling via PIP3 pathway, and apoptosis. Among down-regulated genes, we selected SYK and LGALS1; their silencing caused a significantly reduction of migration, but did not affect proliferation in in vitro models. In MT-CHC01 cells, 24 microRNAs were deregulated upon drug treatment, while only 5 microRNAs were perturbed by trabectedin in PDX. The target prediction analysis showed that SYK and LGALS1 are putative targets of up-regulated microRNAs. In conclusion, we described that trabectedin affected genes and microRNAs involved in tumor progression and metastatic processes, reflecting data previously obtained at macroscopically level; in particular, we identified SYK and LGALS1 as new putative targets of trabectedin.
Collapse
Affiliation(s)
- Caterina Peraldo Neia
- University of Turin Medical School, Department of Oncology, IRCCS-Institute Candiolo, Italy
| | - Giuliana Cavalloni
- Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), IRCCS-Institute Candiolo, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - Paola Ostano
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - Massimo Aglietta
- University of Turin Medical School, Department of Oncology, IRCCS-Institute Candiolo, Italy.,Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), IRCCS-Institute Candiolo, Italy
| | - Francesco Leone
- University of Turin Medical School, Department of Oncology, IRCCS-Institute Candiolo, Italy.,Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), IRCCS-Institute Candiolo, Italy
| |
Collapse
|
27
|
Abstract
Meningiomas currently are among the most frequent intracranial tumours. Although the majority of meningiomas can be cured by surgical resection, ∼20% of patients have an aggressive clinical course with tumour recurrence or progressive disease, resulting in substantial morbidity and increased mortality of affected patients. During the past 3 years, exciting new data have been published that provide insights into the molecular background of meningiomas and link sites of tumour development with characteristic histopathological and molecular features, opening a new road to novel and promising treatment options for aggressive meningiomas. A growing number of the newly discovered recurrent mutations have been linked to a particular clinicopathological phenotype. Moreover, the updated WHO classification of brain tumours published in 2016 has incorporated some of these molecular findings, setting the stage for the improvement of future therapeutic efforts through the integration of essential molecular findings. Finally, an additional potential classification of meningiomas based on methylation profiling has been launched, which provides clues in the assessment of individual risk of meningioma recurrence. All of these developments are creating new prospects for effective molecularly driven diagnosis and therapy of meningiomas.
Collapse
|
28
|
Kessler RA, Garzon-Muvdi T, Yang W, Weingart J, Olivi A, Huang J, Brem H, Lim M. Metastatic Atypical and Anaplastic Meningioma: A Case Series and Review of the Literature. World Neurosurg 2017; 101:47-56. [DOI: 10.1016/j.wneu.2017.01.070] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 01/21/2023]
|
29
|
Loss of CUL4A expression is underlying cisplatin hypersensitivity in colorectal carcinoma cells with acquired trabectedin resistance. Br J Cancer 2017; 116:489-500. [PMID: 28095394 PMCID: PMC5318979 DOI: 10.1038/bjc.2016.449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
Background: Colorectal carcinoma (CRC) is the third most common cancer worldwide. Platinum-based anticancer compounds still constitute one mainstay of systemic CRC treatment despite limitations due to adverse effects and resistance development. Trabectedin has shown promising antitumor effects in CRC, however, again resistance development may occur. In this study, we aimed to develop strategies to circumvent or even exploit acquired trabectedin resistance in novel CRC treatment regimens. Methods: Human HCT116 CRC cells were selected for acquired trabectedin resistance in vitro and characterised by cell biological as well as bioinformatic approaches. In vivo xenograft experiments were conducted. Results: Selection of HCT116 cells for trabectedin resistance resulted in p53-independent hypersensitivity of the selected subline against cisplatin. Bioinformatic analyses of mRNA microarray data suggested deregulation of nucleotide excision repair and particularly loss of the ubiquitin ligase CUL4A in trabectedin-selected cells. Indeed, transient knockdown of CUL4A sensitised parental HCT116 cells towards cisplatin. Trabectedin selected but not parental HCT116 xenografts were significantly responsive towards cisplatin treatment. Conclusions: Trabectedin selection-mediated CUL4A loss generates an Achilles heel in CRC cancer cells enabling effective cisplatin treatment. Hence, inclusion of trabectedin in cisplatin-containing cancer treatment regimens might cause profound synergism based on reciprocal resistance prevention.
