1
|
Wang Z, Qiao X, Chen Y, Peng N, Niu C, Wang Y, Li C, Hu Z, Zhang C, Cheng C. SVIP reduces IGFBP-2 expression and inhibits glioblastoma progression via stabilizing PTEN. Cell Death Discov 2024; 10:362. [PMID: 39138166 PMCID: PMC11322382 DOI: 10.1038/s41420-024-02130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Glioblastoma (GBM) presents significant challenges due to its invasive nature and genetic heterogeneity. In this study, we investigated the impact of Small VCP/P97-Interacting Protein (SVIP) on GBM progression. Our results revealed elevated expression of Insulin-like Growth Factor Binding Protein 2 (IGFBP-2) and STIP1 homology and U-box containing protein 1 (STUB1), coupled with reduced SVIP levels in GBM samples. Notably, high IGFBP-2 expression correlated with poor prognosis. Mechanistically, SVIP competitively inhibited STUB1, selectively binding to VCP/p97, thereby reducing PTEN degradation. This SVIP-mediated regulation exerted influence on the PTEN/PI3K/AKT/mTOR pathway, leading to the suppression of GBM progression. Co-localization experiments demonstrated that SVIP hindered PTEN ubiquitination and degradation by outcompeting STUB1 for VCP/p97 binding. Moreover, SVIP overexpression resulted in reduced activation of AKT/mTOR signaling and facilitated autophagy. In vivo experiments using a GBM xenograft model substantiated the tumor-suppressive effects of SVIP, evident by suppressed tumor growth, decreased IGFBP-2 expression, and improved survival rates. Collectively, our findings underscore the functional significance of SVIP in GBM progression. By inhibiting STUB1 and stabilizing PTEN, SVIP modulates the expression of IGFBP-2 and attenuates the activation of the PI3K/AKT/mTOR pathway, thereby emerging as a promising therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Xiaolong Qiao
- Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Yinan Chen
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Nan Peng
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chaoshi Niu
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yang Wang
- Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Cong Li
- Dalian Medical University, Dalian, Liaoning, 116000, China.
| | - Zengchun Hu
- Department of Neurosurgery, 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116023, China.
| | - Caihua Zhang
- Dalian Medical University, Dalian, Liaoning, 116000, China.
| | - Chuandong Cheng
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
2
|
Tataranu LG, Turliuc S, Rizea RE, Dricu A, Alexandru O, Staicu GA, Kamel A. A Synopsis of Biomarkers in Glioblastoma: Past and Present. Curr Issues Mol Biol 2024; 46:6903-6939. [PMID: 39057054 PMCID: PMC11275428 DOI: 10.3390/cimb46070412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Accounting for 48% of malignant brain tumors in adults, glioblastoma has been of great interest in the last decades, especially in the biomolecular and neurosurgical fields, due to its incurable nature and notable neurological morbidity. The major advancements in neurosurgical technologies have positively influenced the extent of safe tumoral resection, while the latest progress in the biomolecular field of GBM has uncovered new potential therapeutical targets. Although GBM currently has no curative therapy, recent progress has been made in the management of this disease, both from surgical and molecular perspectives. The main current therapeutic approach is multimodal and consists of neurosurgical intervention, radiotherapy, and chemotherapy, mostly with temozolomide. Although most patients will develop treatment resistance and tumor recurrence after surgical removal, biomolecular advancements regarding GBM have contributed to a better understanding of this pathology and its therapeutic management. Over the past few decades, specific biomarkers have been discovered that have helped predict prognosis and treatment responses and contributed to improvements in survival rates.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Oana Alexandru
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| |
Collapse
|
3
|
Ghorbani A, Chatanaka MK, Avery LM, Wang M, Brown J, Cohen R, Gorham T, Misaghian S, Padmanabhan N, Romero D, Stengelin M, Mathew A, Sigal G, Wohlstadter J, Horbinski C, McCortney K, Xu W, Zadeh G, Mansouri A, Yousef GM, Diamandis EP, Prassas I. Glial fibrillary acidic protein, neurofilament light, matrix metalloprotease 3 and fatty acid binding protein 4 as non-invasive brain tumor biomarkers. Clin Proteomics 2024; 21:41. [PMID: 38879494 PMCID: PMC11179213 DOI: 10.1186/s12014-024-09492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/29/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Gliomas are aggressive malignant tumors, with poor prognosis. There is an unmet need for the discovery of new, non-invasive biomarkers for differential diagnosis, prognosis, and management of brain tumors. Our objective is to validate four plasma biomarkers - glial fibrillary acidic protein (GFAP), neurofilament light (NEFL), matrix metalloprotease 3 (MMP3) and fatty acid binding protein 4 (FABP4) - and compare them with established brain tumor molecular markers and survival. METHODS Our cohort consisted of patients with benign and malignant brain tumors (GBM = 77, Astrocytomas = 26, Oligodendrogliomas = 23, Secondary tumors = 35, Meningiomas = 70, Schwannomas = 15, Pituitary adenomas = 15, Normal individuals = 30). For measurements, we used ultrasensitive electrochemiluminescence multiplexed immunoassays. RESULTS High plasma GFAP concentration was associated with GBM, low GFAP and high FABP4 were associated with meningiomas, and low GFAP and low FABP4 were associated with astrocytomas and oligodendrogliomas. NEFL was associated with progression of disease. Several prognostic genetic alterations were significantly associated with all plasma biomarker levels. We found no independent associations between plasma GFAP, NEFL, FABP4 and MMP3, and overall survival. The candidate biomarkers could not reliably discriminate GBM from primary or secondary CNS lymphomas. CONCLUSIONS GFAP, NEFL, FABP4 and MMP3 are useful for differential diagnosis and prognosis, and are associated with molecular changes in gliomas.
Collapse
Affiliation(s)
- Atefeh Ghorbani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Miyo K Chatanaka
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Lisa M Avery
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Biostatistics, The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Mingyue Wang
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | | | - Rachel Cohen
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | - Taron Gorham
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | | | | | | | | | - Anu Mathew
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | - George Sigal
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | | | - Craig Horbinski
- Feinberg School of Medicine, Northwestern Medicine, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Katy McCortney
- Feinberg School of Medicine, Northwestern Medicine, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Wei Xu
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Biostatistics, The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Alireza Mansouri
- Department of Neurosurgery, Hershey Medical Center, Hershey, PA, USA
- Penn State Cancer Institute, Hershey Medical Center, Hershey, PA, USA
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.
| | - Ioannis Prassas
- Laboratory Medicine Program, University Health Network, Toronto, Canada.
| |
Collapse
|
4
|
Riviere-Cazaux C, Graser CJ, Warrington AE, Hoplin MD, Andersen KM, Malik N, Palmer EA, Carlstrom LP, Dasari S, Munoz-Casabella A, Ikram S, Ghadimi K, Himes BT, Jusue-Torres I, Sarkaria JN, Meyer FB, Van Gompel JJ, Kizilbash SH, Sener U, Michor F, Campian JL, Parney IF, Burns TC. The dynamic impact of location and resection on the glioma CSF proteome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307463. [PMID: 38798641 PMCID: PMC11118641 DOI: 10.1101/2024.05.15.24307463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples, including anatomical location and post-surgical changes, remains unknown. To that end, pre- versus post-resection intracranial CSF samples were obtained at early (1-16 days; n=20) or delayed (86-153 days; n=11) timepoints for patients with glioma. Paired lumbar-versus-intracranial glioma CSF samples were also obtained (n=14). Using aptamer-based proteomics, we identify significant differences in the CSF proteome between lumbar, subarachnoid, and ventricular CSF. Our analysis of serial intracranial CSF samples suggests the early potential for disease monitoring and evaluation of pharmacodynamic impact of targeted therapies. Importantly, we found that resection had a significant, evolving longitudinal impact on the CSF proteome. Proteomic data are provided with individual clinical annotations as a resource for the field. One Sentence Summary Glioma cerebrospinal fluid (CSF) accessed intra-operatively and longitudinally via devices can reveal impacts of treatment and anatomical location.
Collapse
|
5
|
Vatankhahan H, Esteki F, Jabalameli MA, Kiani P, Ehtiati S, Movahedpour A, Vakili O, Khatami SH. Electrochemical biosensors for early diagnosis of glioblastoma. Clin Chim Acta 2024; 557:117878. [PMID: 38493942 DOI: 10.1016/j.cca.2024.117878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and life-threatening neurological malignancy of predominant astrocyte origin. This type of neoplasm can develop in either the brain or the spine and is also known as glioblastoma multiforme. Although current diagnostic methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET) facilitate tumor location, these approaches are unable to assess disease severity. Furthermore, interpretation of imaging studies requires significant expertise which can have substantial inter-observer variability, thus challenging diagnosis and potentially delaying treatment. In contrast, biosensing systems offer a promising alternative to these traditional approaches. These technologies can continuously monitor specific molecules, providing valuable real-time data on treatment response, and could significantly improve patient outcomes. Among various types of biosensors, electrochemical systems are preferred over other types, as they do not require expensive or complex equipment or procedures and can be made with readily available materials and methods. Moreover, electrochemical biosensors can detect very small amounts of analytes with high accuracy and specificity by using various signal amplification strategies and recognition elements. Considering the advantages of electrochemical biosensors compared to other biosensing methods, we aim to highlight the potential application(s) of these sensors for GBM theranostics. The review's innovative insights are expected to antecede the development of novel biosensors and associated diagnostic platforms, ultimately restructuring GBM detection strategies.
Collapse
Affiliation(s)
- Hamid Vatankhahan
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Esteki
- Department of Medical Laboratory Sciences, School of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Amin Jabalameli
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Abu‐Rumeileh S, Barba L, Bache M, Halbgebauer S, Oeckl P, Steinacker P, Güttler A, Keßler J, Illert J, Strauss C, Vordermark D, Otto M. Plasma β-synuclein, GFAP, and neurofilaments in patients with malignant gliomas undergoing surgical and adjuvant therapy. Ann Clin Transl Neurol 2023; 10:1924-1930. [PMID: 37608748 PMCID: PMC10578894 DOI: 10.1002/acn3.51878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/17/2023] [Accepted: 08/05/2023] [Indexed: 08/24/2023] Open
Abstract
We analyzed the longitudinal concentrations and prognostic roles of plasma β-synuclein (β-syn), glial fibrillary acidic protein (GFAP), and neurofilament proteins (NfL and NfH) in 33 patients with malignant gliomas, who underwent surgical and adjuvant therapy. GFAP and NfL levels were increased in patients with glioblastoma compared to cases with other tumors. β-syn, NfL and NfH increased after surgery, whereas GFAP decreased at long-term follow-up. β-syn and neurofilament concentrations were influenced by surgery and/or radiotherapy regimens. GFAP and neurofilament levels were significantly associated with survival. Plasma neuronal and astrocytic biomarkers are differentially altered in malignant glioma types and displayed distinct trajectories after surgical and adjuvant therapy.
