1
|
McMurry HS, Rivero JD, Chen EY, Kardosh A, Lopez CD, Pegna GJ. Gastroenteropancreatic neuroendocrine tumors: Epigenetic landscape and clinical implications. Curr Probl Cancer 2024; 52:101131. [PMID: 39173542 DOI: 10.1016/j.currproblcancer.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 08/24/2024]
Abstract
Neuroendocrine tumors (NETs) are a rare, heterogenous group of neoplasms arising from cells of the neuroendocrine system. Amongst solid tumor malignancies, NETs are notable for overall genetic stability and recent data supports the notion that epigenetic changes may drive NET pathogenesis. In this review, major epigenetic mechanisms of NET pathogenesis are reviewed, including changes in DNA methylation, histone modification, chromatin remodeling, and microRNA. Prognostic implications of the above are discussed, as well as the expanding diagnostic utility of epigenetic markers in NETs. Lastly, preclinical and clinical evaluations of epigenetically targeted therapies in NETs and are reviewed, with a focus on future directions in therapeutic advancement.
Collapse
Affiliation(s)
- Hannah S McMurry
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emerson Y Chen
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Adel Kardosh
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Charles D Lopez
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Guillaume J Pegna
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
2
|
Tan B, Zhang B, Chen H. Gastroenteropancreatic neuroendocrine neoplasms: epidemiology, genetics, and treatment. Front Endocrinol (Lausanne) 2024; 15:1424839. [PMID: 39411312 PMCID: PMC11474919 DOI: 10.3389/fendo.2024.1424839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
The incidence of gastroenteropancreatic neuroendocrine neoplasms (GEP NEN) is increasing at a rapid pace and is becoming an increasingly important consideration in clinical care. Epidemiological data from multiple countries indicate that the incidence of gastroenteropancreatic neuroendocrine neoplasms (GEP NEN) exhibits regional, site-specific, and gender-based variations. While the genetics and pathogenesis of some GEP NEN, particularly pancreatic NENs, have been investigated, there are still many mechanisms that require further investigation. The management of GEP NEN is diverse, but surgery remains the primary option for most cases. Peptide receptor radionuclide therapy (PRRT) is an effective treatment, and several clinical trials are exploring the potential of immunotherapy and targeted therapy, as well as combination therapy.
Collapse
Affiliation(s)
- Baizhou Tan
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Beiyu Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongping Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Majer AD, Hua X, Katona BW. Menin in Cancer. Genes (Basel) 2024; 15:1231. [PMID: 39336822 PMCID: PMC11431421 DOI: 10.3390/genes15091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.
Collapse
Affiliation(s)
- Ariana D Majer
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianxin Hua
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Xu X, Yang X, Tang J, Wu X, He X. Identification of Regulatory RNA-Binding Proteins Associated with Immune Infiltration in Laryngeal Squamous Cell Carcinoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:394-402. [PMID: 38912837 DOI: 10.4049/jimmunol.2300498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/27/2024] [Indexed: 06/25/2024]
Abstract
We analyzed bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) data to identify alternative splicing (AS) events and regulatory RNA-binding proteins (RBPs) associated with immune infiltration in human laryngeal squamous cell carcinoma (LSCC). Whole-transcriptome sequencing data of 20 human laryngeal cancer and paracancerous tissues were downloaded from the Gene Expression Omnibus public database, using newly published splicing-site usage variation analysis software to obtain highly conserved regulated AS (RAS) events, and scientific reverse convolution algorithm analysis was used to identify significantly different immune cells and perform a correlation analysis between the two. The software package edgeR was used to identify differentially expressed RBPs and the immune infiltration-related LSCC-RAS they may regulate. Finally, we present the expression profiles and survival curves of 117 human laryngeal cancer samples from The Cancer Genome Atlas dataset for the identified RBPs and LSCC-RAS. We also downloaded the gene set enrichment 150321 scRNA-seq data for two human LSCC tissue samples. The RBP expression pattern and the expression of prophase RBP genes were analyzed in different LSCC cell populations. RNA-binding motif protein 47 (RBM47) and filamin A, as well as the RBP-RAS events that were screened in both the fibulin 2 and fibronectin 1 genes, were all significantly associated with the prognosis, and the RBM47 gene was upregulated in myeloid cells. Because the prognosis was significantly associated with two RBP regulators and two LSCC-RAS events, they may be critical regulators of immune cell survival during laryngeal cancer progression, and RBM47 may regulate macrophage-associated AS and affect immunity.