Collapse
|
30
|
Peyrl A, Frischer J, Hainfellner JA, Preusser M, Dieckmann K, Marosi C. Brain tumors - other treatment modalities. HANDBOOK OF CLINICAL NEUROLOGY 2017; 145:547-560. [PMID: 28987193 DOI: 10.1016/b978-0-12-802395-2.00034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Management of tumors of the central nervous system is challenging for clinicians for various reasons, including complex diagnostic procedures, limited penetration of drugs into brain tissue, and the prerequisite to preserve brain function in any case of therapeutic intervention. Therapeutic success is dependent on the efforts, skills, and cooperation of involved specialists and disciplines. Knowledge and ability to apply adequate therapeutic modalities in an interdisciplinary approach in due time are crucial, necessitating coordination of diagnostic procedures and therapeutic interventions by means of multidisciplinary brain tumor boards. In this chapter we present in brief the essential current standards and future perspectives for therapy modalities that complement surgery of brain tumors.
Collapse
Affiliation(s)
- Andreas Peyrl
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Josa Frischer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center - Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria
| | - Johannes A Hainfellner
- Comprehensive Cancer Center - Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria; Institute of Neurology, Medical University of Vienna, Vienna, Austria.
| | - Matthias Preusser
- Comprehensive Cancer Center - Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria; Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karin Dieckmann
- Comprehensive Cancer Center - Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Vienna, Austria
| | - Christine Marosi
- Comprehensive Cancer Center - Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria; Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Abstract
Through years of evolutionary selection pressures, organisms have developed potent toxins that coincidentally have marked antineoplastic activity. These natural products have been vital for the development of multiagent treatment regimens currently employed in cancer chemotherapy, and are used in the treatment of a variety of malignancies. Therefore, this review catalogs recent advances in natural product-based drug discovery via the examination of mechanisms of action and available clinical data to highlight the utility of these novel compounds in the burgeoning age of precision medicine. The review also highlights the recent development of antibody-drug conjugates and other immunotoxins, which are capable of delivering highly cytotoxic agents previously deemed too toxic to elicit therapeutic benefit preferentially to neoplastic cells. Finally, the review examines natural products not currently used in the clinic that have novel mechanisms of action, and may serve to supplement current chemotherapeutic protocols.
Collapse
|
32
|
Goldbrunner R, Minniti G, Preusser M, Jenkinson MD, Sallabanda K, Houdart E, von Deimling A, Stavrinou P, Lefranc F, Lund-Johansen M, Moyal ECJ, Brandsma D, Henriksson R, Soffietti R, Weller M. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol 2016; 17:e383-91. [PMID: 27599143 DOI: 10.1016/s1470-2045(16)30321-7] [Citation(s) in RCA: 558] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 02/08/2023]
Abstract
Although meningiomas are the most common intracranial tumours, the level of evidence to provide recommendations for the diagnosis and treatment of meningiomas is low compared with other tumours such as high-grade gliomas. The meningioma task force of the European Association of Neuro-Oncology (EANO) assessed the scientific literature and composed a framework of the best possible evidence-based recommendations for health professionals. The provisional diagnosis of meningioma is mainly made by MRI. Definitive diagnosis, including histological classification, grading, and molecular profiling, requires a surgical procedure to obtain tumour tissue. Therefore, in many elderly patients, observation is the best therapeutic option. If therapy is deemed necessary, the standard treatment is gross total surgical resection including the involved dura. As an alternative, radiosurgery can be done for small tumours, or fractionated radiotherapy in large or previously treated tumours. Treatment concepts combining surgery and radiosurgery or fractionated radiotherapy, which enable treatment of the complete tumour volume with low morbidity, are being developed. Pharmacotherapy for meningiomas has remained largely experimental. However, antiangiogenic drugs, peptide receptor radionuclide therapy, and targeted agents are promising candidates for future pharmacological approaches to treat refractory meningiomas across all WHO grades.