Collapse
Affiliation(s)
- Samir Abu‐Rumeileh
- Department of NeurologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)06120Germany
| | - Lorenzo Barba
- Department of NeurologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)06120Germany
| | - Matthias Bache
- Department of RadiotherapyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)06120Germany
| | - Steffen Halbgebauer
- Department of NeurologyUlm University HospitalUlmGermany
- German Center for Neurodegenerative Diseases Ulm (DZNE e. V.)UlmGermany
| | - Patrick Oeckl
- Department of NeurologyUlm University HospitalUlmGermany
- German Center for Neurodegenerative Diseases Ulm (DZNE e. V.)UlmGermany
| | - Petra Steinacker
- Department of NeurologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)06120Germany
| | - Antje Güttler
- Department of RadiotherapyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)06120Germany
| | - Jacqueline Keßler
- Department of RadiotherapyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)06120Germany
| | - Jörg Illert
- Department of NeurosurgeryMartin‐Luther‐University Halle‐WittenbergHalle (Saale)06120Germany
| | - Christian Strauss
- Department of NeurosurgeryMartin‐Luther‐University Halle‐WittenbergHalle (Saale)06120Germany
| | - Dirk Vordermark
- Department of RadiotherapyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)06120Germany
| | - Markus Otto
- Department of NeurologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)06120Germany
| |
Collapse
|
7
|
Skouras P, Markouli M, Kalamatianos T, Stranjalis G, Korkolopoulou P, Piperi C. Advances on Liquid Biopsy Analysis for Glioma Diagnosis. Biomedicines 2023; 11:2371. [PMID: 37760812 PMCID: PMC10525418 DOI: 10.3390/biomedicines11092371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Gliomas comprise the most frequent primary central nervous system (CNS) tumors, characterized by remarkable genetic and epigenetic heterogeneity, difficulty in monitoring, and increased relapse and mortality rates. Tissue biopsy is an established method of tumor cell collection and analysis that enables diagnosis, classification of different tumor types, and prediction of prognosis upon confirmation of tumor's location for surgical removal. However, it is an invasive and often challenging procedure that cannot be used for frequent patient screening, detection of mutations, disease monitoring, or resistance to therapy. To this end, the minimally invasive procedure of liquid biopsy has emerged, allowing effortless tumor sampling and enabling continuous monitoring. It is considered a novel preferable way to obtain faster data on potential tumor risk, personalized diagnosis, prognosis, and recurrence evaluation. The purpose of this review is to describe the advances on liquid biopsy for glioma diagnosis and management, indicating several biomarkers that can be utilized to analyze tumor characteristics, such as cell-free DNA (cfDNA), cell-free RNA (cfRNA), circulating proteins, circulating tumor cells (CTCs), and exosomes. It further addresses the benefit of combining liquid biopsy with radiogenomics to facilitate early and accurate diagnoses, enable precise prognostic assessments, and facilitate real-time disease monitoring, aiming towards more optimal treatment decisions.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Theodosis Kalamatianos
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - George Stranjalis
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - Penelope Korkolopoulou
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
8
|
Alves B, Peixoto J, Macedo S, Pinheiro J, Carvalho B, Soares P, Lima J, Lima RT. High VEGFA Expression Is Associated with Improved Progression-Free Survival after Bevacizumab Treatment in Recurrent Glioblastoma. Cancers (Basel) 2023; 15:cancers15082196. [PMID: 37190125 DOI: 10.3390/cancers15082196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Glioblastoma (GB) is one of the deadliest human cancers. Many GB patients do not respond to treatment, and inevitably die within a median of 15-18 months post-diagnosis, highlighting the need for reliable biomarkers to aid clinical management and treatment evaluation. The GB microenvironment holds tremendous potential as a source of biomarkers; several proteins such as MMP-2, MMP-9, YKL40, and VEGFA have been identified as being differentially expressed in GB patient samples. Still to date, none of these proteins have been translated into relevant clinical biomarkers. This study evaluated the expression of MMP-2, MMP-9, YKL40, and VEGFA in a series of GBs and their impact on patient outcome. High levels of VEGFA expression were significantly associated with improved progression-free survival after bevacizumab treatment, thus having potential as a tissue biomarker for predicting patients' response to bevacizumab. Noteworthily, VEGFA expression was not associated with patient outcome after temozolomide treatment. To a lesser extent, YKL40 also provided significant information regarding the extent of bevacizumab treatment. This study highlights the importance of studying secretome-associated proteins as GB biomarkers and identifies VEGFA as a promising marker for predicting response to bevacizumab.
Collapse
Affiliation(s)
- Bárbara Alves
- i3S-Instituto de Investigação e Inovação em Saúde, 4200 Porto, Portugal
- Cancer Signalling & Metabolism Group, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, 4200 Porto, Portugal
- School of Allied Health Sciences, Polytechnic Institute of Porto, 4200 Porto, Portugal
| | - Joana Peixoto
- i3S-Instituto de Investigação e Inovação em Saúde, 4200 Porto, Portugal
- Cancer Signalling & Metabolism Group, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, 4200 Porto, Portugal
| | - Sofia Macedo
- i3S-Instituto de Investigação e Inovação em Saúde, 4200 Porto, Portugal
- Cancer Signalling & Metabolism Group, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, 4200 Porto, Portugal
| | - Jorge Pinheiro
- Department of Pathology, Centro Hospitalar Universitário S. João, 4200 Porto, Portugal
| | - Bruno Carvalho
- Department of Neurosurgery, Centro Hospitalar Universitário S. João, 4200 Porto, Portugal
- FMUP-Faculty of Medicine of the University of Porto, 4200 Porto, Portugal
| | - Paula Soares
- i3S-Instituto de Investigação e Inovação em Saúde, 4200 Porto, Portugal
- Cancer Signalling & Metabolism Group, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, 4200 Porto, Portugal
- Department of Pathology, FMUP-Faculty of Medicine of the University of Porto, 4200 Porto, Portugal
| | - Jorge Lima
- i3S-Instituto de Investigação e Inovação em Saúde, 4200 Porto, Portugal
- Cancer Signalling & Metabolism Group, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, 4200 Porto, Portugal
- Department of Pathology, FMUP-Faculty of Medicine of the University of Porto, 4200 Porto, Portugal
| | - Raquel T Lima
- i3S-Instituto de Investigação e Inovação em Saúde, 4200 Porto, Portugal
- Cancer Signalling & Metabolism Group, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, 4200 Porto, Portugal
- Department of Pathology, FMUP-Faculty of Medicine of the University of Porto, 4200 Porto, Portugal
| |
Collapse
|
9
|
Bernhardt AM, Tiedt S, Teupser D, Dichgans M, Meyer B, Gempt J, Kuhn PH, Simons M, Palleis C, Weidinger E, Nübling G, Holdt L, Hönikl L, Gasperi C, Giesbertz P, Müller SA, Breimann S, Lichtenthaler SF, Kuster B, Mann M, Imhof A, Barth T, Hauck SM, Zetterberg H, Otto M, Weichert W, Hemmer B, Levin J. A unified classification approach rating clinical utility of protein biomarkers across neurologic diseases. EBioMedicine 2023; 89:104456. [PMID: 36745974 PMCID: PMC9931915 DOI: 10.1016/j.ebiom.2023.104456] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
A major evolution from purely clinical diagnoses to biomarker supported clinical diagnosing has been occurring over the past years in neurology. High-throughput methods, such as next-generation sequencing and mass spectrometry-based proteomics along with improved neuroimaging methods, are accelerating this development. This calls for a consensus framework that is broadly applicable and provides a spot-on overview of the clinical validity of novel biomarkers. We propose a harmonized terminology and a uniform concept that stratifies biomarkers according to clinical context of use and evidence levels, adapted from existing frameworks in oncology with a strong focus on (epi)genetic markers and treatment context. We demonstrate that this framework allows for a consistent assessment of clinical validity across disease entities and that sufficient evidence for many clinical applications of protein biomarkers is lacking. Our framework may help to identify promising biomarker candidates and classify their applications by clinical context, aiming for routine clinical use of (protein) biomarkers in neurology.
Collapse
Affiliation(s)
- Alexander M Bernhardt
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Site Munich, Germany
| | - Steffen Tiedt
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Martin Dichgans
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases, Site Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany; Institute of Neuronal Cell Biology, Technical University Munich, 80802, Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Site Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Endy Weidinger
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Site Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Georg Nübling
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Site Munich, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Lisa Hönikl
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christiane Gasperi
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Pieter Giesbertz
- German Center for Neurodegenerative Diseases, Site Munich, Germany; Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases, Site Munich, Germany; Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Breimann
- German Center for Neurodegenerative Diseases, Site Munich, Germany; Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Freising, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases, Site Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; German Cancer Consortium (DKTK), Munich Partner Site, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Axel Imhof
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Großhaderner Straße 9, 82152, Martinsried, Germany
| | - Teresa Barth
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Großhaderner Straße 9, 82152, Martinsried, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Centre Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Markus Otto
- Department of Neurology, Halle University Hospital, Martin Luther University Halle/Wittenberg, Saale, Germany
| | - Wilko Weichert
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Bernhard Hemmer
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Site Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
10
|
Saha S, Sachdev M, Mitra SK. Recent advances in label-free optical, electrochemical, and electronic biosensors for glioma biomarkers. BIOMICROFLUIDICS 2023; 17:011502. [PMID: 36844882 PMCID: PMC9949901 DOI: 10.1063/5.0135525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Gliomas are the most commonly occurring primary brain tumor with poor prognosis and high mortality rate. Currently, the diagnostic and monitoring options for glioma mainly revolve around imaging techniques, which often provide limited information and require supervisory expertise. Liquid biopsy is a great alternative or complementary monitoring protocol that can be implemented along with other standard diagnosis protocols. However, standard detection schemes for sampling and monitoring biomarkers in different biological fluids lack the necessary sensitivity and ability for real-time analysis. Lately, biosensor-based diagnostic and monitoring technology has attracted significant attention due to several advantageous features, including high sensitivity and specificity, high-throughput analysis, minimally invasive, and multiplexing ability. In this review article, we have focused our attention on glioma and presented a literature survey summarizing the diagnostic, prognostic, and predictive biomarkers associated with glioma. Further, we discussed different biosensory approaches reported to date for the detection of specific glioma biomarkers. Current biosensors demonstrate high sensitivity and specificity, which can be used for point-of-care devices or liquid biopsies. However, for real clinical applications, these biosensors lack high-throughput and multiplexed analysis, which can be achieved via integration with microfluidic systems. We shared our perspective on the current state-of-the-art different biosensor-based diagnostic and monitoring technologies reported and the future research scopes. To the best of our knowledge, this is the first review focusing on biosensors for glioma detection, and it is anticipated that the review will offer a new pathway for the development of such biosensors and related diagnostic platforms.
Collapse
Affiliation(s)
| | - Manoj Sachdev
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K. Mitra
- Micro and Nanoscale Transport Laboratory, Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
11
|
Yadav N, Mishra K, B. C. AK, Singh D, Subberwal M. Clinical utility of serum glial fibrillary acidic protein in glial neoplasm. Surg Neurol Int 2022; 13:601. [PMID: 36761257 PMCID: PMC9899464 DOI: 10.25259/sni_889_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Background Glial fibrillary acidic protein (GFAP) is a member of the cytoskeletal protein family and is widely expressed in astroglial and neural stem cells, also in glial tumors such as astrocytoma and Glioblastoma (GBM). Increased GFAP expression and disruption of the blood-brain barrier are the characteristic features of GBM. Higher serum GFAP levels can help differentiate GBM from GBM mimics (such as primary central nervous system lymphoma, metastasis, or demyelinating lesions). Methods This prospective study was carried out in a tertiary care center in the department of neurosurgery on newly diagnosed glioma patients who underwent surgery from January 2018 to July 2019, excluded patients with history of the previous surgery for glioma, traumatic brain injury, and ischemic or hemorrhagic stroke. The blood sample was obtained at admission before undergoing invasive procedure. Pathological examination of the tumor biopsy sample was carried out using classical hematoxylin-eosin and immunohistochemical staining. All statistical analyses were performed using SPSS version 24.0. Results The mean preoperative tumor volume was 40 cm3 (range 17.19-65.57 cm3; standard deviation [SD] = 9.99 cm3) which showed 98.25% mean reduction in volume postsurgery (mean tumor volume = 0.7 cm3; SD = 0.19 cm3). Preoperative serum GFAP measurements show higher levels (spearman's rho coefficient = 0.610 with P = 0.000) with increasing grade of tumor. GFAP levels also demonstrated higher value with increasing preoperative tumor volume. Conclusion Increasing serum GFAP levels in the preoperative period correlate with higher tumor grade, especially grade III and grade IV tumors. The serum GFAP levels showed relation to tumor volume, both before and after surgery.
Collapse
Affiliation(s)
- Nidhi Yadav
- Department of Neurosurgery, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Keshav Mishra
- Department of Neurosurgery, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Anil Kumar B. C.
- Department of Neurosurgery, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India.,Corresponding author: Anil Kumar B. C., Department of Neurosurgery, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India.
| | - Daljit Singh
- Department of Neurosurgery, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Manju Subberwal
- Department of Biochemistry, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| |
Collapse
|
12
|
Șerban G, Tămaș F, Bălașa R, Manu D, Tămaș C, Bălașa A. Prognostic Factors of Survival in Glioblastoma Multiforme Patients-A Retrospective Study. Diagnostics (Basel) 2022; 12:2630. [PMID: 36359474 PMCID: PMC9689032 DOI: 10.3390/diagnostics12112630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most aggressive brain tumor that occurs in adults. In spite of prompt diagnosis and rapidly administered treatment, the survival expectancy is tremendously poor. Extensive research has been performed in order to establish factors to predict the outcome of GBM patients; however, worldwide accepted prognostic markers are still lacking. METHODS We retrospectively assessed all adult patients who were diagnosed with primary GBM and underwent surgical treatment during a three-year period (January 2017-December 2019) in the Neurosurgery Department of the Emergency Clinical County Hospital of Târgu Mureș, Romania. Our aim was to find any statistically relevant connections between clinical, imagistic, and histopathological characteristics and patients' survival. RESULTS A total of 75 patients were eventually included in our statistical analysis: 40 males and 35 females, with a median age of 61 years. The mean tumor dimension was 45.28 ± 15.52 mm, while the mean survival rate was 4 ± 6.75 months. A univariate analysis demonstrated a statistically significant impact of tumor size, pre-, and postoperative KPSI on survival rate. In addition, a Cox multivariate assessment strengthened previous findings regarding postoperative KPSI (regression coefficient -0.03, HR 0.97, 95% CI (HR) 0.96-0.99, p = 0.002) as a favorable prognostic factor and GBM size (regression coefficient 0.03, HR 1.03, 95% CI (HR) 1.01-1.05, p = 0.005) as a poor prognostic marker for patients' survival. CONCLUSIONS The results of our retrospective study are consistent with prior scientific results that provide evidence supporting the importance of clinical (quantified by KPSI) and imagistic (particularly tumor dimensions) features as reliable prognostic factors in GBM patients' survival.
