1
|
Nazari M, Babakhanzadeh E, Mollazadeh A, Ahmadzade M, Mohammadi Soleimani E, Hajimaqsoudi E. HOTAIR in cancer: diagnostic, prognostic, and therapeutic perspectives. Cancer Cell Int 2024; 24:415. [PMID: 39702144 DOI: 10.1186/s12935-024-03612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The long non-coding RNA HOTAIR is overexpressed in many cancers and is associated with several cancer-promoting effects, including increased cell proliferation, migration and treatment resistance. HOTAIR levels correlate with tumor stage, lymph node metastasis and overall survival in patients with various types of cancer. This highlights the potential uses of HOTAIR, including early cancer detection, predicting patient outcome, identifying high-risk individuals and assisting in therapy selection and monitoring. The aim of this review is to provide a comprehensive summary of the research progress, molecular mechanisms and clinical significance of HOTAIR in various human cancers. In addition, the clinical applications of HOTAIR, such as targeted therapy, radiotherapy, chemotherapy and immunotherapy, are discussed, and relevant information on the potential future advances of HOTAIR in cancer research is provided.
Collapse
Affiliation(s)
- Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, P.O. Box 64155-65117, Tehran, Yazd, Iran.
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arghavan Mollazadeh
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Mohadese Ahmadzade
- Department of Urology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elnaz Hajimaqsoudi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Krishna BM, Garg P, Ramisetty S, Subbalakshmi AR, Kulkarni P, Salgia R, Singhal SS. Comprehensive investigation of long non-coding RNA HOTAIR polymorphisms and cancer risk: a current meta-analysis encompassing 96,458 participants. Sci Rep 2024; 14:22670. [PMID: 39349529 PMCID: PMC11442654 DOI: 10.1038/s41598-024-72586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024] Open
Abstract
Cancer ranks as the second leading cause of mortality worldwide, prompting extensive investigations into factors contributing to its development. Among these factors, genetic variations, known as genotypic polymorphisms, have been identified as significant influencers in the susceptibility to various types of cancer. Recent research has focused on exploring the connection between polymorphisms in the Long Non-coding RNA HOTAIR and cancer risk. However, the results from these studies have been inconsistent, leading to ambiguity and controversy. To address this uncertainty, we conducted a systematic analysis by gathering relevant studies from PubMed, EMBASE, and Google Scholar. Specifically, we focused on three well-studied polymorphisms within the HOTAIR lncRNA (HOTAIR rs920778 C > T, HOTAIR rs1899663 G > T, HOTAIR rs4759314 A > G) and their association with cancer risk. Our meta-analysis included data from 48 case-control studies involving 42,321 cases and 54,137 controls. The results of our updated meta-analysis revealed a significant correlation between HOTAIR rs1899663 G > T and HOTAIR rs4759314 A > G polymorphisms and overall cancer risk, particularly in the homozygous and recessive genetic models. Subgroup analysis further revealed that these associations were notably pronounced in the Asian population but not observed in the Iranian population. Furthermore, our findings underscore the potential of HOTAIR polymorphisms as diagnostic markers for overall cancer risk, particularly in gynecological cancers, precisely, HOTAIR rs1899663 G > T polymorphism in breast cancer. In conclusion, our systematic analysis provides compelling evidence that Long Non-coding RNA HOTAIR polymorphisms are linked to cancer risk, particularly in certain populations and cancer types, suggesting their potential clinical relevance as diagnostic indicators.
Collapse
Affiliation(s)
- B Madhu Krishna
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sravani Ramisetty
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Ayalur Raghu Subbalakshmi
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Prakash Kulkarni
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
3
|
Zhang X, Sun Y, Niu H, Tan P, Liu S, Liu X, Liu X, Luo A, Cai M, Yan Y, Xu L, Yang X. FOXO3 polymorphisms influence the risk and prognosis of rhabdomyosarcoma in children. Front Oncol 2024; 14:1387735. [PMID: 38720807 PMCID: PMC11076676 DOI: 10.3389/fonc.2024.1387735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Background Rhabdomyosarcoma(RMS) is the most common soft tissue sarcoma in children and single nucleotide polymorphisms(SNPs) in certain genes influence risk of RMS. Although FOXO3 had been reported in multiple cancers including RMS, the role of FOXO3 polymorphisms in RMS remains unclear. In this case-control study, we evaluated the association of FOXO3 SNPs with RMS risk and prognosis in children. Methods Four FOXO3 SNPs(rs17069665 A>G, rs4946936 T>C, rs4945816 C>T and rs9400241 C>A) were genotyped in 110 RMS cases and 359 controls. The associations between FOXO3 polymorphisms and RMS risk were determined by odds ratios(ORs) with 95% confidence intervals(CIs). The associations of rs17069665 and rs4946936 with overall survival in RMS children were estimated using the Kaplan-Meier method and log-rank test. Functional analysis in silico was performed to estimate the probability that rs17069665 and rs4946936 might influence the regulation of FOXO3. Results We found that rs17069665 (GG vs. AA+AG, adjusted OR=2.96; 95%CI [1.10-3.32]; P=0.010) and rs4946936 (TC+CC vs. TT, adjusted OR=0.48; 95%CI [0.25-0.90]; P=0.023) were related to the increased and decreased RMS risk, respectively. Besides, rs17069665(P<0.001) and rs4946936(P<0.001) were associated with decreased and increased overall survival in RMS patients, respectively. Functional analysis showed that rs17069665 and rs4946936 might influence the transcription and expression of FOXO3 via altering the bindings to MYC, CTCF, and/or RELA. Conclusions This study revealed that FOXO3 polymorphisms influence the RMS susceptibility and prognosis in children, and might altered the expression of FOXO3. FOXO3 polymorphism was suggested as a biomarker for RMS susceptibility and prognosis.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yaping Sun
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Huilin Niu
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ping Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shanshan Liu
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xiaoping Liu
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xiaodan Liu
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Ailing Luo
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Mansi Cai
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yaping Yan
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Ling Xu