Collapse
Affiliation(s)
- Xin Xu
- Department of Otolaryngology, Kunming Medical University, Kunming, China
| | - Xi Yang
- Department of Otolaryngology, Kunming Medical University, Kunming, China
| | - Jv Tang
- The Second Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoguang Wu
- The Second Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoguang He
- The Second Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Pang Y, Chen X, Ji T, Cheng M, Wang R, Zhang C, Liu M, Zhang J, Zhong C. The Chromatin Remodeler ATRX: Role and Mechanism in Biology and Cancer. Cancers (Basel) 2023; 15:cancers15082228. [PMID: 37190157 DOI: 10.3390/cancers15082228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The alpha-thalassemia mental retardation X-linked (ATRX) syndrome protein is a chromatin remodeling protein that primarily promotes the deposit of H3.3 histone variants in the telomere area. ATRX mutations not only cause ATRX syndrome but also influence development and promote cancer. The primary molecular characteristics of ATRX, including its molecular structures and normal and malignant biological roles, are reviewed in this article. We discuss the role of ATRX in its interactions with the histone variant H3.3, chromatin remodeling, DNA damage response, replication stress, and cancers, particularly gliomas, neuroblastomas, and pancreatic neuroendocrine tumors. ATRX is implicated in several important cellular processes and serves a crucial function in regulating gene expression and genomic integrity throughout embryogenesis. However, the nature of its involvement in the growth and development of cancer remains unknown. As mechanistic and molecular investigations on ATRX disclose its essential functions in cancer, customized therapies targeting ATRX will become accessible.
Collapse
Affiliation(s)
- Ying Pang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Xu Chen
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Tongjie Ji
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Meng Cheng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Rui Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Chunyu Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Jing Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
- Institute for Advanced Study, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| |
Collapse
|
6
|
Ramamoorthy B, Nilubol N. Multiple Endocrine Neoplasia Type 1 Syndrome Pancreatic Neuroendocrine Tumor Genotype/Phenotype: Is There Any Advance on Predicting or Preventing? Surg Oncol Clin N Am 2023; 32:315-325. [PMID: 36925188 PMCID: PMC10348402 DOI: 10.1016/j.soc.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Multiple endocrine neoplasia type 1 syndrome (MEN1) is a disease caused by mutations in the MEN1 tumor suppressor gene leading to hyperparathyroidism, pituitary adenomas, and entero-pancreatic neuroendocrine tumors. Pancreatic neuroendocrine tumors (PNETs) are a major cause of mortality in patients with MEN1. Identification of consistent genotype-phenotype correlations has remained elusive, but MEN1 mutations in exons 2, 9, and 10 may be associated with metastatic PNETs; patients with these mutations may benefit from more intensive surveillance and aggressive treatment. In addition, epigenetic differences between MEN1-associated PNETs and sporadic PNETs are beginning to emerge, but further investigation is required to establish clear phenotypic associations.
Collapse
Affiliation(s)
- Bhavishya Ramamoorthy
- Surgical Oncology Program, Endocrine Surgery Section, National Cancer Institute, NIH, 10 Center Drive, Building 10 - Room 45952, Bethesda, MD 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program, Endocrine Surgery Section, National Cancer Institute, NIH, 10 Center Drive, Building 10 - Room 45952, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Smith J, Barnett E, Rodger EJ, Chatterjee A, Subramaniam RM. Neuroendocrine Neoplasms: Genetics and Epigenetics. PET Clin 2023; 18:169-187. [PMID: 36858744 DOI: 10.1016/j.cpet.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Neuroendocrine neoplasms (NENs) are a group of rare, heterogeneous tumors of neuroendocrine cell origin, affecting a range of different organs. The clinical management of NENs poses significant challenges, as tumors are often diagnosed at an advanced stage where overall survival remains poor with current treatment regimens. In addition, a host of complex and often unique molecular changes underpin the pathobiology of each NEN subtype. Exploitation of the unique genetic and epigenetic signatures driving each NEN subtype provides an opportunity to enhance the diagnosis, treatment, and monitoring of NEN in an emerging era of individualized medicine.