Collapse
Affiliation(s)
- Roland Goldbrunner
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany.
| | - Giuseppe Minniti
- Radiation Oncology Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Matthias Preusser
- Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Kita Sallabanda
- Department of Neurosurgery, University Hospital San Carlos, Universidad Cumplutense de Madrid, Madrid, Spain; Department of Oncologia Radioterapia Robotizada-CyberKnife, IMOncology Madrid Arturo Soria, Madrid, Spain
| | | | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; CCU Neuropathology German Cancer Center (DKFZ), Heidelberg, Germany
| | - Pantelis Stavrinou
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Morten Lund-Johansen
- Department of Neurosurgery, Bergen University Hospital, Bergen, Norway; Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | | | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Roger Henriksson
- Regional Cancer Centre Stockholm, Stockholm, Sweden; Department of Radiation Science and Oncology, University of Umeå, Umeå, Sweden
| | - Riccardo Soffietti
- Department of Neuro-Oncology, City of Health and Science University Hospital, Turin, Italy
| | - Michael Weller
- Department of Neurology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Hoda MA, Pirker C, Dong Y, Schelch K, Heffeter P, Kryeziu K, van Schoonhoven S, Klikovits T, Laszlo V, Rozsas A, Ozsvar J, Klepetko W, Döme B, Grusch M, Hegedüs B, Berger W. Trabectedin Is Active against Malignant Pleural Mesothelioma Cell and Xenograft Models and Synergizes with Chemotherapy and Bcl-2 Inhibition In Vitro. Mol Cancer Ther 2016; 15:2357-2369. [PMID: 27512118 DOI: 10.1158/1535-7163.mct-15-0846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 07/26/2016] [Indexed: 11/16/2022]
Abstract
Malignant pleural mesothelioma (MPM) is characterized by widespread resistance to systemic therapy. Trabectedin is an antineoplastic agent targeting both the malignant cells and the tumor microenvironment that has been approved for the treatment of advanced soft tissue sarcoma and ovarian cancer. In this preclinical study, we evaluated the antineoplastic potential of trabectedin as a single agent and in drug combination approaches in human MPM. Therefore, we utilized an extended panel of MPM cell lines (n = 6) and primary cell cultures from surgical MPM specimens (n = 13), as well as nonmalignant pleural tissue samples (n = 2). Trabectedin exerted a dose-dependent cytotoxic effect in all MPM cell cultures in vitro when growing as adherent monolayers or nonadherent spheroids with IC50 values ≤ 2.6 nmol/L. Nonmalignant mesothelial cells were significantly less responsive. The strong antimesothelioma activity was based on cell-cycle perturbation and apoptosis induction. The activity of trabectedin against MPM cells was synergistically enhanced by coadministration of cisplatin, a drug routinely used for systemic MPM treatment. Comparison of gene expression signatures indicated an inverse correlation between trabectedin response and bcl-2 expression. Accordingly, bcl-2 inhibitors (Obatoclax, ABT-199) markedly synergized with trabectedin paralleled by deregulated expression of the bcl-2 family members bcl-2, bim, bax, Mcl-1, and bcl-xL as a consequence of trabectedin exposure. In addition, trabectedin exerted significant antitumor activity against an intraperitoneal MPM xenograft model. Together, these data suggest that trabectedin exerts strong activity in MPM and synergizes with chemotherapy and experimental bcl-2 inhibitors in vitro Thus, it represents a promising new therapeutic option for MPM. Mol Cancer Ther; 15(10); 2357-69. ©2016 AACR.
Collapse
Affiliation(s)
- Mir A Hoda
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria. Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Christine Pirker
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Yawen Dong
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Karin Schelch
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria. Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Petra Heffeter
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kushtrim Kryeziu
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sushilla van Schoonhoven
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Thomas Klikovits
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Viktoria Laszlo
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Anita Rozsas
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria. National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Judit Ozsvar
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Walter Klepetko
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Balazs Döme
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria. National Koranyi Institute of Pulmonology, Budapest, Hungary. Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, Budapest, Hungary. Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Michael Grusch
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Balazs Hegedüs
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria. MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Walter Berger
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
34
|
Abstract
INTRODUCTION Meningioma comprise 20-30% of all primary brain tumors. Notwithstanding surgery and radiotherapy, a subset of patients will manifest recurrent meningioma. Systemic therapy is recommended only when further surgery and radiotherapy are not possible. No prospective study with a high level of evidence is available to inform as to recommendations regarding systemic therapy. AREAS COVERED We aim to summarize systemic therapies for recurrent meningioma. Expert commentary: Hydroxurea, temozolomide, irinotecan, the combination of cyclophosphamide/adriamycine/vincristine, interferon-alpha, somatostatin analogs, mifepristone, megestrol acetate, imatinib, erlotinib and gefitinib are considered as having limited efficacy. Potential activity of VEGF (vascular endothelial growth factor) inhibitors such as sunitinib, valatinib, and bevacizumab is suggested in small non-controlled studies and requires validation in randomized trials. The identification of new prognostic markers such as TERT promoter mutations and potential new therapeutic targets, such as KLF4, AKT1, TRAF7, and SMO mutations hopefully facilitate this endeavor.