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xu Yang
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
4
|
Yin X, Lin H, Lin L, Miao L, He J, Zhuo Z. LncRNAs and CircRNAs in cancer. MedComm (Beijing) 2022; 3:e141. [PMID: 35592755 PMCID: PMC9099016 DOI: 10.1002/mco2.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xin Yin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- College of Pharmacy Jinan University Guangzhou Guangdong China
| | - Huiran Lin
- Faculty of Medicine Macau University of Science and Technology Macau China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen China
| |
Collapse
|
5
|
Cimmino F, Montella A, Tirelli M, Avitabile M, Lasorsa VA, Visconte F, Cantalupo S, Maiorino T, De Angelis B, Morini M, Castellano A, Locatelli F, Capasso M, Iolascon A. FGFR1 is a potential therapeutic target in neuroblastoma. Cancer Cell Int 2022; 22:174. [PMID: 35488346 PMCID: PMC9052553 DOI: 10.1186/s12935-022-02587-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND FGFR1 regulates cell-cell adhesion and extracellular matrix architecture and acts as oncogene in several cancers. Potential cancer driver mutations of FGFR1 occur in neuroblastoma (NB), a neural crest-derived pediatric tumor arising in sympathetic nervous system, but so far they have not been studied experimentally. We investigated the driver-oncogene role of FGFR1 and the implication of N546K mutation in therapy-resistance in NB cells. METHODS Public datasets were used to predict the correlation of FGFR1 expression with NB clinical outcomes. Whole genome sequencing data of 19 paired diagnostic and relapse NB samples were used to find somatic mutations. In NB cell lines, silencing by short hairpin RNA and transient overexpression of FGFR1 were performed to evaluate the effect of the identified mutation by cell growth, invasion and cologenicity assays. HEK293, SHSY5Y and SKNBE2 were selected to investigate subcellular wild-type and mutated protein localization. FGFR1 inhibitor (AZD4547), alone or in combination with PI3K inhibitor (GDC0941), was used to rescue malignant phenotypes induced by overexpression of FGFR1 wild-type and mutated protein. RESULTS High FGFR1 expression correlated with low relapse-free survival in two independent NB gene expression datasets. In addition, we found the somatic mutation N546K, the most recurrent point mutation of FGFR1 in all cancers and already reported in NB, in one out of 19 matched primary and recurrent tumors. Loss of FGFR1 function attenuated invasion and cologenicity in NB cells, whereas FGFR1 overexpression enhanced oncogenicity. The overexpression of FGFR1N546K protein showed a higher nuclear localization compared to wild-type protein and increased cellular invasion and cologenicity. Moreover, N546K mutation caused the failure in response to treatment with FGFR1 inhibitor by activation of ERK, STAT3 and AKT pathways. The combination of FGFR1 and PI3K pathway inhibitors was effective in reducing the invasive and colonigenic ability of cells overexpressing FGFR1 mutated protein. CONCLUSIONS FGFR1 is an actionable driver oncogene in NB and a promising therapy may consist in targeting FGFR1 mutations in patients with therapy-resistant NB.
Collapse
Affiliation(s)
- Flora Cimmino
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Annalaura Montella
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy
| | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,European School of Molecular Medicine, Università Degli Studi di Milano, 20122, Milan, Italy
| | - Marianna Avitabile
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | | | - Feliciano Visconte
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Sueva Cantalupo
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy
| | - Teresa Maiorino
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy
| | - Biagio De Angelis
- Hematology/Oncology and Cell and Gene Therapy Department, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Aurora Castellano
- Paediatric Haematology/Oncology Department, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Franco Locatelli
- IRCCS Bambino Gesù Children's Hospital, Sapienza, University of Rome, 00165, Rome, Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy.
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy.
| |
Collapse
|
6
|
Luo A, Yang L, Li M, Cai M, Huang A, Liu X, Yang X, Yan Y, Wang X, Wu X, Huang K, Huang L, Liu S, Xu L, Liu X. Genetic Variants in METTL14 are Associated with the Risk of Acute Lymphoblastic Leukemia in Southern Chinese Children: A Five-Center Case-Control Study. Cancer Manag Res 2021; 13:9189-9200. [PMID: 34934362 PMCID: PMC8684373 DOI: 10.2147/cmar.s335925] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background/Aim Acute lymphoblastic leukemia (ALL) is the most common form of pediatric cancer. METTL14, an N6-methyladenosine (m6A) modification protein, plays several roles in cancer development and is involved in the pathogenesis of various types of cancers. However, the role of METTL14 gene single nucleotide polymorphisms (SNPs) in pediatric ALL susceptibility remains to be investigated. Methods A case-control design and multinomial logistic regression were used to develop models to estimate the overall risk for pediatric ALL and three METTL14 gene SNPs (rs298982 G/A, rs298981 A/G and rs1064034 T/A) in 808 cases and 1340 controls, which were genotyped using a TaqMan assay. The associations were estimated by odds ratios (ORs) with their 95% confidence intervals (CIs). Furthermore, stratified analysis was performed to explore associations of rs298982 and rs1064034 with pediatric ALL susceptibility in terms of age, sex, immunophenotype, minimal residual disease (MRD), and other clinical characteristics. Results Among the three analyzed SNPs, rs298982 G/A and rs1064034 T/A exhibited a significant association with decreased childhood ALL risk, while rs298981 A/G exhibited no difference. In stratified analysis, rs298982 GA/AA and rs1064034 TA/AA had a protective effect in children <120 months of age and males, common B ALL, TEL-AML, non gene fusion, normal diploid, and high WBC. However, the rs1064034 TA/AA genotype was associated with an increased risk of mixed immunophenotyping. Compared with the reference haplotype GAT, haplotypes CAA, CGT and CGA were significantly associated with elevated ALL risk, while haplotype GGT was significantly associated decreased ALL risk. Moreover, subjects carrying rs298982 A or rs1064034 A exhibited less minimal MRD after induced chemotherapy. Functional annotations revealed that METTL14 gene SNPs rs298982 G/A and rs1064034 T/A could be potential functional variants. Conclusion In conclusion, METTL14 gene polymorphisms influence the risk of ALL in southern Chinese children and might be potential biomarkers for pediatric ALL susceptibility and chemotherapeutics.