Collapse
Affiliation(s)
- Georgiana Șerban
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Flaviu Tămaș
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Neurosurgery Clinic, Emergency Clinical County Hospital of Targu Mures, 540136 Targu Mures, Romania
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Bălașa
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital of Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Corina Tămaș
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Neurosurgery Clinic, Emergency Clinical County Hospital of Targu Mures, 540136 Targu Mures, Romania
| | - Adrian Bălașa
- Neurosurgery Clinic, Emergency Clinical County Hospital of Targu Mures, 540136 Targu Mures, Romania
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
13
|
Zhang B, Hong C, Luo Y, Wei L, Luo Y, Peng Y, Xu Y. Prognostic value of IGFBP2 in various cancers: a systematic review and meta-analysis. Cancer Med 2022; 11:3035-3047. [PMID: 35546443 PMCID: PMC9385590 DOI: 10.1002/cam4.4680] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The prognostic significance of insulin-like growth factor binding protein 2 (IGFBP2) expression has been explored in plenty of studies in human cancers. Because of the controversial results, the meta-analysis was carried out to evaluate the relevance of IGFBP2 expression with the prognosis in various tumors. METHODS The data searched from four databases (Pubmed, Embase, Cochrane library, and Web of science) was used to calculate pooled hazard ratios (HRs) in this meta-analysis. Subgroup analyses were stratified by ethnicity, cancer type, publication year, Newcastle-Ottawa Scale score, treatments, and populations. RESULTS Twenty-one studies containing 5560 patients finally met inclusion criteria. IGFBP2 expression was associated with lower overall survival (HR = 1.57, 95% CI = 1.31-1.88) and progression-free survival (HR = 1.18, 95% CI = 1.04-1.34) in cancer patients, but not with disease-free survival (HR = 1.50, 95% CI = 0.91-2.46) or recurrence-free survival (HR = 1.50, 95% CI = 0.93-2.40). The subgroup analyses indicated IGFBP2 overexpression was significantly correlated with overall survival in Asian patients (HR = 1.42, 95% CI = 1.18-1.72), Caucasian patients (HR = 2.20, 95% CI = 1.31-3.70), glioma (HR = 1.36, 95% CI = 1.03-1.79), and colorectal cancer (HR = 2.52, 95% CI = 1.43-4.44) and surgery subgroups (HR = 1.97, 95% CI = 1.50-2.58). CONCLUSION The meta-analysis showed that IGFBP2 expression was associated with worse prognosis in several tumors, and may serve as a potential prognostic biomarker in cancer patients.
Collapse
Affiliation(s)
- Biao Zhang
- Department of Clinical Laboratory MedicineCancer Hospital of Shantou University Medical CollegeShantouChina
- Precision Medicine Research Center, Shantou University Medical CollegeShantouChina
- Guangdong Esophageal Cancer Institutethe Cancer Hospital of Shantou University Medical CollegeShantouChina
| | - Chao‐Qun Hong
- Provincial Key Laboratory of Guangdong Breast Cancer Diagnosis and TreatmentCancer Hospital of Shantou University Medical CollegeShantouChina
| | - Yu‐Hao Luo
- Department of Clinical Laboratory MedicineCancer Hospital of Shantou University Medical CollegeShantouChina
- Precision Medicine Research Center, Shantou University Medical CollegeShantouChina
| | - Lai‐Feng Wei
- Department of Clinical Laboratory MedicineCancer Hospital of Shantou University Medical CollegeShantouChina
- Precision Medicine Research Center, Shantou University Medical CollegeShantouChina
- Guangdong Esophageal Cancer Institutethe Cancer Hospital of Shantou University Medical CollegeShantouChina
| | - Yun Luo
- Department of Clinical Laboratory MedicineCancer Hospital of Shantou University Medical CollegeShantouChina
- Precision Medicine Research Center, Shantou University Medical CollegeShantouChina
- Guangdong Esophageal Cancer Institutethe Cancer Hospital of Shantou University Medical CollegeShantouChina
| | - Yu‐Hui Peng
- Department of Clinical Laboratory MedicineCancer Hospital of Shantou University Medical CollegeShantouChina
- Precision Medicine Research Center, Shantou University Medical CollegeShantouChina
- Guangdong Esophageal Cancer Institutethe Cancer Hospital of Shantou University Medical CollegeShantouChina
| | - Yi‐Wei Xu
- Department of Clinical Laboratory MedicineCancer Hospital of Shantou University Medical CollegeShantouChina
- Precision Medicine Research Center, Shantou University Medical CollegeShantouChina
- Guangdong Esophageal Cancer Institutethe Cancer Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
14
|
Comprehensive Analysis of Prognostic Value and Immune Infiltration of IGFBP Family Members in Glioblastoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2929695. [PMID: 35832140 PMCID: PMC9273392 DOI: 10.1155/2022/2929695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. The insulin-like growth factor-binding protein (IGFBP) family is involved in tumorigenesis and the development of multiple cancers. However, little is known about the prognostic value and regulatory mechanisms of IGFBPs in GBM. Oncomine, Gene Expression Profiling Interactive Analysis, PrognoScan, cBioPortal, LinkedOmics, TIMER, and TISIDB were used to analyze the differential expression, prognostic value, genetic alteration, biological function, and immune cell infiltration of IGFBPs in GBM. We observed that IGFBP1, IGFBP2, IGFBP3, IGFBP4, and IGFBP5 mRNA expression was significantly upregulated in patients with GBM, whereas IGFBP6 was downregulated; this difference in mRNA expression was statistically insignificant. Subsequent investigations showed that IGFBP4 and IGFBP6 mRNA levels were significantly associated with overall survival in patients with GBM. Functional Gene Ontology Annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that genes coexpressed with IGFBP4 and IGFBP6 were mainly enriched in immune-related pathways. These results were validated using the TIMER and TSMIDB databases. This study demonstrated that the IGFBP family has prognostic value in patients with GBM. IGFBP4 and IGFBP6 are two members of the IGFBP family that had the highest prognostic value; thus, they have the potential to serve as survival predictors and immunotherapeutic targets in GBM.
Collapse
|
15
|
Senhaji N, Squalli Houssaini A, Lamrabet S, Louati S, Bennis S. Molecular and Circulating Biomarkers in Patients with Glioblastoma. Int J Mol Sci 2022; 23:7474. [PMID: 35806478 PMCID: PMC9267689 DOI: 10.3390/ijms23137474] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma is the most aggressive malignant tumor of the central nervous system with a low survival rate. The difficulty of obtaining this tumor material represents a major limitation, making the real-time monitoring of tumor progression difficult, especially in the events of recurrence or resistance to treatment. The identification of characteristic biomarkers is indispensable for an accurate diagnosis, the rigorous follow-up of patients, and the development of new personalized treatments. Liquid biopsy, as a minimally invasive procedure, holds promise in this regard. The purpose of this paper is to summarize the current literature regarding the identification of molecular and circulating glioblastoma biomarkers and the importance of their integration as a valuable tool to improve patient care.
Collapse
Affiliation(s)
- Nadia Senhaji
- Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Asmae Squalli Houssaini
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Salma Lamrabet
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Sara Louati
- Medical Biotechnology Laboratory, Faculty of Medicine and Pharmacy of Rabat, Mohammed Vth University, Rabat 10000, Morocco;
| | - Sanae Bennis
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| |
Collapse
|
16
|
Serum glial fibrillary acidic protein is a body fluid biomarker: A valuable prognostic for neurological disease – A systematic review. Int Immunopharmacol 2022; 107:108624. [DOI: 10.1016/j.intimp.2022.108624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
|
17
|
Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol 2022; 18:158-172. [PMID: 35115728 DOI: 10.1038/s41582-021-00616-3] [Citation(s) in RCA: 315] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Blood-derived biomarkers for brain and spinal cord diseases are urgently needed. The introduction of highly sensitive immunoassays led to a rapid increase in the number of potential blood-derived biomarkers for diagnosis and monitoring of neurological disorders. In 2018, the FDA authorized a blood test for clinical use in the evaluation of mild traumatic brain injury (TBI). The test measures levels of the astrocytic intermediate filament glial fibrillary acidic protein (GFAP) and neuroaxonal marker ubiquitin carboxy-terminal hydrolase L1. In TBI, blood GFAP levels are correlated with clinical severity and extent of intracranial pathology. Evidence also indicates that blood GFAP levels hold the potential to reflect, and might enable prediction of, worsening of disability in individuals with progressive multiple sclerosis. A growing body of evidence suggests that blood GFAP levels can be used to detect even subtle injury to the CNS. Most importantly, the successful completion of the ongoing validation of point-of-care platforms for blood GFAP might ameliorate the decision algorithms for acute neurological diseases, such as TBI and stroke, with important economic implications. In this Review, we provide a systematic overview of the evidence regarding the utility of blood GFAP as a biomarker in neurological diseases. We propose a model for GFAP concentration dynamics in different conditions and discuss the limitations that hamper the widespread use of GFAP in the clinical setting. In our opinion, the clinical use of blood GFAP measurements has the potential to contribute to accelerated diagnosis and improved prognostication, and represents an important step forward in the era of precision medicine.
Collapse
|
18
|
van Asperen JV, Fedorushkova DM, Robe PAJT, Hol E. Investigation of glial fibrillary acidic protein (GFAP) in body fluids as a potential biomarker for glioma: a systematic review and meta-analysis. Biomarkers 2021; 27:1-12. [PMID: 34844498 DOI: 10.1080/1354750x.2021.2006313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Liquid biopsies are promising diagnostic tools for glioma. In this quantitative systematic review, we investigate whether the detection of intermediate filaments (IF) in body fluids can be used as a tool for glioma diagnosis and prognosis. MATERIALS AND METHODS We included all studies in which IF-levels were determined in patients with glioma and healthy controls. Of the 28 identified eligible studies, 12 focused on levels of GFAP in serum (sGFAP) and were included for metadata analysis. RESULTS In all studies combined, 62.7% of all grade IV patients had detectable levels of sGFAP compared to 12.7% of healthy controls. sGFAP did not surpass the limit of detection in lower grade patients or healthy controls, but sGFAP was significantly elevated in grade IV glioma (0.12 ng/mL (0.06 - 0.18), P < 0.001) and showed an average median difference of 0.15 ng/mL (0.04 - 0.25, P < 0.01) compared to healthy controls. sGFAP levels were linked to tumour volume, but not to patient outcome. CONCLUSION The presence of sGFAP is indicative of grade IV glioma, but additional studies are necessary to fully determine the usefulness of GFAP in body fluids as a tool for grade IV glioma diagnosis and follow-up.