Collapse
Affiliation(s)
- E Le Rhun
- a Lille University, PRISM Inserm U1191 , Villeneuve d'Ascq , France.,b Neuro-oncology, Department of Neurosurgery , Lille Universisty Hospital , Lille Cedex , France.,c Breast unit, Department of Medical Oncology , Oscar Lambret Center , Lille Cedex , France
| | - S Taillibert
- d Department of Neurology Mazarin , Pitié-Salpétrière Hospital, Assistance Publique des Hôpitaux de Paris , Paris , France.,e Department of Neurology , University Pierre et Marie Curie, Paris VI , Paris , France
| | - M C Chamberlain
- f Department of Neurology and Neurological Surgery , University of Washington , Seattle , WA , USA
| |
Collapse
|
35
|
Karsy M, Guan J, Cohen A, Colman H, Jensen RL. Medical Management of Meningiomas: Current Status, Failed Treatments, and Promising Horizons. Neurosurg Clin N Am 2016; 27:249-60. [PMID: 27012389 DOI: 10.1016/j.nec.2015.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Meningiomas are benign tumors of the central nervous system, with low recurrence risk for World Health Organization (WHO) grade I lesions but a high risk for WHO grade II and III lesions. Current standard treatments include maximum safe surgical resection when indicated and radiation. Only three systemic therapies alpha-interferon, somatostatin receptor agonists, and vascular endothelial growth factor inhibitors are currently recommended by the National Comprehensive Cancer Network for treatment of recurrent meningioma. This paper aims to review medical approaches in the treatment of meningiomas.
Collapse
Affiliation(s)
- Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA
| | - Jian Guan
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA
| | - Adam Cohen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Howard Colman
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Randy L Jensen
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA.
| |
Collapse
|
36
|
Mawrin C, Chung C, Preusser M. Biology and clinical management challenges in meningioma. Am Soc Clin Oncol Educ Book 2016:e106-15. [PMID: 25993161 DOI: 10.14694/edbook_am.2015.35.e106] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Meningiomas are the most frequently occurring intracranial tumors. They are characterized by a broad spectrum of histopathologic appearance. Molecular alterations driving meningioma development, which affect the NF2 gene, are found in roughly 50% of patients. Rare genetic events in benign meningiomas are mutations in TRAF7, KLF4, AKT1, and SMO; all of these mutations are exclusive of NF2 alterations. Progression to a clinically aggressive meningioma is linked to inactivation of CDKN2A/B genes, and a plethora of signaling molecules have been described as activated in meningiomas, which supports the concept of successful clinical use of specific inhibitors. Established treatments include surgical resection with or without radiotherapy delivered in a single fraction, a few large fractions (radiosurgery), or multiple fractions (fractionated radiotherapy). For recurrent and aggressive tumors, inhibitors of the vascular endothelial growth factor (VEGF) pathway, such as vatalinib, bevacizumab, and sunitinib, showed signs of activity in small, uncontrolled studies, and prospective clinical studies will test the efficacy of the tetrahydroisoquinoline trabectedin and of SMO and AKT1 inhibitors.