Collapse
Affiliation(s)
- Ailing Luo
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lihua Yang
- Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ming Li
- The Emergency Department of Zhuzhou Central Hospital, Zhuzhou, Hunan, People's Republic of China
| | - Mansi Cai
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Amin Huang
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaodan Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xu Yang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yaping Yan
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xueliang Wang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ke Huang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Libin Huang
- Pediatrics Department, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shanshan Liu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ling Xu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
7
|
Ghahramani Almanghadim H, Ghorbian S, Khademi NS, Soleymani Sadrabadi M, Jarrahi E, Nourollahzadeh Z, Dastani M, Shirvaliloo M, Sheervalilou R, Sargazi S. New Insights into the Importance of Long Non-Coding RNAs in Lung Cancer: Future Clinical Approaches. DNA Cell Biol 2021; 40:1476-1494. [PMID: 34931869 DOI: 10.1089/dna.2021.0563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammals, a large part of the gene expression products come from the non-coding ribonucleotide sequences of the protein. These short and long sequences are within the range of tens to hundreds of nucleotides, encompassing more than 200 RNA molecules, and their function is known as the molecular structure of long non-coding RNA (lncRNA). LncRNA molecules are unique nucleotides that have a substantial role in epigenetic regulation, transcription, and post-transcriptional modifications in different ways. According to the results of recent studies, lncRNAs have been shown to assume various roles, including tumor suppression or oncogenic functions in common types of cancer such as lung and breast cancer. These non-coding RNAs (ncRNAs) play a pivotal role in activating transcription factors, managing the ribonucleoproteins, the framework for collecting co-proteins, intermittent processing regulations, chromatin status alterations, and maintaining the control within the cell. Cutting-edge technologies have been introduced to disclose several types of lncRNAs within the nucleus and the cytoplasm, which have accomplished important achievements that are applicable in medicine. Due to these efforts, various data centers have been created to facilitate and modify scientific information related to these molecules, including detection, classification, biological evolution, gene status, spatial structure, status, and location of these small molecules. In the present study, we attempt to present the impacts of these ncRNAs on lung cancer with an emphasis on their mechanisms and functions.
Collapse
Affiliation(s)
| | - Saeed Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazanin Sadat Khademi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | | | - Esmaeil Jarrahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Nourollahzadeh
- Department of Biological Science, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Masomeh Dastani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
8
|
Guo H, Li N, Sun Y, Wu C, Deng H, Xu L, Yang X. MYBL2 Gene Polymorphism Is Associated With Acute Lymphoblastic Leukemia Susceptibility in Children. Front Oncol 2021; 11:734588. [PMID: 34568071 PMCID: PMC8456030 DOI: 10.3389/fonc.2021.734588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Although MYBL2 had been validated to participate in multiple cancers including leukemia, the role of MYBL2 polymorphisms in acute lymphoblastic leukemia (ALL) was still not clear. In this study, we aimed to evaluate the association between MYBL2 single nucleotide polymorphisms (SNPs) and ALL risk in children. Methods A total of 687 pediatric ALL cases and 971 cancer-free controls from two hospitals in South China were recruited. A case-control study by genotyping three SNPs in the MYBL2 gene (rs285162 C>T, rs285207 A>C, and rs2070235 A>G) was conducted. The associations were assessed by odds ratios (ORs) with corresponding 95% confidence intervals (CIs). Subgroup and stratification analyses were conducted to explore the association of rs285207 with ALL risk in terms of age, sex, immunophenotype, risk level, and other clinical characteristics. The false-positive report probability (FPRP) analysis was performed to verify each significant finding. Functional analysis in silico was used to evaluate the probability that rs285207 might influence the regulation of MYBL2 . Results Our study demonstrated that rs285207 was related to a decreased ALL risk (adjusted OR = 0.78; 95% CI = 0.63-0.97, P = 0.022) in the dominant model. The associations of rs285207 with ALL risk appeared stronger in patients with pre B ALL (adjusted OR=0.56; 95% CI=0.38-0.84, P=0.004), with normal diploid (adjusted OR=0.73; 95% CI=0.57-0.95, P=0.017), with low risk (adjusted OR=0.68; 95% CI=0.49-0.94, P=0.021), with lower WBC (adjusted OR=0.62; 95% CI=0.43-0.87, P=0.007) or lower platelet level (adjusted OR=0.76; 95% CI=0.59-0.96, P=0.023). With FPRP analysis, the significant association between the rs285207 polymorphism and decreased ALL risk was still noteworthy (FPRP=0.128). Functional analysis showed that IKZF1 bound to DNA motif overlapping rs285207 and had a higher preference for the risk allele A. As for rs285162 C>T and rs2070235 A>G, no significant was found between them and ALL risk. Conclusion In this study, we revealed that rs285207 polymorphism decreased the ALL risk in children, and rs285207 might alter the binding to IKZF1, which indicated that the MYBL2 gene polymorphism might be a potential biomarker of childhood ALL.