Collapse
Affiliation(s)
- Jessy Van van Asperen
- Department of Translational Neurosciences, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Daria M Fedorushkova
- Department of Translational Neurosciences, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Pierre A J T Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,University Hospital Liege, Liege, Belgium
| | - Elly Hol
- Department of Translational Neurosciences, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
Kefayat A, Amouheidari A, Ghahremani F, Alirezaei Z. Diagnostic and prognostic value of stem cell factor plasma level in glioblastoma multiforme patients. Cancer Med 2021; 10:5154-5162. [PMID: 34250760 PMCID: PMC8335833 DOI: 10.1002/cam4.4073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Investigation of novel blood-circulating agents as potential biomarkers for glioblastoma multiforme (GBM) patients' diagnosis and monitoring has gained lots of attention, due to limitations of imaging modalities and invasive tissue biopsy procedures. The present study aims to assess the diagnostic and prognostic values of preoperative stem cell factor (SCF) plasma level in GBM patients. METHODS Preoperative plasma samples from 58 GBM patients and 20 patients with nonglial tumors and 30 healthy controls were obtained. SCF levels were measured by employing the enzyme-linked immunosorbent assay test and the values were compared between these three groups. Then, the association of SCF plasma level and tumor volume, progression-free survival (PFS), and overall survival (OS) for the GBM patients were evaluated. RESULTS Mean preoperative SCF plasma level of the GBM patients (2.80 ± 1.52 ng/ml) was significantly higher (p < 0.0001) than the healthy controls (0.80 ± 0.24 ng/ml) and patients with nonglial tumor (1.41 ± 0.76 ng/ml). Receiver operating characteristic analysis revealed that the preoperative SCF plasma level could distinguish the GBM patients from healthy controls and patients with nonglial tumors with the area under curve values of 0.915 and 0.790, respectively. However, no significant association was observed between the GBM patients' preoperative SCF plasma levels and tumors' volume (Spearman Rho correlation coefficient, 0.1847; 95% CI, p = 0.1652). The GBM patients were divided into two subgroups based on mean preoperative SCF plasma levels (2.80 ng/ml). No significant difference was observed between the patients' PFS (p = 0.3792) and OS (p = 0.1469) at these two subgroups. CONCLUSION Taking together, the SCF plasma level can serve as a novel diagnostic blood-circulating biomarker for patients with GBM. However, its plasma level is not correlated with GBM patients' tumor volume, PFS, or OS.
Collapse
Affiliation(s)
| | | | - Fatemeh Ghahremani
- Department of Medical Physics and RadiotherapySchool of ParamedicineArak University of Medical SciencesArakIran
| | - Zahra Alirezaei
- Department of Medical Physics and RadiotherapyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
20
|
Urbanavičiūtė R, Zabitaitė R, Kriščiukaitis A, Deltuva VP, Skiriutė D. Serum protein triplet TGF-β1, TIMP-1, and YKL-40 serve as diagnostic and prognostic profile for astrocytoma. Sci Rep 2021; 11:13100. [PMID: 34162919 PMCID: PMC8222249 DOI: 10.1038/s41598-021-92328-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Astrocytoma is the most common glial tumour of the CNS. The most malignant form is grade IV Astrocytoma, also called Glioblastoma. Due to its heterogeneity, aggressiveness and lethal nature scientists are trying to find less invasive methods for early prediction of tumour onset, recurrence, response to therapy and patients' survival. Here, applying decision tree classification algorithm we performed astrocytoma specific protein profile analysis on serum proteins TIMP-1, active and latent form of TGF-β1, IP-10, ANGPT-1, OPN, and YKL-40 using enzyme-linked immunosorbent detection assay (ELISA). Results have demonstrated that astrocytoma specific profile consisted of three proteins-active form of TGF-β1, TIMP-1 and YKL-40 and was able to correctly classify 78.0% (103/132) of sample and 83.3% (60/72) of astrocytoma sample. Calculating decision tree algorithm associated with astrocytoma patient survival, prediction model reached an accuracy of 83.3% (60/72). All together these results indicate that glioma detection and prediction from patient serum using glioma associated proteins and applying mathematical classification tools could be achieved, and applying more comprehensive research further could be implemented in clinic.
Collapse
Affiliation(s)
- Rūta Urbanavičiūtė
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, 50161, Kaunas, Lithuania.
| | - Rūta Zabitaitė
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, 50161, Kaunas, Lithuania
| | - Algimantas Kriščiukaitis
- Laboratory of Biophysics and Bioinformatics, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, 50161, Kaunas, Lithuania
| | - Vytenis-Pranas Deltuva
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, 50161, Kaunas, Lithuania
| | - Daina Skiriutė
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, 50161, Kaunas, Lithuania
| |
Collapse
|
21
|
Bioinformatics Analysis of GFAP as a Potential Key Regulator in Different Immune Phenotypes of Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1466255. [PMID: 34222466 PMCID: PMC8225431 DOI: 10.1155/2021/1466255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 11/24/2022]
Abstract
Tumor immune escape plays an essential role in both cancer progression and immunotherapy responses. For prostate cancer (PC), however, the molecular mechanisms that drive its different immune phenotypes have yet to be fully elucidated. Patient gene expression data were analyzed from The Cancer Genome Atlas-prostate adenocarcinoma (TCGA-PRAD) and the International Cancer Genome Consortium (ICGC) databases. We used a Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) analysis and an unsupervised clustering analysis to identify patient subgroups with distinct immune phenotypes. These distinct phenotypes were then explored for associations for differentially expressed genes (DEGs) and both epigenetic and genetic landscapes. Finally, we used a protein-protein interaction analysis to identify key hub genes. We identified two patient subgroups with independent immune phenotypes associated with the expression of Programmed death-ligand 1 (PD-L1). Patient samples in Cluster 1 (C1) had higher scores for immune-cell subsets compared to Cluster 2 (C2), and C2 samples had higher specific somatic mutations, MHC mutations, and genomic copy number variations compared to C1. We also found additional cluster phenotype differences for DNA methylation, microRNA (miRNA) expression, and long noncoding RNA (lncRNA) expression. Furthermore, we established a 4-gene model to distinguish between clusters by integrating analyses for DEGs, lncRNAs, miRNAs, and methylation. Notably, we found that glial fibrillary acidic protein (GFAP) might serve as a key hub gene within the genetic and epigenetic regulatory networks. These results improve our understanding of the molecular mechanisms underlying tumor immune phenotypes that are associated with tumor immune escape. In addition, GFAP may be a potential biomarker for both PC diagnosis and prognosis.
Collapse
|
22
|
Ali H, Harting R, de Vries R, Ali M, Wurdinger T, Best MG. Blood-Based Biomarkers for Glioma in the Context of Gliomagenesis: A Systematic Review. Front Oncol 2021; 11:665235. [PMID: 34150629 PMCID: PMC8211985 DOI: 10.3389/fonc.2021.665235] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gliomas are the most common and aggressive tumors of the central nervous system. A robust and widely used blood-based biomarker for glioma has not yet been identified. In recent years, a plethora of new research on blood-based biomarkers for glial tumors has been published. In this review, we question which molecules, including proteins, nucleic acids, circulating cells, and metabolomics, are most promising blood-based biomarkers for glioma diagnosis, prognosis, monitoring and other purposes, and align them to the seminal processes of cancer. METHODS The Pubmed and Embase databases were systematically searched. Biomarkers were categorized in the identified biomolecules and biosources. Biomarker characteristics were assessed using the area under the curve (AUC), accuracy, sensitivity and/or specificity values and the degree of statistical significance among the assessed clinical groups was reported. RESULTS 7,919 references were identified: 3,596 in PubMed and 4,323 in Embase. Following screening of titles, abstracts and availability of full-text, 262 articles were included in the final systematic review. Panels of multiple biomarkers together consistently reached AUCs >0.8 and accuracies >80% for various purposes but especially for diagnostics. The accuracy of single biomarkers, consisting of only one measurement, was far more variable, but single microRNAs and proteins are generally more promising as compared to other biomarker types. CONCLUSION Panels of microRNAs and proteins are most promising biomarkers, while single biomarkers such as GFAP, IL-10 and individual miRNAs also hold promise. It is possible that panels are more accurate once these are involved in different, complementary cancer-related molecular pathways, because not all pathways may be dysregulated in cancer patients. As biomarkers seem to be increasingly dysregulated in patients with short survival, higher tumor grades and more pathological tumor types, it can be hypothesized that more pathways are dysregulated as the degree of malignancy of the glial tumor increases. Despite, none of the biomarkers found in the literature search seem to be currently ready for clinical implementation, and most of the studies report only preliminary application of the identified biomarkers. Hence, large-scale validation of currently identified and potential novel biomarkers to show clinical utility is warranted.
Collapse
Affiliation(s)
- Hamza Ali
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Romée Harting
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Ralph de Vries
- Medical Library, Vrije Universiteit, Amsterdam, Netherlands
| | - Meedie Ali
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Myron G. Best
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
23
|
Schmid D, Warnken U, Latzer P, Hoffmann DC, Roth J, Kutschmann S, Jaschonek H, Rübmann P, Foltyn M, Vollmuth P, Winkler F, Seliger C, Felix M, Sahm F, Haas J, Reuss D, Bendszus M, Wildemann B, von Deimling A, Wick W, Kessler T. Diagnostic biomarkers from proteomic characterization of cerebrospinal fluid in patients with brain malignancies. J Neurochem 2021; 158:522-538. [PMID: 33735443 DOI: 10.1111/jnc.15350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/23/2022]
Abstract
Recent technological advances in molecular diagnostics through liquid biopsies hold the promise to repetitively monitor tumor evolution and treatment response of brain malignancies without the need of invasive surgical tissue accrual. Here, we implemented a mass spectrometry-based protein analysis pipeline which identified hundreds of proteins in 251 cerebrospinal fluid (CSF) samples from patients with four types of brain malignancies (glioblastoma, lymphoma, brain metastasis, and leptomeningeal disease [LMD]) and from healthy individuals with a focus on glioblastoma in a retrospective and confirmatory prospective observational study. CSF proteome deregulation via disruption of the blood brain barrier appeared to be largely conserved across brain tumor entities. CSF analysis of glioblastoma patients identified two proteomic clusters that correlated with tumor size and patient survival. By integrating CSF data with proteomic analyses of matching glioblastoma tumor tissue and primary glioblastoma cells, we identified potential CSF biomarkers for glioblastoma, in particular chitinase-3-like protein 1 (CHI3L1) and glial fibrillary acidic protein (GFAP). Key findings were validated in a prospective cohort consisting of 35 glioma patients. Finally, in LMD patients who frequently undergo repeated CSF work-up, we explored our proteomic pipeline as a mean to profile consecutive CSF samples. Therefore, proteomic analysis of CSF in brain malignancies has the potential to reveal biomarkers for diagnosis and therapy monitoring.
Collapse
Affiliation(s)
- Dominic Schmid
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Uwe Warnken
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Functional Proteome Analysis, DKFZ, Heidelberg, Germany
| | - Pauline Latzer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk C Hoffmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Judith Roth
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Kutschmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Jaschonek
- Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Petra Rübmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martha Foltyn
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Corinna Seliger
- Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marius Felix
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Reuss
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Brigitte Wildemann
- Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Neuroimmunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Tobias Kessler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
24
|
Zottel A, Jovčevska I, Šamec N, Komel R. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: A systematic review. Crit Rev Oncol Hematol 2021; 160:103283. [PMID: 33667657 DOI: 10.1016/j.critrevonc.2021.103283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma, the most common primary brain malignancy, is an exceptionally fatal cancer. Lack of suitable biomarkers and efficient treatment largely contribute to the therapy failure. Cytoskeletal proteins are crucial proteins in glioblastoma pathogenesis and can potentially serve as biomarkers and therapeutic targets. Among them, GFAP, has gained most attention as potential diagnostic biomarker, while vimentin and microtubules are considered as prospective therapeutic targets. Microtubules represent one of the best anti-cancer targets due to their critical role in cell proliferation. Despite testing in clinical trials, the efficiency of taxanes, epothilones, vinca-domain binding drugs, colchicine-domain binding drugs and γ-tubulin binding drugs remains to be confirmed. Moreover, tumor treating field that disrupts microtubules draw attention because of its high efficiency and is called "the fourth cancer treatment modality". Thereby, because of the involvement of cytoskeleton in key physiological and pathological processes, its therapeutic potential in glioblastoma is currently extensively investigated.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
25
|
Urbanavičiūtė R, Skauminas K, Skiriutė D. The Evaluation of AREG, MMP-2, CHI3L1, GFAP, and OPN Serum Combined Value in Astrocytic Glioma Patients' Diagnosis and Prognosis. Brain Sci 2020; 10:brainsci10110872. [PMID: 33227903 PMCID: PMC7699177 DOI: 10.3390/brainsci10110872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Gliomas account for approximately 70% of primary brain tumors in adults. Of all gliomas, grade IV astrocytoma, also called glioblastoma, has the poorest overall survival, with <5% of patients surviving five years after diagnosis. Due to the aggressiveness, lethal nature, and impaired surgical accessibility of the tumor, early diagnosis of the tumor and, in addition, prediction of the patient's survival time are important. We hypothesize that combining the protein level values of highly recognizable glioblastoma serum biomarkers could help to achieve higher specificity and sensitivity in predicting glioma patient outcome as compared to single markers. The aim of this study was to select the most promising astrocytoma patient overall survival prediction variables from five secretory proteins-glial fibrillary acidic protein (GFAP), matrix metalloproteinase-2 (MMP-2), chitinase 3-like 1 (CHI3L1), osteopontin (OPN), and amphiregulin (AREG)-combining them with routinely used tumor markers to create a Patient Survival Score calculation tool. The study group consisted of 70 astrocytoma patients and 31 healthy controls. We demonstrated that integrating serum CHI3L1 and OPN protein level values and tumor isocitrate dehydrogenase 1 IDH1 mutational status into one parameter could predict low-grade astrocytoma patients' two-year survival with 93.8% accuracy.