Collapse
Affiliation(s)
- Christian Mawrin
- From the Department of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany; Department of Radiation Oncology, University of Toronto/Princess Margaret Cancer Centre, Toronto, Canada; Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Caroline Chung
- From the Department of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany; Department of Radiation Oncology, University of Toronto/Princess Margaret Cancer Centre, Toronto, Canada; Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- From the Department of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany; Department of Radiation Oncology, University of Toronto/Princess Margaret Cancer Centre, Toronto, Canada; Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Abstract
Intracranial meningiomas are tumors arising from the covering cells of the arachnoid layer of the dura mater or from the intraventricular choroid plexus. While mostly benign tumors, they still represent a major challenge to neurosurgeons and other medical disciplines involved in their diagnostic and therapeutic management. Although this review intends to give some state-of-the-art information from the literature, it is mainly based on personal experiences since more than 30 years caring for more than 1500 meningioma patients and point to a few new strategies to further improve on patient outcome.Diagnostics are based on magnetic resonance imaging which shows the relationship between tumor and surrounding intracranial structures, particularly the brain but also the vasculature and to some extent the cranial nerves. Furthermore, it may suggest the grading of the tumor and is very helpful in the postoperative diagnosis of complications and later follow-up course.Surgery still is the main treatment with the aim to completely remove the tumor; also in cases of recurrence, other additional options include radiotherapy and radiosurgery for incompletely removed or recurrent meningiomas. Postoperative chemotherapy has not been shown to provide substantial benefit to the patient especially in highly malignant meningiomas.All therapy options should be intended to provide the patient with the best possible functional outcome. Patients' perspective is not always equivalent to surgeons' perspectives. Neuropsychological evaluation and additional guidance of patients harboring meningiomas have proven to be important in modern neurosurgical intracranial tumor treatment. Their help beyond neurosurgical care facilitates the patients to lead an independent postoperative life.
Collapse
Affiliation(s)
- H Maximilian Mehdorn
- Department of Neurosurgery, University Clinics of Schleswig-Holstein Campus Kiel, Arnold Heller Str 3 Hs 41, 24105, Kiel, Germany.
| |
Collapse
|
38
|
Hydroxyurea with or without imatinib in the treatment of recurrent or progressive meningiomas: a randomized phase II trial by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Cancer Chemother Pharmacol 2015; 77:115-20. [PMID: 26659583 DOI: 10.1007/s00280-015-2927-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Hydroxyurea (HU) is among the most widely used salvage therapies in progressive meningiomas. Platelet-derived growth factor receptors are expressed in virtually all meningiomas. Imatinib sensitizes transformed cells to the cytotoxic effects of chemotherapeutic agents that interfere with DNA metabolism. The combination of HU with imatinib yielded intriguing results in recurrent malignant glioma. The current trial addressed the activity of this association against meningioma. METHODS Patients with recurrent or progressive WHO grade I-III meningioma, without therapeutic indication for surgery, radiotherapy, or stereotactic radiosurgery, aged 18-75 years, ECOG performance status 0-2, and not on enzyme-inducing anti-epileptic drugs were randomized to receive HU 500 mg BID ± imatinib 400 mg QD until progression, unacceptable toxicity, or patient's refusal. The primary endpoint was progression-free survival rate at 9 months (PFS-9). RESULTS Between September 2009 and February 2012, 15 patients were randomized to receive HU + imatinib (N = 7; Arm A) or HU alone (N = 8; Arm B). Afterward the trial was prematurely closed due to slow enrollment rate. PFS-9 (A/B) was 0/75%, and median PFS was 4/19.5 months. Median and 2-year overall survival (A/B) rates were: 6/27.5 months; 28.5/75%, respectively. Main G3-4 toxicities were: G3 neutropenia in 1/0, G4 headache in 1/1, and G3 vomiting in 1/0. CONCLUSION The conduction of a study in recurrent or progressive meningioma remains a challenge. Given the limited number of patients enrolled, no firm conclusions can be drawn about the combination of imatinib and HU. The optimal systemic therapy for meningioma failing surgery and radiation has yet to be identified.