Collapse
Affiliation(s)
- Haixia Guo
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaping Sun
- Institute of Systems Biology, Shenzhen Bay Laboratory, Shenzhen, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cuiling Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huixia Deng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Xu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xu Yang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Singh N. Role of mammalian long non-coding RNAs in normal and neuro oncological disorders. Genomics 2021; 113:3250-3273. [PMID: 34302945 DOI: 10.1016/j.ygeno.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/09/2022]
Abstract
Long non-coding RNAs (lncRNAs) are expressed at lower levels than protein-coding genes but have a crucial role in gene regulation. LncRNA is distinct, they are being transcribed using RNA polymerase II, and their functionality depends on subcellular localization. Depending on their niche, they specifically interact with DNA, RNA, and proteins and modify chromatin function, regulate transcription at various stages, forms nuclear condensation bodies and nucleolar organization. lncRNAs may also change the stability and translation of cytoplasmic mRNAs and hamper signaling pathways. Thus, lncRNAs affect the physio-pathological states and lead to the development of various disorders, immune responses, and cancer. To date, ~40% of lncRNAs have been reported in the nervous system (NS) and are involved in the early development/differentiation of the NS to synaptogenesis. LncRNA expression patterns in the most common adult and pediatric tumor suggest them as potential biomarkers and provide a rationale for targeting them pharmaceutically. Here, we discuss the mechanisms of lncRNA synthesis, localization, and functions in transcriptional, post-transcriptional, and other forms of gene regulation, methods of lncRNA identification, and their potential therapeutic applications in neuro oncological disorders as explained by molecular mechanisms in other malignant disorders.
Collapse
Affiliation(s)
- Neetu Singh
- Molecular Biology Unit, Department of Centre for Advance Research, King George's Medical University, Lucknow, Uttar Pradesh 226 003, India.
| |
Collapse
|
10
|
Yan H, Liu G, Liang Y, Wu W, Xia R, Jiao L, Shen H, Jia Z, Wang Q, Wang Z, Kong Y, Ying B, Wang H, Wang C. Up-regulated long noncoding RNA AC007128.1 and its genetic polymorphisms associated with Tuberculosis susceptibility. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1018. [PMID: 34277818 PMCID: PMC8267308 DOI: 10.21037/atm-21-2724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/17/2021] [Indexed: 02/05/2023]
Abstract
Background Tuberculosis (TB) remains a major public health problem. Long non-coding RNAs (lncRNAs) are important regulators of gene expression. In this study, we explored the association between the expression of lncRNA AC007128.1 and TB susceptibility. Methods Three single-nucleotide polymorphisms (SNPs) (rs12333784, rs6463794, and rs720964) of lncRNA AC007128.1 were selected using the 1000 Genomes Project database and offline software Haploview V4.2, and were genotyped by a customized 2×48-Plex SNPscan™ Kit. Results We identified two differentially expressed lncRNA including AC007128.1 and AP001065.3 in comparisons of expression profiles between ATB vs. LTBI, LTBI vs. HCs, and AC700128.1 expression was specifically and significantly up-regulated in TB patients by verification of external data. Gene Ontology functional enrichment analysis and co-expression network showed up-regulated mRNA was mainly involved in negative regulation of the G protein-coupled receptor (GPCR) signaling pathway, and FPR1 and CYP27B1 were involved in the co-expression of AC007128.1. Using the 1000 Genomes Project, software Haploview V4.2, and SNP genotype, we screened out SNP rs12333784 which locus at 7p21.3 in AC007128.1 associated with TB susceptibility. The G carrier of rs12333784 was then finally verified to be significantly associated with pulmonary TB (PTB) and extrapulmonary tuberculosis (EPTB) susceptibility (pBonferroni =0.03878), and a similar but more significant effect was observed under the dominant model analysis (pBonferroni =0.013, OR =1.349, 95% CI, 1.065–1.709). In addition, the GG + GA genotype of SNP rs12333784 was significantly correlated with higher glucose (GLU) (P=0.03), higher gamma-glutamyl transferase (GGT) (P=0.05), and higher erythrocyte sedimentation rate (ESR) (P=0.05). Conclusions Our findings show lncRNA AC007128.1 can be regarded as biomarkers discriminating between ATB and LTBI and may also be a diagnostic biomarker for LBTI. These findings may aid clinical decision making in the management of TB.
Collapse
Affiliation(s)
- Hong Yan
- Department of Clinical Laboratory Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China.,Laboratory Medicine Center, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Guoye Liu
- Department of Laboratory Medicine, Affiliated Brain Hospital of Nanjing Medical University (Chest Branch), Nanjing, China
| | - Yuan Liang
- The Affiliated Cancer Hospital & Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Research Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Xia
- Department of Laboratory Medicine, Affiliated Brain Hospital of Nanjing Medical University (Chest Branch), Nanjing, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Han Shen
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhijun Jia
- Department of Nuclear Medicine, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Wang
- Department of Laboratory Medicine, Affiliated Brain Hospital of Nanjing Medical University (Chest Branch), Nanjing, China
| | - Zhiqiang Wang
- Department of Laboratory Medicine, Affiliated Brain Hospital of Nanjing Medical University (Chest Branch), Nanjing, China
| | - Yi Kong
- Department of Clinical Laboratory Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hualiang Wang
- Department of Molecular Biology, Shanghai Centre for Clinical Laboratory, Shanghai, China
| | - Chengbin Wang
- Department of Clinical Laboratory Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Li HN, Deng N, Zhao X, Liu J, He T, Ding XW. Contributions of HOTAIR polymorphisms to the susceptibility of cancer. Int J Clin Oncol 2021; 26:1022-1038. [PMID: 33634340 DOI: 10.1007/s10147-021-01884-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hox transcript antisense intergenic RNA (HOTAIR), a lncRNA, functions as a critical regulator in cancer development. A plenty of case-control studies were conducted to assess the actual relationship of HOTAIR gene generic variants on cancer susceptibility, yet conflicting conclusions remain. Herein, we carried out this up-to-date meta-analysis to get a better understanding of such relationship by incorporating all eligible case-control studies. MATERIALS AND METHODS Six widely investigated polymorphisms were included in this meta-analysis: rs920778, rs4759314, rs7958904, rs874945, rs1899663, and rs12826786. We retrieved relevant studies from databases PubMed, EMBASE, Medline, CNKI and Wanfang update to June 2020. We applied odds ratios (ORs) and 95% confidence intervals (CIs) to estimate the relationship strengths. RESULTS Our findings indicate that rs920778, rs4759314, rs874945, rs12826786 polymorphism significantly increased with susceptibility to overall cancer. However, rs7958904, rs1899663 under any five genetic models could not impact susceptibility to overall cancer. Furthermore, altered cancer risk was detected when the data were stratified by cancer type, ethnicity, the source of controls, and HWE in all the SNPs. CONCLUSIONS These findings of the meta-analysis suggest that HOTAIR polymorphisms may predispose to cancer susceptibility.