Collapse
Affiliation(s)
- Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Te Whatu Ora - Southern, Dunedin Public Hospital, 270 Great King Street, PO Box 913, Dunedin, New Zealand.
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Otago Medical School, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Radiology, Duke University, 2301 Erwin Rd, BOX 3808, Durham, NC 27705, USA
| |
Collapse
|
8
|
Smolkova B, Kataki A, Earl J, Ruz-Caracuel I, Cihova M, Urbanova M, Buocikova V, Tamargo S, Rovite V, Niedra H, Schrader J, Kohl Y. Liquid biopsy and preclinical tools for advancing diagnosis and treatment of patients with pancreatic neuroendocrine neoplasms. Crit Rev Oncol Hematol 2022; 180:103865. [DOI: 10.1016/j.critrevonc.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
|
9
|
Insights into Epigenetic Changes Related to Genetic Variants and Cells-of-Origin of Pancreatic Neuroendocrine Tumors: An Algorithm for Practical Workup. Cancers (Basel) 2022; 14:cancers14184444. [PMID: 36139607 PMCID: PMC9496769 DOI: 10.3390/cancers14184444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic neuroendocrine tumors are composite entities due to their heterogeneity illustrated in clinical behavior, mutational pattern, and site of origin. Pancreatic neuroendocrine tumors display a low mutation burden with frequently epigenetic alterations, such as histone modifications, chromatin remodeling, or DNA methylation status. Using the epigenomic data of the pancreatic neuroendocrine tumors converged to the identification of molecularly distinct subgroups. Furthermore, epigenetic signatures could be used as biomarkers due to their link to cell lineages and genetic driver mutations. We integrated the current knowledge on genetic and epigenetic alterations involved in endocrine lineage associated with these neoplasms to present a pathway-based overview. In this review, we suggest a simplified algorithm on how to manage pancreatic neuroendocrine tumors from a practical perspective based on pathologist ’analysis. Abstract Current knowledge on the molecular landscape of pancreatic neuroendocrine tumors (PanNETs) has advanced significantly. Still, the cellular origin of PanNETs is uncertain and the associated mechanisms remain largely unknown. DAXX/ATRX and MEN1 are the three most frequently altered genes that drive PanNETs. They are recognized as a link between genetics and epigenetics. Moreover, the acknowledged impact on DNA methylation by somatic mutations in MEN1 is a valid hallmark of epigenetic mechanism. DAXX/ATRX and MEN1 can be studied at the immunohistochemical level as a reliable surrogate for sequencing. DAXX/ATRX mutations promote alternative lengthening of telomeres (ALT) activation, determined by specific fluorescence in situ hybridization (FISH) analysis. ALT phenotype is considered a significant predictor of worse prognosis and a marker of pancreatic origin. Additionally, ARX/PDX1 expression is linked to important epigenomic alterations and can be used as lineage associated immunohistochemical marker. Herein, ARX/PDX1 association with DAXX/ATRX/MEN1 and ALT can be studied through pathological assessment, as these biomarkers may provide important clues to the mechanism underlying disease pathogenesis. In this review, we present an overview of a new approach to tumor stratification based on genetic and epigenetic characteristics as well as cellular origin, with prognostic consequences.
Collapse
|
10
|
Crabtree JS. Epigenetic Regulation in Gastroenteropancreatic Neuroendocrine Tumors. Front Oncol 2022; 12:901435. [PMID: 35747820 PMCID: PMC9209739 DOI: 10.3389/fonc.2022.901435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms are a rare, diverse group of neuroendocrine tumors that form in the pancreatic and gastrointestinal tract, and often present with side effects due to hormone hypersecretion. The pathogenesis of these tumors is known to be linked to several genetic disorders, but sporadic tumors occur due to dysregulation of additional genes that regulate proliferation and metastasis, but also the epigenome. Epigenetic regulation in these tumors includes DNA methylation, chromatin remodeling and regulation by noncoding RNAs. Several large studies demonstrate the identification of epigenetic signatures that may serve as biomarkers, and others identify innovative, epigenetics-based targets that utilize both pharmacological and theranostic approaches towards the development of new treatment approaches.