Collapse
|
39
|
Preusser M. Trabectedin for Recurrent Grade II or III Meningioma: A Randomized Phase 2 Study of the EORTC Brain Tumor Group. Neurooncol Pract 2015. [DOI: 10.1093/nop/npv046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Enhanced G2/M Arrest, Caspase Related Apoptosis and Reduced E-Cadherin Dependent Intercellular Adhesion by Trabectedin in Prostate Cancer Stem Cells. PLoS One 2015; 10:e0141090. [PMID: 26485709 PMCID: PMC4618065 DOI: 10.1371/journal.pone.0141090] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/03/2015] [Indexed: 11/19/2022] Open
Abstract
Trabectedin (Yondelis, ET-743) is a marine-derived tetrahydroisoquinoline alkaloid. It is originally derived from the Caribbean marine tunicate Ecteinascidia turbinata and currently produced synthetically. Trabectedin is active against a variety of tumor cell lines growing in culture. The present study focused on the effect of trabectedin in cell proliferation, cell cycle progression, apoptosis and spheroid formation in prostate cancer stem cells (CSCs). Cluster of differentiation (CD) 133+high/CD44+high prostate CSCs were isolated from the DU145 and PC-3 human prostate cancer cell line through flow cytometry. We studied the growth-inhibitory effects of trabectedin and its molecular mechanisms on human prostate CSCs and non-CSCs. DU-145 and PC-3 CSCs were treated with 0.1, 1, 10 and 100 nM trabectedin for 24, 48 and 72 h and the growth inhibition rates were examined using the sphere-forming assay. Annexin-V assay and immunofluorescence analyses were performed for the detection of the cell death. Concentration-dependent effects of trabectedin on the cell cycle were also evaluated. The cells were exposed to the different doses of trabectedin for 24, 48 and 72 h to evaluate the effect of trabectedin on the number and diameter of spheroids. According to the results, trabectedin induced cytotoxicity and apoptosis at the IC50 dose, resulting in a significant increase expression of caspase-3, caspase-8, caspase-9, p53 and decrease expression of bcl-2 in dose-dependent manner. Cell cycle analyses revealed that trabectedin induces dose-dependent G2/M-phase cell cycle arrest, particularly at high-dose treatments. Three-dimensional culture studies showed that trabectedin reduced the number and diameter of spheroids of DU145 and PC3 CSCs. Furthermore, we have found that trabectedin disrupted cell-cell interactions via E-cadherin in prostasphere of DU-145 and PC-3 CSCs. Our results showed that trabectedin inhibits cellular proliferation and accelerates apoptotic events in prostate CSCs; and may be a potential effective therapeutic agent against prostate cancer.
Collapse
|
41
|
Balik V, Sulla I, Park HH, Sarissky M. In vitro testing to a panel of potential chemotherapeutics and current concepts of chemotherapy in benign meningiomas. Surg Oncol 2015; 24:292-9. [DOI: 10.1016/j.suronc.2015.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/05/2015] [Accepted: 06/07/2015] [Indexed: 01/02/2023]
|
42
|
|
43
|
Sun SQ, Hawasli AH, Huang J, Chicoine MR, Kim AH. An evidence-based treatment algorithm for the management of WHO Grade II and III meningiomas. Neurosurg Focus 2015; 38:E3. [DOI: 10.3171/2015.1.focus14757] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The management of WHO Grade II “atypical” meningiomas (AMs) and Grade III “malignant” meningiomas (MMs) remains controversial and under-investigated in prospective studies. The roles of surgery, radiation therapy, radiosurgery, and chemotherapy have been incompletely delineated. This has left physicians to decipher how they should treat patients on a case-by-case basis. In this study, the authors review the English-language literature on the management and clinical outcomes associated with AMs and MMs diagnosed using the WHO 2000/2007 grading criteria. Twenty-two studies for AMs and 7 studies for MMs were examined in detail. The authors examined clinical decision points using the literature and concepts from evidence-based medicine. Acknowledging the retrospective nature of the studies concerning AM and MM, the authors did find evidence for the following clinical strategies: 1) maximal safe resection of AM and MM; 2) active surveillance after gross-total resection of AM; 3) adjuvant radiation therapy after subtotal resection of AM, especially in the absence of putative radioresistant features; and 4) adjuvant radiation therapy after resection of MM.
Collapse
Affiliation(s)
- Sam Q. Sun
- 1Washington University School of Medicine; and
| | | | - Jiayi Huang
- 3Radiation Oncology, Washington University School of Medicine in St. Louis, Missouri
| | | | | |
Collapse
|
44
|
Atypical meningoma: current management dilemmas and prospective clinical trials. J Neurooncol 2014; 121:1-7. [DOI: 10.1007/s11060-014-1620-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
|
45
|
Preusser M, Berghoff AS, Hottinger AF. High-grade meningiomas: new avenues for drug treatment? Curr Opin Neurol 2014; 26:708-15. [PMID: 24184974 DOI: 10.1097/wco.0000000000000035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW For standard first-line treatment of high-grade meningiomas, surgical resection and radiotherapy are regarded as standard of care. In the recurrent setting after exhaustion of all local treatment options, no effective therapies are known and several drugs have failed to show efficacy, but novel compounds may offer hope for better disease control. RECENT FINDINGS Upregulation of proangiogenic molecules and dysregulation of some signaling pathways such as the platelet-derived growth factor and mammalian target of rapamycin are recurrently found in high-grade meningiomas. Furthermore, in-vitro studies and single patient experience indicate that trabectedin may be an effective therapy in this tumor type. Unfortunately, so far there is a lack of conclusive clinical trials to draw definite conclusions of efficacy of these approaches. SUMMARY There remains a significant unmet need for defining the role of medical therapy in recurrent high-grade meningioma, and more basic research and multicentric well designed trials are needed in this rare and devastating tumor type. Potentially promising novel therapeutics include antiangiogenic drugs, molecular inhibitors of signaling cascades, immunotherapeutics or trabectedin. However, more basic research is required to identify more promising drug targets. VIDEO ABSTRACT AVAILABLE See the Video Supplementary Digital Content 1 (http://links.lww.com/CONR/A22).