Collapse
Affiliation(s)
- Hu-Nian Li
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, No. 37 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Na Deng
- Children's Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xu Zhao
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, No. 37 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Jie Liu
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, No. 37 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Ting He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Xi-Wei Ding
- Children's Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
12
|
Rezaei O, Honarmand Tamizkar K, Hajiesmaeili M, Taheri M, Ghafouri-Fard S. Non-Coding RNAs Participate in the Pathogenesis of Neuroblastoma. Front Oncol 2021; 11:617362. [PMID: 33718173 PMCID: PMC7945591 DOI: 10.3389/fonc.2021.617362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is one of the utmost frequent neoplasms during the first year of life. This pediatric cancer is believed to be originated during the embryonic life from the neural crest cells. Previous studies have detected several types of chromosomal aberrations in this tumor. More recent studies have emphasized on expression profiling of neuroblastoma samples to identify the dysregulated genes in this type of cancer. Non-coding RNAs are among the mostly dysregulated genes in this type of cancer. Such dysregulation has been associated with a number of chromosomal aberrations that are frequently detected in neuroblastoma. In this study, we explain the role of non-coding transcripts in the malignant transformation in neuroblastoma and their role as biomarkers for this pediatric cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Pan J, Lin H, Yang T, Yang J, Hu C, Zhu J, Tan T, Li J, Xia H, He J, Zou Y. lncRNA-uc003opf.1 rs11752942 A>G polymorphism decreases neuroblastoma risk in Chinese children. Cell Cycle 2020; 19:2367-2372. [PMID: 32809919 PMCID: PMC7513837 DOI: 10.1080/15384101.2020.1808382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies have revealed that long non-coding RNAs (lncRNAs) play critical roles in the tumorigenesis and proliferation of human cancer. Several polymorphisms of lncRNAs have been found to be involved in the risk of neuroblastoma (NB). However, studies on the relationship between polymorphisms in lncRNA exons and NB are infrequent. We evaluated the association between rs11752942 A > G polymorphism in lnc-RNA-uc003opf.1 exon and neuroblastoma susceptibility by performing a hospital-based study with 275 patients and 531 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) assessed by using logistic regression models were used to determine the strength of the association. We found that the rs11752942 G allele is significantly associated with decreased neuroblastoma risk (AG vs. AA: adjusted OR = 0.72, 95% CI = 0.53-0.98, P = 0.038; and AG/GG vs. AA: adjusted OR = 0.74, 95% CI = 0.55-0.99, P = 0.045) after adjusting for age and gender. This association was more prominent in females, subjects with tumor in the mediastinum or early-stage. Furthermore, the expression quantitative trait locus analysis indicated that rs11752942 G was associated with decreased expression of its neighboring gene LRFN2 mRNA. These results indicate that lncRNA-uc003opf.1 may be a novel potentially functional lncRNA that may be used as a predictive marker, for it might contribute to decreased neuroblastoma risk.
Collapse
Affiliation(s)
- Jing Pan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huiran Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiliang Yang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chao Hu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Tianbao Tan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiahao Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- CONTACT Jing He
| | - Yan Zou
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Yan Zou
| |
Collapse
|
14
|
Aravindan N, Herman T, Aravindan S. Emerging therapeutic targets for neuroblastoma. Expert Opin Ther Targets 2020; 24:899-914. [PMID: 33021426 PMCID: PMC7554151 DOI: 10.1080/14728222.2020.1790528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Neuroblastoma (NB) is the prime cancer of infancy, and accounts for 9% of pediatric cancer deaths. While children diagnosed with clinically stable NB experience a complete cure, those with high-risk disease (HR-NB) do not recover, despite intensive therapeutic strategies. Development of novel and effective targeted therapies is needed to counter disease progression, and to benefit long-term survival of children with HR-NB. AREAS COVERED Recent studies (2017-2020) pertinent to NB evolution are selectively reviewed to recognize novel and effective therapeutic targets. The prospective and promising therapeutic targets/strategies for HR-NB are categorized into (a) targeting oncogene-like and/or reinforcing tumor suppressor (TS)-like lncRNAs; (b) targeting oncogene-like microRNAs (miRs) and/or mimicking TS-miRs; (c) targets for immunotherapy; (d) targeting epithelial-to-mesenchymal transition and cancer stem cells; (e) novel and beneficial combination approaches; and (f) repurposing drugs and other strategies in development. EXPERT OPINION It is highly unlikely that agents targeting a single candidate or signaling will be beneficial for an HR-NB cure. We must develop efficient drug deliverables for functional targets, which could be integrated and advance clinical therapy. Fittingly, the looming evidence indicated an aggressive evolution of promising novel and integrative targets, development of efficient drugs, and improvised strategies for HR-NB treatment.