Collapse
|
26
|
Chitinase-3 like-protein-1 function and its role in diseases. Signal Transduct Target Ther 2020; 5:201. [PMID: 32929074 PMCID: PMC7490424 DOI: 10.1038/s41392-020-00303-7] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Non-enzymatic chitinase-3 like-protein-1 (CHI3L1) belongs to glycoside hydrolase family 18. It binds to chitin, heparin, and hyaluronic acid, and is regulated by extracellular matrix changes, cytokines, growth factors, drugs, and stress. CHI3L1 is synthesized and secreted by a multitude of cells including macrophages, neutrophils, synoviocytes, chondrocytes, fibroblast-like cells, smooth muscle cells, and tumor cells. It plays a major role in tissue injury, inflammation, tissue repair, and remodeling responses. CHI3L1 has been strongly associated with diseases including asthma, arthritis, sepsis, diabetes, liver fibrosis, and coronary artery disease. Moreover, following its initial identification in the culture supernatant of the MG63 osteosarcoma cell line, CHI3L1 has been shown to be overexpressed in a wealth of both human cancers and animal tumor models. To date, interleukin-13 receptor subunit alpha-2, transmembrane protein 219, galectin-3, chemo-attractant receptor-homologous 2, and CD44 have been identified as CHI3L1 receptors. CHI3L1 signaling plays a critical role in cancer cell growth, proliferation, invasion, metastasis, angiogenesis, activation of tumor-associated macrophages, and Th2 polarization of CD4+ T cells. Interestingly, CHI3L1-based targeted therapy has been increasingly applied to the treatment of tumors including glioma and colon cancer as well as rheumatoid arthritis. This review summarizes the potential roles and mechanisms of CHI3L1 in oncogenesis and disease pathogenesis, then posits investigational strategies for targeted therapies.
Collapse
|
27
|
Kan LK, Drummond K, Hunn M, Williams D, O'Brien TJ, Monif M. Potential biomarkers and challenges in glioma diagnosis, therapy and prognosis. BMJ Neurol Open 2020; 2:e000069. [PMID: 33681797 PMCID: PMC7871709 DOI: 10.1136/bmjno-2020-000069] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most common central nervous system malignancies and present with significant morbidity and mortality. Treatment modalities are currently limited to surgical resection, chemotherapy and radiotherapy. Increases in survival rate over the previous decades are negligible, further pinpointing an unmet clinical need in this field. There is a continual struggle with the development of effective glioma diagnostics and therapeutics, largely due to a multitude of factors, including the presence of the blood–brain barrier and significant intertumoural and intratumoural heterogeneity. Importantly, there is a lack of reliable biomarkers for glioma, particularly in aiding tumour subtyping and measuring response to therapy. There is a need for biomarkers that would both overcome the complexity of the disease and allow for a minimally invasive means of detection and analysis. This is a comprehensive review evaluating the potential of current cellular, proteomic and molecular biomarker candidates for glioma. Significant hurdles faced in glioma diagnostics and therapy are also discussed here.
Collapse
Affiliation(s)
- Liyen Katrina Kan
- Department of Neuroscience, Monash University Faculty of Medicine, Nursing and Health Sciences, Melbourne, Victoria, Australia.,Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kate Drummond
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Martin Hunn
- Department of Neurosurgery, Alfred Health, Melbourne, Victoria, Australia
| | - David Williams
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University Faculty of Medicine, Nursing and Health Sciences, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Monash University Faculty of Medicine, Nursing and Health Sciences, Melbourne, Victoria, Australia.,Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Dobra G, Bukva M, Szabo Z, Bruszel B, Harmati M, Gyukity-Sebestyen E, Jenei A, Szucs M, Horvath P, Biro T, Klekner A, Buzas K. Small Extracellular Vesicles Isolated from Serum May Serve as Signal-Enhancers for the Monitoring of CNS Tumors. Int J Mol Sci 2020; 21:ijms21155359. [PMID: 32731530 PMCID: PMC7432723 DOI: 10.3390/ijms21155359] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Liquid biopsy-based methods to test biomarkers (e.g., serum proteins and extracellular vesicles) may help to monitor brain tumors. In this proteomics-based study, we aimed to identify a characteristic protein fingerprint associated with central nervous system (CNS) tumors. Overall, 96 human serum samples were obtained from four patient groups, namely glioblastoma multiforme (GBM), non-small-cell lung cancer brain metastasis (BM), meningioma (M) and lumbar disc hernia patients (CTRL). After the isolation and characterization of small extracellular vesicles (sEVs) by nanoparticle tracking analysis (NTA) and atomic force microscopy (AFM), liquid chromatography -mass spectrometry (LC-MS) was performed on two different sample types (whole serum and serum sEVs). Statistical analyses (ratio, Cohen's d, receiver operating characteristic; ROC) were carried out to compare patient groups. To recognize differences between the two sample types, pairwise comparisons (Welch's test) and ingenuity pathway analysis (IPA) were performed. According to our knowledge, this is the first study that compares the proteome of whole serum and serum-derived sEVs. From the 311 proteins identified, 10 whole serum proteins and 17 sEV proteins showed the highest intergroup differences. Sixty-five proteins were significantly enriched in sEV samples, while 129 proteins were significantly depleted compared to whole serum. Based on principal component analysis (PCA) analyses, sEVs are more suitable to discriminate between the patient groups. Our results support that sEVs have greater potential to monitor CNS tumors, than whole serum.
Collapse
Affiliation(s)
- Gabriella Dobra
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (G.D.); (M.B.); (M.H.); (E.G.-S.); (P.H.)
- Department of Medical Genetics, Doctoral School of Interdisciplinary Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Matyas Bukva
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (G.D.); (M.B.); (M.H.); (E.G.-S.); (P.H.)
- Department of Medical Genetics, Doctoral School of Interdisciplinary Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltan Szabo
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (Z.S.); (B.B.)
| | - Bella Bruszel
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (Z.S.); (B.B.)
| | - Maria Harmati
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (G.D.); (M.B.); (M.H.); (E.G.-S.); (P.H.)
| | - Edina Gyukity-Sebestyen
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (G.D.); (M.B.); (M.H.); (E.G.-S.); (P.H.)
| | - Adrienn Jenei
- Department of Neurosurgery, Clinical Centre, University of Debrecen, H-4032 Debrecen, Hungary; (A.J.); (A.K.)
| | - Monika Szucs
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary;
- Department of Medical Physics and Informatics, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Peter Horvath
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (G.D.); (M.B.); (M.H.); (E.G.-S.); (P.H.)
| | - Tamas Biro
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Almos Klekner
- Department of Neurosurgery, Clinical Centre, University of Debrecen, H-4032 Debrecen, Hungary; (A.J.); (A.K.)
| | - Krisztina Buzas
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (G.D.); (M.B.); (M.H.); (E.G.-S.); (P.H.)
- Department of Immunology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
- Department of Immunology, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-432-340
| |
Collapse
|
29
|
Chen X, Guo ZQ, Cao D, Chen Y, Chen J. Knockdown of DEPDC1B inhibits the development of glioblastoma. Cancer Cell Int 2020; 20:310. [PMID: 32684847 PMCID: PMC7362545 DOI: 10.1186/s12935-020-01404-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with a poor prognosis. DEPDC1B (DEP domain-containing protein 1B) has been shown to be associated with some types of malignancies. However, the role and underlying regulatory mechanisms of DEPDC1B in GBM remain elusive. Methods In this research, the expression level of DEPDC1B in GBM tissues was detected by IHC. The DEPDC1B knockdown cell line was constructed, identified by qRT-PCR and western blot and used to construct the xenotransplantation mice model and intracranial xenograft model. MTT assay, colony formation assay, flow cytometry, and Transwell assay were used to detected cell proliferation, apoptosis and migration. Results The results proved that DEPDC1B was significantly upregulated in tumor tissues, and silencing DEPDC1B could inhibit proliferation, migration and promote apoptosis of GBM cell. In addition, human apoptosis antibody array detection showed that after DEPDC1B knockdown, the expression of apoptosis-related proteins was downregulated, such as IGFBP-2, Survivin, N-cadherin, Vimentin and Snail. Finally, we indicated that knockdown of DEPDC1B significantly inhibited tumor growth in vivo. Conclusions In summary, DEPDC1B was involved in the development and progression of GBM, which may be a potential therapeutic target and bring a breakthrough in the treatment.
Collapse
Affiliation(s)
- Xu Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030 China
| | - Zheng-Qian Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030 China
| | - Dan Cao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030 China
| | - Yong Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030 China
| | - Jian Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030 China
| |
Collapse
|
30
|
The Role of Liquid Biopsies in Detecting Molecular Tumor Biomarkers in Brain Cancer Patients. Cancers (Basel) 2020; 12:cancers12071831. [PMID: 32650387 PMCID: PMC7408771 DOI: 10.3390/cancers12071831] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal primary central nervous system cancers with a median overall survival of only 12-15 months. The best documented treatment is surgical tumor debulking followed by chemoradiation and adjuvant chemotherapy with temozolomide, but treatment resistance and therefore tumor recurrence, is the usual outcome. Although advances in molecular subtyping suggests GBM can be classified into four subtypes, one concern about using the original histology for subsequent treatment decisions is that it only provides a static snapshot of heterogeneous tumors that may undergo longitudinal changes over time, especially under selective pressure of ongoing therapy. Liquid biopsies obtained from bodily fluids like blood and cerebro-spinal fluid (CSF) are less invasive, and more easily repeated than surgery. However, their deployment for patients with brain cancer is only emerging, and possibly suppressed clinically due to the ongoing belief that the blood brain barrier prevents the egress of circulating tumor cells, exosomes, and circulating tumor nucleic acids into the bloodstream. Although brain cancer liquid biopsy analyses appear indeed challenging, advances have been made and here we evaluate the current literature on the use of liquid biopsies for detection of clinically relevant biomarkers in GBM to aid diagnosis and prognostication.
Collapse
|
31
|
Holst CB, Christensen IJ, Skjøth-Rasmussen J, Hamerlik P, Poulsen HS, Johansen JS. Systemic Immune Modulation in Gliomas: Prognostic Value of Plasma IL-6, YKL-40, and Genetic Variation in YKL-40. Front Oncol 2020; 10:478. [PMID: 32363159 PMCID: PMC7180208 DOI: 10.3389/fonc.2020.00478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/17/2020] [Indexed: 01/10/2023] Open
Abstract
Background: Complex local and systemic immune dysfunction in glioblastoma (GBM) may affect survival. Interleukin (IL)-6 and YKL-40 are pleiotropic biomarkers present in the tumor microenvironment and involved in immune regulation. We therefore analyzed plasma IL-6, YKL-40, and genetic variation in YKL-40 and explored their ability to distinguish between glioma subtypes and predict survival in GBM. Methods: One hundred fifty-eight patients with glioma WHO grade II-IV were included in the study. Plasma collected at surgery was analyzed for IL-6 and YKL-40 (CHI3L1) by ELISA. CHI3L1 rs4950928 genotyping was analyzed on whole-blood DNA. Results: Neither plasma IL-6 nor YKL-40 corrected for age or rs4950928 genotype could differentiate GBM from lower grade gliomas. GC and GG rs4950928 genotype were associated with lower plasma YKL-40 levels (CC vs. GC, p = 0.0019; CC vs. GG, p = 0.01). Only 10 and 14 out of 94 patients with newly diagnosed GBM had elevated IL-6 or YKL-40, respectively. Most patients received corticosteroid treatment at time of blood-sampling. Higher pretreatment plasma IL-6 was associated with short overall survival (OS) [HR = 1.19 (per 2-fold change), p = 0.042] in univariate analysis. The effect disappeared in multivariate analysis. rs4950928 genotype did not associate with OS [HR = 1.30, p = 0.30]. In recurrent GBM, higher YKL-40 [HR = 2.12 (per 2-fold change), p = 0.0005] but not IL-6 [HR = 0.99 (per 2-fold change), p = 0.92] were associated with short OS in univariate analysis. Conclusion: In recurrent GBM high plasma YKL-40 may hold promise as a prognostic marker. In newly diagnosed GBM perioperative plasma IL-6, YKL-40, and genetic variation in YKL-40 did not associate with survival. Corticosteroid use may complicate interpretation of results.