Collapse
Affiliation(s)
- Matthias Preusser
- aDepartment of Medicine I & Comprehensive Cancer Center - CNS Unit, Medical University of Vienna bDepartment of Clinical Neurosciences, CHUV, Lausanne University Medical Center and University of Lausanne, Switzerland
| | | | | |
Collapse
|
46
|
Yamaguchi S, Terasaka S, Kobayashi H, Asaoka K, Motegi H, Nishihara H, Kanno H, Onimaru R, Ito YM, Shirato H, Houkin K. Prognostic factors for survival in patients with high-grade meningioma and recurrence-risk stratification for application of radiotherapy. PLoS One 2014; 9:e97108. [PMID: 24820480 PMCID: PMC4018268 DOI: 10.1371/journal.pone.0097108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/15/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Radiotherapy for high-grade meningioma (HGM) is one of the essential treatment options for disease control. However, appropriate irradiation timing remains under debate. The object of this study is to discern which prognostic factors impact recurrence in HGM patients and to propose a risk-stratification system for the application of postoperative radiotherapy. METHODS We retrospectively reviewed 55 adult patients who were diagnosed with Grade II and III intracranial meningioma. Cox regression models were applied to the analysis for impact on early recurrence in HGM patients without postoperative radiotherapy. RESULTS Grade III malignancy (P = 0.0073) and transformed histology (P = 0.047) proved to be significantly poor prognostic factors of early recurrence by multivariate analysis. The other candidates for recurrence factors were Simpson Grade 3-5 resection, preoperative Karnofsky Performance status < = 70%, and MIB-1 labeling index > = 15%. According to these prognostic factors, postoperative HGM patients could be stratified into three recurrence-risk groups. The prognoses were significantly different between each group, as the 3-year actual recurrence-free rates were 90% in low-risk group, 31% in intermediate-risk group, and 15% in high-risk group. CONCLUSION We propose recurrence-risk stratification for postoperative HGM patients using clinically available factors. Our results suggest that the prognosis for patients with high-risk HGMs is dismal, whereas HGM patients belonging to the low-risk group could have favorable prognoses. This stratification provides us with the criteria necessary to determine whether to apply adjuvant radiotherapy to postoperative HGM patients, and to also help identify potentially curable HGMs without adjuvant radiotherapy.
Collapse
Affiliation(s)
- Shigeru Yamaguchi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shunsuke Terasaka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- * E-mail:
| | - Hiroyuki Kobayashi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Katsuyuki Asaoka
- Department of Neurosurgery, Teine-keijinkai Hospital, Sapporo, Japan
| | - Hiroaki Motegi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Nishihara
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiromi Kanno
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Rikiya Onimaru
- Department of Radiation Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoichi M. Ito
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroki Shirato
- Department of Radiation Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
47
|
Moazzam AA, Wagle N, Zada G. Recent developments in chemotherapy for meningiomas: a review. Neurosurg Focus 2013; 35:E18. [DOI: 10.3171/2013.10.focus13341] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Object
Currently, few medical options exist for refractory and atypical/anaplastic meningiomas. New developments in chemotherapeutic options for meningiomas have been explored over the past decade. The authors review these recent developments, with an emphasis on emerging avenues for therapy, clinical efficacy, and adverse effects.
Methods
A review of the literature was performed to identify any studies exploring recent medical and chemotherapeutic agents that have been or are currently being tested for meningiomas. Results from included preclinical and human clinical trials were reviewed and summarized.