Collapse
Affiliation(s)
| | - Terence Herman
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
- Stephenson Cancer Center, Oklahoma City, USA
| | | |
Collapse
|
15
|
|
16
|
Liu X, Zhao Y, Li Y, Lin F, Zhang J. Association between HOTAIR genetic polymorphisms and cancer susceptibility: A meta-analysis involving 122,832 subjects. Genomics 2020; 112:3036-3055. [PMID: 32454167 DOI: 10.1016/j.ygeno.2020.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 01/30/2023]
Abstract
The association between polymorphisms in HOTAIR gene and cancer susceptibility has been analyzed intensively, but the conclusions are inconsistent. Therefore, we carried out a meta-analysis aiming to assess the relationship exactly. Eligible studies were searched in PubMed and Embase databases up to October 31, 2019. Odds ratios with 95% confidence intervals were used to assess the strength of association. Sensitivity analysis and publication bias were applied to evaluate the reliability of the study. Moreover, TSA was conducted to estimate the robustness of the results. Totally, 116 studies involving 122,832 subjects were analyzed in our meta-analysis. Significant increased risk of cancer was detected for the rs4759314, rs920778, rs1899663, rs12826786 and rs874945 polymorphisms. Further subgroup analyses according to cancer type revealed that different polymorphisms were associated with the risk of specific type of cancer. For example, the rs4759314 polymorphism was significantly associated with the risk of estrogen-dependent cancer, whereas the rs920778 polymorphism was associated with the risk of gastrointestinal cancer. In conclusion, our findings indicated that the rs4759314, rs920778, rs1899663, rs12826786 and rs874945 polymorphisms in HOTAIR may serve as genetic biomarkers of cancer.
Collapse
Affiliation(s)
- Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Ying Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Fengzhan Lin
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Jian Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
17
|
Rajagopal T, Talluri S, Akshaya R, Dunna NR. HOTAIR LncRNA: A novel oncogenic propellant in human cancer. Clin Chim Acta 2020; 503:1-18. [DOI: 10.1016/j.cca.2019.12.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023]
|
18
|
Minn AKK, Sato N, Mieno MN, Arai T, Muramatsu M. Association study of long non-coding RNA HOTAIR rs920778 polymorphism with the risk of cancer in an elderly Japanese population. Gene 2019; 729:144263. [PMID: 31759985 DOI: 10.1016/j.gene.2019.144263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
The HOTAIR gene encodes a long noncoding RNA (lncRNA), which functions in development and tumorigenesis. A single nucleotide polymorphism (SNP) rs920778 in the HOTAIR gene, has been recurrently studied for susceptibility to many cancers including oesophageal cancer, gastric cancer, lung cancer, and hepatocellular carcinoma. Most of these studies were conducted in Chinese populations, and a few in Turkish, Iranian, and Portuguese populations. They mostly give rise to controversial results. It still remains largely unknown whether the cancer risk is conferred in a Japanese population. Here, we established an association study on the representative SNP rs920778, to examine its contribution to the presence of cancer in consecutive autopsy cases in the JG-SNP database. A total of 1373 subjects (mean age 80) including 827 cancer positive and 546 cancer negative subjects were analyzed. As a result, the occurrence of overall cancer was not associated with the rs920778 polymorphism (p > 0.05). For each cancer type, we did not find association except for lung cancer (p = 0.04) which was more likely a by-chance association after multiple testing. Our findings imply that rs920778 polymorphism does not affect total cancer presence and the effect on specific cancer types is also weak in the Japanese population.
Collapse
Affiliation(s)
- Aye Ko Ko Minn
- Department of Molecular Epidemiology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Noriko Sato
- Department of Molecular Epidemiology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
19
|
Yang X, Wu X, Fang N, Liu X, Liu X, Yang L, Huang K, Luo A, Cai M, Wu F, Jiang H, Xu L. FOXO3 gene polymorphisms influence the risk of acute lymphoblastic leukemia in Chinese children. J Cell Biochem 2019; 121:2019-2026. [PMID: 31691337 DOI: 10.1002/jcb.29436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequently diagnosed cancer in children and single-nucleotide polymorphisms (SNPs) in certain genes influence risk of ALL. Although FOXO3 had been demonstrated to be involved leukemia, the role of FOXO3 polymorphisms was still not clear. In the present study, we explored the association of FOXO3 SNPs with ALL risk in Chinese children. We genotyped four polymorphisms (rs17069665 A>G, rs4945816 T>C, rs4946936 C>T, and rs9400241 A>C) of FOXO3 in 425 ALL cases and 1339 health controls. The associations were estimated by odds ratios (ORs) with their 95% confidence intervals (CIs). Further analyses were performed to explore associations of rs17069665 and rs9400241 with ALL susceptibility in terms of age, gender, immunophenotype, minimal residual disease (MRD), and other clinical characteristics. We found rs17069665 related to the increased ALL risk (OR = 1.76; 95% CI = 1.02-3.04), rs9400241 related to decreased ALL risk (OR = 0.80; 95% CI = 0.64-0.99). The effects of rs17069665 on ALL risk were more predominant in males and children < 10 years, and patients with lower rates of platelet or neutrophil. As for rs9400241, the effects were more predominant in children < 10 years, and in patients with pre B ALL, positive MRD, anemia, or hepatomegaly. In conclusion, FOXO3 gene polymorphisms influence the risk of ALL in children and might be a potential biomarker for ALL susceptibility.