Collapse
Affiliation(s)
- Camilla Bjørnbak Holst
- Department of Radiation Biology, Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark.,Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Ib Jarle Christensen
- Department of Gastroenterology, Hvidovre Hospital, Copenhagen University Hospital, Hvidovre, Denmark
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Radiation Biology, Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julia Sidenius Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Lyubimova NV, Timofeev YS, Mitrofanov AA, Bekyashev AK, Goncharova ZA, Kushlinskii NE. Glial Fibrillary Acidic Protein in the Diagnosis and Prognosis of Malignant Glial Tumors. Bull Exp Biol Med 2020; 168:503-506. [PMID: 32147765 DOI: 10.1007/s10517-020-04741-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 10/24/2022]
Abstract
Serum levels of glial fibrillar acidic protein (GFAP) were analyzed in 317 patients with primary and metastatic tumors of the brain, 78 patients with neurological diseases, and 66 normal subjects. A significant increase in the basal level of GFAP was typical of patients with glioblastomas in comparison with other groups (patients with astrocytomas, cerebral metastases, benign tumors, non-tumor diseases, and healthy subjects). An association of GFAP levels with unfavorable prognosis of overall survival in patients with glioblastoma was revealed. The data attest to high specificity and sensitivity of GFAP as a biochemical marker of glioblastoma.
Collapse
Affiliation(s)
- N V Lyubimova
- N. N. Blokhin National Research Medical Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Yu S Timofeev
- N. N. Blokhin National Research Medical Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Mitrofanov
- N. N. Blokhin National Research Medical Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A Kh Bekyashev
- N. N. Blokhin National Research Medical Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Z A Goncharova
- Clinical Department of Rostov State Medical University, Ministry of Health of the Russian Federation, Rostov-on-Don, Russia
| | - N E Kushlinskii
- N. N. Blokhin National Research Medical Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
33
|
Puigdelloses M, González-Huárriz M, García-Moure M, Martínez-Vélez N, Esparragosa Vázquez I, Bruna J, Zandio B, Agirre A, Marigil M, Petrirena G, Nuñez-Córdoba JM, Tejada-Solís S, Díez-Valle R, Gállego-Culleré J, Martínez-Vila E, Patiño-García A, Alonso MM, Gállego Pérez-Larraya J. RNU6-1 in circulating exosomes differentiates GBM from non-neoplastic brain lesions and PCNSL but not from brain metastases. Neurooncol Adv 2020; 2:vdaa010. [PMID: 32642678 PMCID: PMC7212908 DOI: 10.1093/noajnl/vdaa010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Circulating biomarkers may assist in the processes of differential diagnosis and response assessment. GBM cells release extracellular vesicles containing a subset of proteins and nucleic acids. We previously demonstrated that exosomes isolated from the serum of GBM patients had an increased expression of RNU6-1 compared to healthy subjects. In this exploratory study, we investigated the role of this small noncoding RNA as a diagnostic biomarker for GBM versus other brain lesions with some potential radiological similarities. Methods We analyzed the expression of RNU6-1 in circulating exosomes of GBM patients (n = 18), healthy controls (n = 30), and patients with subacute stroke (n = 30), acute/subacute hemorrhage (n = 30), acute demyelinating lesions (n = 18), brain metastases (n = 21), and primary central nervous system lymphoma (PCNSL; n = 12) using digital droplet PCR. Results Expression of RNU6-1 was significantly higher in GBM patients than in healthy controls (P = .002). RNU6-1 levels were also significantly higher in exosomes from GBM patients than from patients with non-neoplastic lesions (stroke [P = .05], hemorrhage [P = .01], demyelinating lesions [P = .019]) and PCNSL (P = .004). In contrast, no significant differences were found between patients with GBM and brain metastases (P = .573). Receiver operator characteristic curve analyses supported the role of this biomarker in differentiating GBM from subacute stroke, acute/subacute hemorrhage, acute demyelinating lesions, and PCNSL (P < .05), but again not from brain metastases (P = .575). Conclusions Our data suggest that the expression of RNU6-1 in circulating exosomes could be useful for the differentiation of GBM from non-neoplastic brain lesions and PCNSL, but not from brain metastases.
Collapse
Affiliation(s)
- Montserrat Puigdelloses
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marisol González-Huárriz
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marc García-Moure
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Naiara Martínez-Vélez
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Inés Esparragosa Vázquez
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jordi Bruna
- Department of Neurology, Hospital de Bellvitge, Barcelona, Spain
| | - Beatriz Zandio
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Amaia Agirre
- POLYMAT, University of the Basque Country, San Sebastian, Spain
| | - Miguel Marigil
- Division of Neurosurgery, Lariboisière University Hospital, Paris, France
| | | | - Jorge M Nuñez-Córdoba
- Research Support Service, Central Clinical Trials Unit, Clínica Universidad de Navarra, Pamplona, Spain.,Department of Preventive Medicine and Public Health, Medical School, Universidad de Navarra, Pamplona, Spain
| | - Sonia Tejada-Solís
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Department of Neurosurgery, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Ricardo Díez-Valle
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Department of Neurosurgery, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | | | - Eduardo Martínez-Vila
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ana Patiño-García
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta M Alonso
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jaime Gállego Pérez-Larraya
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
34
|
IGFBP2: integrative hub of developmental and oncogenic signaling network. Oncogene 2020; 39:2243-2257. [PMID: 31925333 DOI: 10.1038/s41388-020-1154-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 01/08/2023]
Abstract
Insulin-like growth factor (IGF) binding protein 2 (IGFBP2) was discovered and identified as an IGF system regulator, controlling the distribution, function, and activity of IGFs in the pericellular space. IGFBP2 is a developmentally regulated gene that is highly expressed in embryonic and fetal tissues and markedly decreases after birth. Studies over the last decades have shown that in solid tumors, IGFBP2 is upregulated and promotes several key oncogenic processes, such as epithelial-to-mesenchymal transition, cellular migration, invasion, angiogenesis, stemness, transcriptional activation, and epigenetic programming via signaling that is often independent of IGFs. Growing evidence indicates that aberrant expression of IGFBP2 in cancer acts as a hub of an oncogenic network, integrating multiple cancer signaling pathways and serving as a potential therapeutic target for cancer treatment.
Collapse
|
35
|
Salvucci M, Zakaria Z, Carberry S, Tivnan A, Seifert V, Kögel D, Murphy BM, Prehn JHM. System-based approaches as prognostic tools for glioblastoma. BMC Cancer 2019; 19:1092. [PMID: 31718568 PMCID: PMC6852738 DOI: 10.1186/s12885-019-6280-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The evasion of apoptosis is a hallmark of cancer. Understanding this process holistically and overcoming apoptosis resistance is a goal of many research teams in order to develop better treatment options for cancer patients. Efforts are also ongoing to personalize the treatment of patients. Strategies to confirm the therapeutic efficacy of current treatments or indeed to identify potential novel additional options would be extremely beneficial to both clinicians and patients. In the past few years, system medicine approaches have been developed that model the biochemical pathways of apoptosis. These systems tools incorporate and analyse the complex biological networks involved. For their successful integration into clinical practice, it is mandatory to integrate systems approaches with routine clinical and histopathological practice to deliver personalized care for patients. RESULTS We review here the development of system medicine approaches that model apoptosis for the treatment of cancer with a specific emphasis on the aggressive brain cancer, glioblastoma. CONCLUSIONS We discuss the current understanding in the field and present new approaches that highlight the potential of system medicine approaches to influence how glioblastoma is diagnosed and treated in the future.
Collapse
Affiliation(s)
- Manuela Salvucci
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Zaitun Zakaria
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Steven Carberry
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Amanda Tivnan
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Volker Seifert
- Department of Neurosurgery, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Donat Kögel
- Department of Neurosurgery, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Brona M. Murphy
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Jochen H. M. Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| |
Collapse
|
36
|
Bian B, Li L, Yang J, Liu Y, Xie G, Zheng Y, Zeng L, Zeng J, Shen L. Prognostic value of YKL-40 in solid tumors: a meta-analysis of 41 cohort studies. Cancer Cell Int 2019; 19:259. [PMID: 31624472 PMCID: PMC6785874 DOI: 10.1186/s12935-019-0983-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
Background Serum/plasma YKL-40 can be a useful index that is associated with tumor development. However, the prognostic value of serum/plasma YKL-40 in patients with solid tumors is still unclear. We aimed to utilize the existing literature to investigate the prognostic value of serum/plasma YKL-40 in solid tumors. Methods An extensive literature search for relevant studies was conducted with the Embase, Medline and Web of Science databases. The effect on survival was measured with the hazard ratio (HR). Then, pooled HRs and 95% confidence intervals (CIs) were calculated using the random and fixed-effects models according to the heterogeneity of the included studies. Results This meta-analysis was based on 41 publications and comprised a total of 7762 patients with solid tumors. The pooled HR showed that elevated serum/plasma YKL-40 was significantly associated with poor OS (HR, 1.44; 95% CI 1.33–1.56). We also found that elevated serum/plasma YKL-40 had significant prognostic effects on OS in various cancer subgroups such as gastrointestinal tumors (HR, 1.37; 95% CI 1.18–1.58), ovarian cancer (HR, 2.27; 95% CI 1.69–3.06), melanoma (HR, 1.77; 95% CI 1.18–2.67), lung cancer (HR, 1.73; 95% CI 1.35–2.23), urologic neoplasms (HR, 1.61; 95% CI 1.08–2.40) and glioblastoma (HR, 1.23; 95% CI 1.07–1.42); in contrast, the prognostic effect of serum/plasma YKL-40 was not statistically significant in breast cancer (HR, 1.07; 95% CI 0.98–1.17). Conclusions The available evidence supports the hypothesis that elevated serum/plasma YKL-40 is associated with poor survival in patients with solid tumors and that serum/plasma YKL-40 may serve as a novel prognostic biomarker.
Collapse
Affiliation(s)
- Bingxian Bian
- 1Department of Clinical Laboratory, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Li
- 1Department of Clinical Laboratory, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyao Yang
- 1Department of Clinical Laboratory, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Liu
- 1Department of Clinical Laboratory, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohua Xie
- 1Department of Clinical Laboratory, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingxia Zheng
- 1Department of Clinical Laboratory, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zeng
- 2Department of Engineering, Tsinghua University, Beijing, China
| | - Junxiang Zeng
- 1Department of Clinical Laboratory, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Shen
- 1Department of Clinical Laboratory, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Hafeez U, Cher LM. Biomarkers and smart intracranial devices for the diagnosis, treatment, and monitoring of high-grade gliomas: a review of the literature and future prospects. Neurooncol Adv 2019; 1:vdz013. [PMID: 32642651 PMCID: PMC7212884 DOI: 10.1093/noajnl/vdz013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain neoplasm with median overall survival (OS) around 15 months. There is a dearth of effective monitoring strategies for patients with high-grade gliomas. Relying on magnetic resonance images of brain has its challenges, and repeated brain biopsies add significant morbidity. Hence, it is imperative to establish a less invasive way to diagnose, monitor, and guide management of patients with high-grade gliomas. Currently, multiple biomarkers are in various phases of development and include tissue, serum, cerebrospinal fluid (CSF), and imaging biomarkers. Here we review and summarize the potential biomarkers found in blood and CSF, including extracellular macromolecules, extracellular vesicles, circulating tumor cells, immune cells, endothelial cells, and endothelial progenitor cells. The ability to detect tumor-specific biomarkers in blood and CSF will potentially not only reduce the need for repeated brain biopsies but also provide valuable information about the heterogeneity of tumor, response to current treatment, and identify disease resistance. This review also details the status and potential scope of brain tumor-related cranial devices and implants including Ommaya reservoir, microelectromechanical systems-based depot device, Alzet mini-osmotic pump, Metronomic Biofeedback Pump (MBP), ipsum G1 implant, ultra-thin needle implant, and putative devices. An ideal smart cranial implant will overcome the blood-brain barrier, deliver various drugs, provide access to brain tissue, and potentially measure and monitor levels of various biomarkers.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Australia
- Latrobe University School of Cancer Medicine, Melbourne, Australia
- Department of Medical Oncology, Austin Hospital, Melbourne, Australia
| | - Lawrence M Cher
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Australia
- Department of Medical Oncology, Austin Hospital, Melbourne, Australia
- Corresponding Author: Lawrence M. Cher, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, VIC 3084, Australia ()
| |
Collapse
|
38
|
The Small Molecule Ephrin Receptor Inhibitor, GLPG1790, Reduces Renewal Capabilities of Cancer Stem Cells, Showing Anti-Tumour Efficacy on Preclinical Glioblastoma Models. Cancers (Basel) 2019; 11:cancers11030359. [PMID: 30871240 PMCID: PMC6468443 DOI: 10.3390/cancers11030359] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
Therapies against glioblastoma (GBM) show a high percentage of failure associated with the survival of glioma stem cells (GSCs) that repopulate treated tumours. Forced differentiation of GSCs is a promising new approach in cancer treatment. Erythropoietin-producing hepatocellular (Eph) receptors drive tumourigenicity and stemness in GBM. We tested GLPG1790, a first small molecule with inhibition activity versus inhibitor of various Eph receptor kinases, in preclinical GBM models using in vitro and in vivo assays. GLPG1790 rapidly and persistently inhibited Ephrin-A1-mediated phosphorylation of Tyr588 and Ser897, completely blocking EphA2 receptor signalling. Similarly, this compound blocks the ephrin B2-mediated EphA3 and EphB4 tyrosine phosphorylation. This resulted in anti-glioma effects. GLPG1790 down-modulated the expression of mesenchymal markers CD44, Sox2, nestin, octamer-binding transcription factor 3/4 (Oct3/4), Nanog, CD90, and CD105, and up-regulated that of glial fibrillary acidic protein (GFAP) and pro-neural/neuronal markers, βIII tubulin, and neurofilaments. GLPG1790 reduced tumour growth in vivo. These effects were larger compared to radiation therapy (RT; U251 and T98G xenografts) and smaller than those of temozolomide (TMZ; U251 and U87MG cell models). By contrast, GLPG1790 showed effects that were higher than Radiotherapy (RT) and similar to Temozolomide (TMZ) in orthotopic U87MG and CSCs-5 models in terms of disease-free survival (DFS) and overall survival (OS). Further experiments were necessary to study possible interactions with radio- and chemotherapy. GLPG1790 demonstrated anti-tumor effects regulating both the differentiative status of Glioma Initiating Cells (GICs) and the quality of tumor microenvironment, translating into efficacy in aggressive GBM mouse models. Significant common molecular targets to radio and chemo therapy supported the combination use of GLPG1790 in ameliorative antiglioma therapy.