Results
Current guidelines recommend only 3 drugs that can be used to treat patients with refractory and highgrade meningiomas: hydroxyurea, interferon-α 2B, and Sandostatin long-acting release. Recent developments in the medical treatment of meningiomas have been made across a variety of pharmacological classes, including cytotoxic agents, hormonal agents, immunomodulators, and targeted agents toward a variety of growth factors and their signaling cascades. Promising avenues of therapy that are being evaluated for efficacy and safety include antagonists of platelet-derived growth factor receptor, epidermal growth factor receptor, vascular endothelial growth factor receptor, and mammalian target of rapamycin. Because malignant transformation in meningiomas is likely to be mediated by numerous processes interacting via a complex matrix of signals, combination therapies affecting multiple molecular targets are currently being explored and hold significant promise as adjuvant therapy options.
Conclusions
Improved understanding of the molecular mechanisms driving meningioma tumorigenesis and malignant transformation has resulted in the targeted development of more specific agents for chemotherapeutic intervention in patients with nonresectable, aggressive, and malignant meningiomas.
Collapse
Affiliation(s)
| | | | - Gabriel Zada
- 3Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
48
|
Abstract
Tumours of the spinal cord, although rare, are associated with high morbidity. Surgical resection remains the primary treatment for patients with this disease, and offers the best chance for cure. Such surgical procedures, however, carry substantial risks such as worsening of neurological deficit, paralysis and death. New therapeutic avenues for spinal cord tumours are needed, but genetic studies of the molecular mechanisms governing tumourigenesis in the spinal cord are limited by the scarcity of high-quality human tumour samples. Many spinal cord tumours have intracranial counterparts that have been extensively studied, but emerging data show that the tumours are genetically and biologically distinct. The differences between brain and spine tumours make extrapolation of data from one to the other difficult. In this Review, we describe the demographics, genetics and current treatment approaches for the most commonly encountered spinal cord tumours--namely, ependymomas, astrocytomas, haemangioblastomas and meningiomas. We highlight advances in understanding of the biological basis of these lesions, and explain how the latest progress in genetics and beyond are being translated to improve patient care.
Collapse
|
49
|
Hawasli AH, Rubin JB, Tran DD, Adkins DR, Waheed S, Hullar TE, Gutmann DH, Evans J, Leonard JR, Zipfel GJ, Chicoine MR. Antiangiogenic agents for nonmalignant brain tumors. J Neurol Surg B Skull Base 2013; 74:136-41. [PMID: 24436903 DOI: 10.1055/s-0033-1338262] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/13/2012] [Indexed: 01/14/2023] Open
Abstract
Objective To assess the treatment response and side effects for the use of antiangiogenic agents such as vascular endothelial growth factor (VEGF) inhibitors for patients with vestibular schwannomas and meningiomas. Design and Methods Retrospective review of eight male and two female patients (ages 14 to 70, mean 36 years), treated with bevacizumab (9) or pazopanib (1). Six patients had neurofibromatosis type 2 (NF2) with bilateral vestibular schwannomas and meningiomas, and the four others had aggressive recurrent meningiomas. Results During treatment (range 4 to 21 months, mean 9.1) with antiangiogenic agents, two patients with an atypical meningioma and radiation necrosis had dramatic partial response, the six NF2 patients had stable or slightly improved disease, and two meningioma patients had disease progression. Hearing was stable in three of the NF2 patients and was improved in three NF2 patients (one of whom received a cochlear implant). Minor toxicities included epistaxis, nausea, diarrhea, weight loss, and abdominal pain. No grade 3 or 4 toxicities were observed. Conclusion Antiangiogenic agents appear to be safe for the treatment of patients with nonmalignant brain tumors, and in select cases may be efficacious.
Collapse
Affiliation(s)
- Ammar H Hawasli
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, Missouri, USA ; Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - David D Tran
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Douglas R Adkins
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Shahid Waheed
- J. B. & Greeta B. Arthur Cancer Center, Mexico, Missouri, USA
| | - Timothy E Hullar
- Department of Otolaryngology, Washington University School of Medicine, Saint Louis, Missouri, USA ; Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - John Evans
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jeffrey R Leonard
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Gregory J Zipfel
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Michael R Chicoine
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
50
|
LI MIN, YIN JIE, MAO NING, PAN LINGYA. Upregulation of phosphorylated cofilin 1 correlates with taxol resistance in human ovarian cancer in vitro and in vivo. Oncol Rep 2012; 29:58-66. [DOI: 10.3892/or.2012.2078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/13/2012] [Indexed: 11/06/2022] Open
|