Collapse
|
11
|
Majumder S, Halfdanarson TR, Berger CK, Foote PH, Cao X, McGlinch MC, Gysbers BJ, de La Fuente J, Robran MJ, Doering KA, Burger KN, Bamlet WE, Oberg AL, Mahoney DW, Graham RP, Taylor WR, Petersen GM, Kisiel JB. Discovery and Validation of Methylated DNA Markers From Pancreatic Neuroendocrine Tumors. GASTRO HEP ADVANCES 2022; 1:409-416. [PMID: 39131680 PMCID: PMC11307501 DOI: 10.1016/j.gastha.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/25/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Methylated DNA markers (MDMs) accurately identify several different cancer types, but there are limited data for pancreatic neuroendocrine tumors (pNETs). We aimed to identify MDM candidates in tissue that differentiate pNETs from normal pancreas. Methods wUsing DNA from frozen normal pancreas (13) and pNET (51) tissues, we performed reduced representation bisulfite sequencing for MDM discovery. Validation in independent formalin fixed paraffin embedded tissues used pNET cases (67; solid = 50, cystic = 17), normal pancreas (24), and buffy coat (36) controls. Primary pNET MDM distributions were compared with lung (36), small bowel (36) NETs, and metastatic pNET (25) tissues. The discrimination accuracy was summarized as the area under the receiver operator characteristic curve (AUC) with corresponding 95% confidence intervals (CIs). Fisher's linear discriminant analysis was performed to estimate a linear discriminate score (LDS) differentiating normal from pNET tissue and applied to all patient groups; discrimination accuracy of the LDS was summarized as the bootstrap cross-validated AUC. Results Median AUC for distinguishing normal pancreas from pNET tissue was 0.91 (interquartile range: 0.80-0.93). The cross-validated AUC for the LDS discriminating normal pancreatic tissue from primary and metastatic pNETs was 0.957 (95% CI 0.858-1.0, P < .0001) and 0.963 (95% CI 0.865-1.0, P < .0001), respectively. The LDS for the MDM panel was significantly higher for primary pNET, metastatic pNET, lung NET, and small bowel NET, each compared with normal pancreas tissue (P < .0001). There was no statistical difference between primary pNET and metastatic pNET (P = .1947). Conclusion In independent tissue validation, MDMs accurately discriminate pNETs from normal pancreas. These results provide scientific rationale for exploration of these tissue MDMs in a plasma-based assay for clinical application.
Collapse
Affiliation(s)
- Shounak Majumder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Calise K. Berger
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Patrick H. Foote
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xiaoming Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Maria C. McGlinch
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Brianna J. Gysbers
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jaime de La Fuente
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Mariah J. Robran
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Karen A. Doering
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Kelli N. Burger
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota
| | - William E. Bamlet
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota
| | - Ann L. Oberg
- Division of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Douglas W. Mahoney
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota
| | | | - William R. Taylor
- Division of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | - John B. Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Pantelis AG, Panagopoulou PA, Lapatsanis DP. Artificial Intelligence and Machine Learning in the Diagnosis and Management of Gastroenteropancreatic Neuroendocrine Neoplasms—A Scoping Review. Diagnostics (Basel) 2022; 12:diagnostics12040874. [PMID: 35453922 PMCID: PMC9027316 DOI: 10.3390/diagnostics12040874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) and tumors (NETs) are rare neoplasms that may affect any part of the gastrointestinal system. In this scoping review, we attempt to map existing evidence on the role of artificial intelligence, machine learning and deep learning in the diagnosis and management of NENs of the gastrointestinal system. After implementation of inclusion and exclusion criteria, we retrieved 44 studies with 53 outcome analyses. We then classified the papers according to the type of studied NET (26 Pan-NETs, 59.1%; 3 metastatic liver NETs (6.8%), 2 small intestinal NETs, 4.5%; colorectal, rectal, non-specified gastroenteropancreatic and non-specified gastrointestinal NETs had from 1 study each, 2.3%). The most frequently used AI algorithms were Supporting Vector Classification/Machine (14 analyses, 29.8%), Convolutional Neural Network and Random Forest (10 analyses each, 21.3%), Random Forest (9 analyses, 19.1%), Logistic Regression (8 analyses, 17.0%), and Decision Tree (6 analyses, 12.8%). There was high heterogeneity on the description of the prediction model, structure of datasets, and performance metrics, whereas the majority of studies did not report any external validation set. Future studies should aim at incorporating a uniform structure in accordance with existing guidelines for purposes of reproducibility and research quality, which are prerequisites for integration into clinical practice.