Collapse
|
39
|
Loo HK, Mathen P, Lee J, Camphausen K. Circulating biomarkers for high-grade glioma. Biomark Med 2019; 13:161-165. [PMID: 30806515 DOI: 10.2217/bmm-2018-0463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Hannah K Loo
- Radiation Oncology Branch, National Cancer Institute, 9000 Rockville Pike, Building 10 B3B55, Bethesda, MD 20892, USA
| | - Peter Mathen
- Radiation Oncology Branch, National Cancer Institute, 9000 Rockville Pike, Building 10 B3B55, Bethesda, MD 20892, USA
| | - Jennifer Lee
- Radiation Oncology Branch, National Cancer Institute, 9000 Rockville Pike, Building 10 B3B55, Bethesda, MD 20892, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, 9000 Rockville Pike, Building 10 B3B55, Bethesda, MD 20892, USA
| |
Collapse
|
40
|
Serum biomarkers identification by iTRAQ and verification by MRM: S100A8/S100A9 levels predict tumor-stroma involvement and prognosis in Glioblastoma. Sci Rep 2019; 9:2749. [PMID: 30808902 PMCID: PMC6391445 DOI: 10.1038/s41598-019-39067-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
Despite advances in biology and treatment modalities, the prognosis of glioblastoma (GBM) remains poor. Serum reflects disease macroenvironment and thus provides a less invasive means to diagnose and monitor a diseased condition. By employing 4-plex iTRAQ methodology, we identified 40 proteins with differential abundance in GBM sera. The high abundance of serum S100A8/S100A9 was verified by multiple reaction monitoring (MRM). ELISA and MRM-based quantitation showed a significant positive correlation. Further, an integrated investigation using stromal, tumor purity and cell type scores demonstrated an enrichment of myeloid cell lineage in the GBM tumor microenvironment. Transcript levels of S100A8/S100A9 were found to be independent poor prognostic indicators in GBM. Medium levels of pre-operative and three-month post-operative follow-up serum S100A8 levels predicted poor prognosis in GBM patients who lived beyond median survival. In vitro experiments showed that recombinant S100A8/S100A9 proteins promoted integrin signalling dependent glioma cell migration and invasion up to a threshold level of concentrations. Thus, we have discovered GBM serum marker by iTRAQ and verified by MRM. We also demonstrate interplay between tumor micro and macroenvironment and identified S100A8 as a potential marker with diagnostic and prognostic value in GBM.
Collapse
|
41
|
Pierscianek D, Ahmadipour Y, Oppong MD, Rauschenbach L, Kebir S, Glas M, Sure U, Jabbarli R. Blood-Based Biomarkers in High Grade Gliomas: a Systematic Review. Mol Neurobiol 2019; 56:6071-6079. [PMID: 30719642 DOI: 10.1007/s12035-019-1509-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
High-grade gliomas (HGG) are the most common malignant primary brain tumor in adults. During the course of disease, several challenges occur, like measuring tumor burden, monitoring of treatment response, estimating the patient's prognosis, and distinguishing between true progression and pseudo-progression. So far, no blood-based biomarker has been established in the clinical routine to address these challenges. The aim of this systematic review was to analyze the present evidence on blood-based biomarkers for HGG. We systematically searched in PubMed, Web of Sciences, Scopus, and Cochrane Library databases for publications before 30th of March 2018 reporting on associations of blood-based biomarkers in HGG patients with different endpoints as overall survival, progression-free survival, and postoperative monitoring. Quality assessment of the studies according to QUIPS and STARD guidelines was performed. In accordance with the GRADE guidelines, level of evidence (I-IV) for each of the tested biomarkers was assessed. One thousand six hundred eighty unique records were identified. Of these, 170 original articles were included to this review. Four hundred fifteen different blood-based biomarkers analyzed in 15.041 patients with HGG as also their corresponding recurrent tumors. Ten predictive biomarkers reached level II of evidence. No biomarker achieved level I of evidence. In this review, 10 blood-based biomarkers were selected as most promising biomarkers for HGG: α2-Heremans-Schmid glycoprotein (AHSG), albumin, glucose, insulin-like growth factor- binding protein 2 (IGFBP-2), macrophage inflammatory protein 1δ (MIP-1 δ), macrophage inflammatory protein 3ß (MIP-3ß), neutrophil-lymphocyte ratio (NLR), red blood cell distribution width (RDW), soluble glycoprotein 130 (Sgp130), and chitinase-3-like protein 1 (YKL-40). To further assess the clinical significance of these biomarkers, the evaluation in a larger cohort of HGG and their corresponding subgroups would be necessary.
Collapse
Affiliation(s)
- Daniela Pierscianek
- Department of Neurosurgery, University Hospital of Essen, 45147, Essen, Germany. .,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany.
| | - Yahya Ahmadipour
- Department of Neurosurgery, University Hospital of Essen, 45147, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Marvin Darkwah Oppong
- Department of Neurosurgery, University Hospital of Essen, 45147, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Laurèl Rauschenbach
- Department of Neurosurgery, University Hospital of Essen, 45147, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Sied Kebir
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany.,Division of Clinical Neurooncology, Department of Neurology, University Hospital of Essen, Essen, Germany.,DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Martin Glas
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany.,Division of Clinical Neurooncology, Department of Neurology, University Hospital of Essen, Essen, Germany.,DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital of Essen, 45147, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery, University Hospital of Essen, 45147, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
42
|
van Bodegraven EJ, van Asperen JV, Robe PAJ, Hol EM. Importance of GFAP isoform-specific analyses in astrocytoma. Glia 2019; 67:1417-1433. [PMID: 30667110 PMCID: PMC6617972 DOI: 10.1002/glia.23594] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Gliomas are a heterogenous group of malignant primary brain tumors that arise from glia cells or their progenitors and rely on accurate diagnosis for prognosis and treatment strategies. Although recent developments in the molecular biology of glioma have improved diagnosis, classical histological methods and biomarkers are still being used. The glial fibrillary acidic protein (GFAP) is a classical marker of astrocytoma, both in clinical and experimental settings. GFAP is used to determine glial differentiation, which is associated with a less malignant tumor. However, since GFAP is not only expressed by mature astrocytes but also by radial glia during development and neural stem cells in the adult brain, we hypothesized that GFAP expression in astrocytoma might not be a direct indication of glial differentiation and a less malignant phenotype. Therefore, we here review all existing literature from 1972 up to 2018 on GFAP expression in astrocytoma patient material to revisit GFAP as a marker of lower grade, more differentiated astrocytoma. We conclude that GFAP is heterogeneously expressed in astrocytoma, which most likely masks a consistent correlation of GFAP expression to astrocytoma malignancy grade. The GFAP positive cell population contains cells with differences in morphology, function, and differentiation state showing that GFAP is not merely a marker of less malignant and more differentiated astrocytoma. We suggest that discriminating between the GFAP isoforms GFAPδ and GFAPα will improve the accuracy of assessing the differentiation state of astrocytoma in clinical and experimental settings and will benefit glioma classification.
Collapse
Affiliation(s)
- Emma J van Bodegraven
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jessy V van Asperen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Pierre A J Robe
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105, BA, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Erhart F, Buchroithner J, Reitermaier R, Fischhuber K, Klingenbrunner S, Sloma I, Hibsh D, Kozol R, Efroni S, Ricken G, Wöhrer A, Haberler C, Hainfellner J, Krumpl G, Felzmann T, Dohnal AM, Marosi C, Visus C. Immunological analysis of phase II glioblastoma dendritic cell vaccine (Audencel) trial: immune system characteristics influence outcome and Audencel up-regulates Th1-related immunovariables. Acta Neuropathol Commun 2018; 6:135. [PMID: 30518425 PMCID: PMC6280511 DOI: 10.1186/s40478-018-0621-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/16/2018] [Indexed: 01/19/2023] Open
Abstract
Audencel is a dendritic cell (DC)-based cellular cancer immunotherapy against glioblastoma multiforme (GBM). It is characterized by loading of DCs with autologous whole tumor lysate and in vitro maturation via “danger signals”. The recent phase II “GBM-Vax” trial showed no clinical efficacy for Audencel as assessed with progression-free and overall survival in all patients. Here we present immunological research accompanying the trial with a focus on immune system factors related to outcome and Audencel’s effect on the immune system. Methodologically, peripheral blood samples (from apheresis before Audencel or venipuncture during Audencel) were subjected to functional characterization via enzyme-linked immunospot (ELISPOT) assays connected with cytokine bead assays (CBAs) as well as phenotypical characterization via flow cytometry and mRNA quantification. GBM tissue samples (from surgery) were subjected to T cell receptor sequencing and immunohistochemistry. As results we found: Patients with favorable pre-existing anti-tumor characteristics lived longer under Audencel than Audencel patients without them. Pre-vaccination blood CD8+ T cell count and ELISPOT Granzyme B production capacity in vitro upon tumor antigen exposure were significantly correlated with overall survival. Despite Audencel’s general failure to induce a significant clinical response, it nevertheless seemed to have an effect on the immune system. For instance, Audencel led to a significant up-regulation of the Th1-related immunovariables ELISPOT IFNγ, the transcription factor T-bet in the blood and ELISPOT IL-2 in a dose-dependent manner upon vaccination. Post-vaccination levels of ELISPOT IFNγ and CD8+ cells in the blood were indicative of a significantly better survival. In summary, Audencel failed to reach an improvement of survival in the recent phase II clinical trial. No clinical efficacy was registered. Our concomitant immunological work presented here indicates that outcome under Audencel was influenced by the state of the immune system. On the other hand, Audencel also seemed to have stimulated the immune system. Overall, these immunological considerations suggest that DC immunotherapy against glioblastoma should be studied further – with the goal of translating an apparent immunological response into a clinical response. Future research should concentrate on investigating augmentation of immune reactions through combination therapies or on developing meaningful biomarkers.