Collapse
Affiliation(s)
- Xu Yang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Guangzhou, Guangdong, China
| | - Na Fang
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, Guangdong, China
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaodan Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lihua Yang
- Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Huang
- Department of Pediatrics, The Second Affiliated Hospital of Sun Yat-Sen University (Sun Yat-sen Memorial Hospital), Guangzhou, Guangdong, China
| | - Ailing Luo
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mansi Cai
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fan Wu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hua Jiang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling Xu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Gao L, Lin P, Chen P, Gao R, Yang H, He Y, Chen J, Luo Y, Xu Q, Liang S, Gu J, Huang Z, Dang Y, Chen G. A novel risk signature that combines 10 long noncoding RNAs to predict neuroblastoma prognosis. J Cell Physiol 2019; 235:3823-3834. [PMID: 31612488 DOI: 10.1002/jcp.29277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Li Gao
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Peng Lin
- Department of Ultrasound First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Peng Chen
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Rui‐Zhi Gao
- Department of Ultrasound First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Hong Yang
- Department of Ultrasound First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Yun He
- Department of Ultrasound First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Jia‐Bo Chen
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Yi‐Ge Luo
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Qiong‐Qian Xu
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Song‐Wu Liang
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Jin‐Han Gu
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Zhi‐Guang Huang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Yi‐Wu Dang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Gang Chen
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| |
Collapse
|
21
|
Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019; 8:cells8091015. [PMID: 31480503 PMCID: PMC6770362 DOI: 10.3390/cells8091015] [Citation(s) in RCA: 566] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.
Collapse
Affiliation(s)
- Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| |
Collapse
|
22
|
HOX transcript antisense RNA (HOTAIR) in cancer. Cancer Lett 2019; 454:90-97. [DOI: 10.1016/j.canlet.2019.04.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/17/2023]
|
23
|
Association of HOTAIR gene polymorphisms and haplotypes with uterine leiomyoma susceptibility in southeast of Iran. Mol Biol Rep 2019; 46:4271-4277. [PMID: 31119441 DOI: 10.1007/s11033-019-04881-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022]
Abstract
Uterine leiomyoma (UL) is the most common benign tumor of the uterus. HOX transcript antisense RNA (HOTAIR) as a lncRNAs is the product of HOXC gene that plays a major role in the invasion and development of different tumors. Several lines of evidence have been suggested the effects of HOTAIR polymorphisms on cancer risk. The aim of the present study was to analyze the effects of HOTAIR polymorphisms (rs12826786, rs920778, rs4759314 and rs1899663) on UL in southeast of Iran. A total of 152 women with UL and 182 age-matched healthy women were selected in the case-control study. The PCR-RFLP and ARMS-PCR methods were used for genotyping. HOTAIR rs920778 polymorphism was associated with a lower risk of UL in dominant [OR, 0.5 (95% CI, 0.3-0.9); P = 0.03], recessive [OR, 0.6 (95% CI, 0.4-0.9; P = 0.016] and allelic models [OR, 0.6(95% CI, 0.5-0.9); P = 0.004]. However, HOTAIR rs12826786 polymorphism was associated with a higher risk of UL in dominant [OR, 2.6 (95% CI, 1.6-4.1); P = 0.0001], recessive [OR, 1.9 (95% CI, 1-3.6); P = 0.04] and allelic models [OR, 1.8 (95% CI, 1.3-2.4); P = 0.0003]. There was no association between HOTAIR rs4759314 and rs1899663 polymorphisms and UL susceptibility. The frequency of CTGA haplotype was lower in UL women; however, the CCGA, TCGA, TTTA, and TTGA haplotypes were more frequent in UL women. Our results indicated that HOTAIR rs12826786 and rs920778 polymorphisms had a significant effect on UL susceptibility. The HOTAIR haplotypes could affect UL susceptibility.
Collapse
|
24
|
Zhao J, Zhu Y, Xie X, Yao Y, Zhang J, Zhang R, Huang L, Cheng J, Xia H, He J, Zhang Y. Pleiotropic effect of common PHOX2B variants in Hirschsprung disease and neuroblastoma. Aging (Albany NY) 2019; 11:1252-1261. [PMID: 30799307 PMCID: PMC6402522 DOI: 10.18632/aging.101834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/17/2019] [Indexed: 02/07/2023]
Abstract
Hirschsprung disease (HSCR) is a heterogeneous congenital disorder that affects the enteric nervous system, while neuroblastoma is an embryonal tumor of the sympathetic nervous system. Familial cases of both HSCR and neuroblastoma appear to be functionally linked to PHOX2B, which plays a key role in the development of neural crest derivatives. However, the association between common PHOX2B variants and disease risk is contested. Additionally, large-scale examination for pleiotropy or shared genetic susceptibility in sporadic HSCR and neuroblastoma cases lacks theoretical support. Here, we report the first examination of PHOX2B in 1470 HSCR and 469 neuroblastoma patients with matched healthy controls. The PHOX2B rs28647582 polymorphism was found to be associated with HSCR (P = 2.21E-03, OR = 1.26), and each subtype of the ailment (3.22E-03 ≤ P ≤ 0.43, 1.11 ≤ OR ≤ 2.32). The association between rs28647582 and NB risk was consistent with HSCR in a recessive model, though the P value was marginal (P = 0.06). These new genetic findings indicate the potential pleiotropic effects of PHOX2B in both HSCR and neuroblastoma, which could guide the development of therapeutic targets for the treatment of related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jinglu Zhao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Equal contribution
| | - Yun Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Equal contribution
| | - Xiaoli Xie
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Equal contribution
| | - Yuxiao Yao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lihua Huang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
25
|
Liu J, Jia W, Hua RX, Zhu J, Zhang J, Yang T, Li P, Xia H, He J, Cheng J. APEX1 Polymorphisms and Neuroblastoma Risk in Chinese Children: A Three-Center Case-Control Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5736175. [PMID: 31341530 PMCID: PMC6614964 DOI: 10.1155/2019/5736175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is a life-threatening extracranial solid tumor, preferentially occurring in children. However, its etiology remains unclear. APEX1 is a critical gene in the base excision repair (BER) system responsible for maintaining genome stability. Given the potential effects of APEX1 polymorphisms on the ability of the DNA damage repair, many studies have investigated the association between these variants and susceptibility to several types of cancer but not neuroblastoma. Here, we conducted a three-center case-control study to evaluate the association between APEX1 polymorphisms (rs1130409 T>G, rs1760944 T>G, and rs3136817 T>C) and neuroblastoma risk in Chinese children, consisting of 469 cases and 998 controls. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated to evaluate the associations. No significant association with neuroblastoma risk was found for the studied APEX1 polymorphisms in the single locus or combination analysis. Interestingly, stratified analysis showed that rs1130409 GG genotype significantly reduced the risk of tumor in males. Furthermore, we found that carriers with 1-3 protective genotypes had a lower neuroblastoma risk in the children older than18 months and male, when compared to those without protective genotypes. In summary, our data indicate that APEX1 gene polymorphisms may have a weak effect on neuroblastoma susceptibility. These findings should be further validated by well-designed studies with larger sample size.