Collapse
|
44
|
Opening the Blood-Brain Barrier and Improving the Efficacy of Temozolomide Treatments of Glioblastoma Using Pulsed, Focused Ultrasound with a Microbubble Contrast Agent. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6501508. [PMID: 30534564 PMCID: PMC6252217 DOI: 10.1155/2018/6501508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022]
Abstract
Objective To explore the effects of pulsed, focused, and microbubble contrast agent-enhanced ultrasonography (mCEUS) on blood-brain barrier (BBB) permeability and the efficacy temozolomide for glioblastoma. Methods Wistar rats (n = 30) were divided into three groups (n = 10 per group) to determine optimal CUES conditions for achieving BBB permeability, as assessed by ultrastructure transmission electron microscopy (TEM) and western blot assays for the tight junction protein claudin-5. Optimized mCEUS effects on BBB permeability were subsequently confirmed with Evans blue staining (2 groups of 10 rats). The glioma cell line 9L was injected into the brain striatum of Wistar rats. After temozolomide chemotherapy, we detected glial fibrillary acidic protein (GFAP) levels in serum by enzyme-linked immunosorbent assay (ELISA) and in brain tissue by western blot, immunocytochemistry, and real-time quantitative polymerase chain reaction (qPCR). Results BBB permeability was maximized with 1 ml/kg contrast agent mCEUS delivered via 10-min intermittent launches with a 400-ms interval. Evans blue staining confirmed BBB permeability following ultrasonic cavitation in the control group (P < 0.05). Following temozolomide chemotherapy, levels of the tumor marker GFAP were increased in the group with ultrasonic cavitation compared with the control group (P < 0.05). Conclusions When rats were treated by mCEUS with intermittent launches (interval, 400 ms) and injected with 1 mg/kg contrast agent, BBB permeability was increased and temozolomide BBB penetration was enhanced, therapeutic enhancement for glioblastoma.
Collapse
|
45
|
Insulin growth factor binding protein 2 mediates the progression of lymphangioleiomyomatosis. Oncotarget 2018; 8:36628-36638. [PMID: 28410230 PMCID: PMC5482682 DOI: 10.18632/oncotarget.16695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a progressive pulmonary disease that almost exclusively affects women. LAM cells migrate to the lungs, where they cause cystic destruction of lung parenchyma. Mutations in TSC1 or TSC2 lead to the activation of the mammalian target of rapamycin complex-1, a kinase that regulates growth factor-dependent protein translation, cell growth, and metabolism. Insulin-like growth factor binding protein 2 (IGFBP2) binds insulin, IGF1 and IGF2 in circulation, thereby modulating cell survival, migration, and invasion in neoplasms. In this study, we identified that IGFBP2 primarily localized in the nucleus of TSC2-null LAM patient-derived cells in vitro and in vivo. We also showed that nuclear accumulation of IGFBP2 is closely associated with estrogen receptor alpha (ERa) expression. Furthermore, estrogen treatment induced IGFBP2 nuclear translocation in TSC2-null LAM patient-derived cells. Importantly, depletion of IGFBP2 by siRNA reduced cell proliferation, enhanced apoptosis, and decreased migration and invasion of TSC2-null LAM patient-derived cells. More interestingly, depletion of IGFBP2 markedly decreased the phosphorylation of MAPK in LAM patient-derived TSC2-null cells. Collectively, these results suggest that IGFBP2 plays an important role in promoting tumorigenesis, through estrogen and ERalpha signaling pathway. Thus, targeting IGFBP2 may serve as a potential therapeutic strategy for women with LAM and other female gender specific neoplasms.
Collapse
|
46
|
Katiyar V, Sharma R, Gurjar HK. Letter: Is Serum Glial Fibrillary Acidic Protein a Comprehensive Marker for High-Grade Glioma? Oper Neurosurg (Hagerstown) 2018; 14:E28-E30. [PMID: 29228384 DOI: 10.1093/ons/opx242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Varidh Katiyar
- Department of Neurosurgery All India Institute of Medical Sciences New Delhi, India
| | - Ravi Sharma
- Department of Neurosurgery All India Institute of Medical Sciences New Delhi, India
| | - Hitesh Kumar Gurjar
- Department of Neurosurgery All India Institute of Medical Sciences New Delhi, India
| |
Collapse
|
47
|
Ngernyuang N, Yan W, Schwartz LM, Oh D, Liu YB, Chen H, Shao R. A Heparin Binding Motif Rich in Arginine and Lysine is the Functional Domain of YKL-40. Neoplasia 2017; 20:182-192. [PMID: 29274508 PMCID: PMC5773473 DOI: 10.1016/j.neo.2017.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
The heparin-binding glycoprotein YKL-40 (CHI3L1) is intimately associated with microvascularization in multiple human diseases including cancer and inflammation. However, the heparin-binding domain(s) pertinent to the angiogenic activity have yet been identified. YKL-40 harbors a consensus heparin-binding motif that consists of positively charged arginine (R) and lysine (K) (RRDK; residues 144–147); but they don't bind to heparin. Intriguingly, we identified a separate KR-rich domain (residues 334–345) that does display strong heparin binding affinity. A short synthetic peptide spanning this KR-rich domain successfully competed with YKL-40 and blocked its ability to bind heparin. Three individual point mutations, where alanine (A) substituted for K or R (K337A, K342A, R344A), led to remarkable decreases in heparin-binding ability and angiogenic activity. In addition, a neutralizing anti-YKL-40 antibody that targets these residues and prevents heparin binding impeded angiogenesis in vitro. MDA-MB-231 breast cancer cells engineered to express ectopic K337A, K342A or R344A mutants displayed reduced tumor development and compromised tumor vessel formation in mice relative to control cells expressing wild-type YKL-40. These data reveal that the KR-rich heparin-binding motif is the functional heparin-binding domain of YKL-40. Our findings shed light on novel molecular mechanisms underlying endothelial cell angiogenesis promoted by YKL-40 in a variety of diseases.
Collapse
Affiliation(s)
- Nipaporn Ngernyuang
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqi Road, Shanghai, China 200092; Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand 12120
| | - Wei Yan
- Department of Biology, Morrill Science Center South, University of Massachusetts, Amherst, USA 01003
| | - Lawrence M Schwartz
- Department of Biology, Morrill Science Center South, University of Massachusetts, Amherst, USA 01003
| | - Dennis Oh
- Department of Surgery, Baystate Medical Center, School of Medicine, University of Massachusetts, USA 01199
| | - Ying-Bin Liu
- The Key laboratory of Shanghai and Department of General Surgery, Shanghai Jiao Tong University, School of Medicine, 1665 Kongjiang Road, Shanghai, China 200092
| | - Hongzhuan Chen
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqi Road, Shanghai, China 200092
| | - Rong Shao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqi Road, Shanghai, China 200092; Department of Biology, Morrill Science Center South, University of Massachusetts, Amherst, USA 01003; The Key laboratory of Shanghai and Department of General Surgery, Shanghai Jiao Tong University, School of Medicine, 1665 Kongjiang Road, Shanghai, China 200092.
| |
Collapse
|
48
|
Kwatra MM. A Rational Approach to Target the Epidermal Growth Factor Receptor in Glioblastoma. Curr Cancer Drug Targets 2017; 17:290-296. [PMID: 28029074 DOI: 10.2174/1568009616666161227091522] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 01/07/2023]
Abstract
Glioblastoma (GBM) is a deadly brain cancer, and all attempts to control it have failed so far. However, the future looks bright, as we now know the molecular landscape of GBM through the work of The Cancer Genome Atlas (TCGA) program. GBMs exhibit significant inter- and intratumoral heterogeneity, and to control this type of tumor, a personalized approach is required. One target, whose gene is amplified and mutated in a large number of GBMs, is the epidermal growth factor receptor (EGFR). But all attempts to target it have been unsuccessful. We attribute the reason for this failure to the molecular heterogeneity of EGFR in GBM, as well as to the poor brain penetration of previously tested EGFR-Tyrosine Kinase Inhibitors (EGFR-TKIs). In this review, we discuss the molecular heterogeneity of EGFR and provide rational preclinical and clinical guidelines for testing AZD9291, a third generation, irreversible EGFR-TKI with both a high affinity for EGFRvIII and excellent brain penetration.
Collapse
Affiliation(s)
- Madan M Kwatra
- Duke University Medical Center, Durham, P.O. Box 3094, NC 27710, United States
| |
Collapse
|
49
|
Vietheer JM, Rieger J, Wagner M, Senft C, Tichy J, Foerch C. Serum concentrations of glial fibrillary acidic protein (GFAP) do not indicate tumor recurrence in patients with glioblastoma. J Neurooncol 2017; 135:193-199. [PMID: 28717884 DOI: 10.1007/s11060-017-2565-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/13/2017] [Indexed: 02/03/2023]
Abstract
Recent studies identified serum concentrations of the astroglial protein glial fibrillary acidic protein (GFAP) to be indicative of glioblastoma (GBM) in patients with newly diagnosed space occupying cerebral mass lesions. Until now, no data is available whether GFAP serum concentrations decrease after first therapy and whether GFAP may be used as a predictor of survival and an indicator of tumor recurrence. In this prospective study, we included 44 patients with a single space occupying cerebral mass lesion suspicious for GBM. GBM was histopathologically proven in 33 cases. After initial therapy, patients were followed up until tumor recurrence (defined according to the RANO criteria) or death (maximum observation period 78 weeks). Blood was sampled on a regular basis, and GFAP serum levels were determined using an immunofluorescence assay. Prior to any intervention, 14 of the 33 GBM patients had elevated GFAP serum concentrations (median 0.25 µg/L, interquartile range 0.13-0.53), whereas only one out of 11 patients having other tumor entities revealed a slightly increased GFAP serum level (0.06 µg/L). Following surgery (i.e., biopsy, full or partial resection), all initially GFAP positive GBM patients showed decreased serum concentrations. During the follow-up period, we found a minimal GFAP increase in one patient only (0.04 µg/L; week 52), although 23 out of 31 available GBM patients developed tumor progression or died. No difference was found regarding the survival rate and the time to tumor recurrence between initially GFAP positive and GFAP negative GBM patients. In GBM patients, initially elevated GFAP serum concentrations decrease after the first diagnostic or therapeutic intervention. GFAP was not predictive for tumor recurrence.
Collapse
Affiliation(s)
- Julia-Mareen Vietheer
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Johannes Rieger
- Department of Neuro-Oncology, Goethe University, Frankfurt am Main, Germany.,Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| | - Christian Senft
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Julia Tichy
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany. .,Department of Neuro-Oncology, Goethe University, Frankfurt am Main, Germany.
| | - Christian Foerch
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| |
Collapse
|
50
|
Iłżecki M, Iłżecka J, Przywara S, Terlecki P, Grabarska A, Stepulak A, Zubilewicz T. Effect of carotid endarterectomy on brain damage markers. Acta Neurol Scand 2017; 135:352-359. [PMID: 27126899 DOI: 10.1111/ane.12607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Carotid endarterectomy (CEA) is a recommended treatment in the prevention of ischemic stroke. However, this procedure may cause neurological complications caused by cerebrovascular damage. While YKL-40 is a proinflammatory protein, neurofilament light polypeptide (NEFL) and brain lipid-binding protein (FABP7) are structural components of the brain. The aim of the study was to investigate YKL-40, NEFL, and FABP7 in the serum of patients undergoing CEA. MATERIALS AND METHODS The study included 25 participants who underwent CEA due to internal carotid artery stenosis. Blood samples were taken from each patient at three different intervals: prior to the surgery, 12 h after the surgery, and 48 h after the surgery. Serum levels of these brain damage markers were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS The study showed that the serum YKL-40 level was significantly increased 48 h after CEA when compared to the level prior to surgery and also when compared to levels 12 h after surgery. There were no statistically significant differences in serum NEFL and FABP7 levels between all three recorded measurements. CONCLUSIONS Data from our study showed that CEA affects serum YKL-40 but not NEFL and FABP7 levels. This implicates that YKL-40 may be a valuable serum marker of brain damage after CEA. However, the observed change in serum YKL-40 level in patients after CEA does not necessarily warrant a change in recommendations concerning the use of this treatment in patients with high-grade internal carotid artery stenosis.
Collapse
Affiliation(s)
- M. Iłżecki
- Chair and Department of Vascular Surgery and Angiology; Medical University of Lublin; Lublin Poland
| | - J. Iłżecka
- Chair and Department of Vascular Surgery and Angiology; Medical University of Lublin; Lublin Poland
- Independent Neurological Rehabilitation Unit; Medical University of Lublin; Lublin Poland
| | - S. Przywara
- Chair and Department of Vascular Surgery and Angiology; Medical University of Lublin; Lublin Poland
| | - P. Terlecki
- Chair and Department of Vascular Surgery and Angiology; Medical University of Lublin; Lublin Poland
| | - A. Grabarska
- Chair and Department of Biochemistry and Molecular Biology; Medical University of Lublin; Lublin Poland
| | - A. Stepulak
- Chair and Department of Biochemistry and Molecular Biology; Medical University of Lublin; Lublin Poland
| | - T. Zubilewicz
- Chair and Department of Vascular Surgery and Angiology; Medical University of Lublin; Lublin Poland
| |
Collapse
|