Collapse
Affiliation(s)
- Jiabin Liu
- 1Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Wei Jia
- 1Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Rui-Xi Hua
- 2Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Jinhong Zhu
- 3Department of Clinical Laboratory, Molecular Epidemiology Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150040 Heilongjiang, China
| | - Jiao Zhang
- 4Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China
| | - Tianyou Yang
- 1Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Peng Li
- 5Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004 Shaanxi, China
| | - Huimin Xia
- 1Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Jing He
- 1Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Jiwen Cheng
- 5Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004 Shaanxi, China
| |
Collapse
|
26
|
SNPs and Somatic Mutation on Long Non-Coding RNA: New Frontier in the Cancer Studies? High Throughput 2018; 7:ht7040034. [PMID: 30453571 PMCID: PMC6306726 DOI: 10.3390/ht7040034] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
In the last decade, it has been demonstrated that long non-coding RNAs (lncRNAs) are involved in cancer development. The great majority of studies on lncRNAs report alterations, principally on their expression profiles, in several tumor types with respect to the normal tissues of origin. Conversely, since lncRNAs constitute a relatively novel class of RNAs compared to protein-coding transcripts (mRNAs), the landscape of their mutations and variations has not yet been extensively studied. However, in recent years an ever-increasing number of articles have described mutations of lncRNAs. Single-nucleotide polymorphisms (SNPs) that occur within the lncRNA transcripts can affect the structure and function of these RNA molecules, while the presence of a SNP in the promoter region of a lncRNA could alter its expression level. Also, somatic mutations that occur within lncRNAs have been shown to exert important effects in cancer and preliminary data are promising. Overall, the evidence suggests that SNPs and somatic mutation on lncRNAs may play a role in the pathogenesis of cancer, and indicates strong potential for further development of lncRNAs as biomarkers.
Collapse
|
27
|
Zhang J, Zhuo Z, Li W, Zhu J, He J, Su J. XRCC1 gene polymorphisms and risk of neuroblastoma in Chinese children. Aging (Albany NY) 2018; 10:2944-2953. [PMID: 30362960 PMCID: PMC6224243 DOI: 10.18632/aging.101601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is a common pediatric extra-cranial tumor of the sympathetic nervous system. XRCC1 is a scaffold protein that participates in DNA single-strand break repair by complexing with other proteins. XRCC1 gene polymorphisms are being increasingly explored in cancer epidemiology studies. However, the contribution of XRCC1 gene polymorphisms to neuroblastoma risk remains unclarified. Herein, we conducted a case-control study with 393 neuroblastoma patients and 812 controls to explore the association of XRCC1 gene polymorphisms (rs1799782 G>A, rs25487 C>T, rs25489 C>T and rs915927 T>C) with neuroblastoma risk. Results showed that none of the studied polymorphisms was associated with neuroblastoma risk. However, individuals with 2 risk genotypes seemed to be at significantly higher risk for neuroblastoma compared with those without risk genotype (adjusted odds ratio=1.69; 95% confidence interval=1.06-2.69). Stratified analysis revealed that the XRCC1 rs25489 CT/TT was strongly associated with reduced risk of neuroblastoma in the children ≤ 18 months of age and subgroup with clinical stage I+II+4s diseases, compared with CC genotypes. We also identified an increased neuroblastoma risk for carrier of 2-3 risk genotypes among children ≤ 18 months of age and subgroup with clinical stage I+II+4s. More evidence of the association between XRCC1 gene polymorphisms and neuroblastoma risk is needed.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Equal contribution
| | - Zhenjian Zhuo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- Equal contribution
| | - Wenya Li
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Molecular Epidemiology Laboratory, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinsong Su
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
28
|
Tang J, Qian Y, Zhu J, Zhang J, Wang FH, Zeng JH, Liang JH, Wang H, Xia H, He J, Liu W. Lack of associations between AURKA gene polymorphisms and neuroblastoma susceptibility in Chinese children. Biosci Rep 2018; 38:BSR20180292. [PMID: 29678897 PMCID: PMC6048213 DOI: 10.1042/bsr20180292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/05/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023] Open
Abstract
Previous studies have demonstrated that polymorphisms in the AURKA gene are associated with various types of cancer. In neuroblastoma, AURKA protein product regulates N-myc protein levels and plays a critical role in tumorigenesis. To investigate the association between three AURKA polymorphisms (rs1047972 C>T, rs2273535 T>A, and rs8173 G>C) and neuroblastoma susceptibility in Chinese populations, we performed this two-center case-control study including 393 neuroblastoma cases and 812 controls. Two study populations were recruited from two different regions in China. No significant associations were identified amongst any of the three AURKA polymorphisms and the risk of neuroblastoma. Similar observations were found in the stratified analysis. In conclusion, our results indicate that none of the AURKA polymorphisms are associated with neuroblastoma susceptibility in two distinct Chinese populations. Further studies with larger sample sizes and different ethnicities are warranted to validate our results.
Collapse
Affiliation(s)
- Jue Tang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yuanmin Qian
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Molecular Epidemiology Laboratory, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Feng-Hua Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jia-Hang Zeng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiang-Hua Liang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Hui Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wei Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|