Collapse
Affiliation(s)
- Athanasios G. Pantelis
- 4th Department of Surgery, Evaggelismos General Hospital of Athens, 10676 Athens, Greece;
- Correspondence:
| | | | - Dimitris P. Lapatsanis
- 4th Department of Surgery, Evaggelismos General Hospital of Athens, 10676 Athens, Greece;
| |
Collapse
|
13
|
Laks S, van Leeuwaarde R, Patel D, Keutgen XM, Hammel P, Nilubol N, Links TP, Halfdanarson TR, Daniels AB, Tirosh A. Management recommendations for pancreatic manifestations of von Hippel-Lindau disease. Cancer 2021; 128:435-446. [PMID: 34735022 DOI: 10.1002/cncr.33978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022]
Abstract
Von Hippel-Lindau disease (VHL) is a multineoplasm inherited disease manifesting with hemangioblastoma of the central nervous system and retina, adrenal pheochromocytoma, renal cell carcinoma, pancreatic neuroendocrine tumors and cysts, and neoplasms/cysts of the ear, broad ligament, and testicles. During 2018-2020, the VHL Alliance gathered several committees of experts in the various clinical manifestations of VHL to review the literature, gather the available evidence on VHL, and develop recommendations for patient management. The current report details the results of the discussion of a group of experts in the pancreatic manifestations of VHL along with their proposed recommendations for the clinical surveillance and management of patients with VHL. The recommendations subcommittee performed a comprehensive systematic review of the literature and conducted panel discussions to reach the current recommendations. The level of evidence was defined according to the Shekelle variation of the Grading of Recommendations, Assessment, Development, and Evaluation grading system. The National Comprehensive Cancer Network Categories of Evidence and Consensus defined the committee members' interpretation of the evidence and degree of consensus. The recommendations encompass the main aspects of VHL-related pancreatic manifestations and their clinical management. They are presented in a clinical orientation, including general planning of screening and surveillance for pancreatic neuroendocrine tumors, utility of biochemical biomarkers, the optimal choice for imaging modality, indirect risk stratification, indications for tissue sampling of VHL-related pancreatic neuroendocrine tumors, and interventions. These recommendations are designed to serve as the reference for all aspects of the screening, surveillance, and management of VHL-related pancreatic manifestations.
Collapse
Affiliation(s)
- Shachar Laks
- Surgery C, Chaim Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel van Leeuwaarde
- Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dhaval Patel
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xavier M Keutgen
- Division of Endocrine Surgery, Department of Surgery, University of Chicago Medical Center, Chicago, Illinois
| | - Pascal Hammel
- Department of Digestive and Medical Oncology, Paul Brousse Hospital, Villejuif, France
| | - Naris Nilubol
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Thera P Links
- Division of Endocrinology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Anthony B Daniels
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amit Tirosh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Neuroendocrine Tumors Service, VHL Clinical Care Center, Endocrine Oncology Genomics Laboratory, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | |
Collapse
|
14
|
Marini F, Giusti F, Brandi ML. Epigenetic-based targeted therapies for well-differentiated pancreatic neuroendocrine tumors: recent advances and future perspectives. Expert Rev Endocrinol Metab 2021; 16:295-307. [PMID: 34554891 DOI: 10.1080/17446651.2021.1982382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Well-differentiated pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of primary tumors of the endocrine pancreas. Dysregulation of chromatin remodeling, gene expression alteration, global DNA hypomethylation of non-coding regions, DNA hypermethylation and silencing of tumor suppressor gene promoters are frequent epigenetic changes in PanNETs. These changes exert a role in neoplastic transformation and progression. As epigenetic mechanisms, converse to genetic mutations, are potentially reversible, they are an interesting and promising therapeutic target for the treatment of PanNETs. AREAS COVERED We reviewed main epigenetic alterations associated with the development, biological and clinical features and progression of PanNETs, as well as emerging therapies targeting epigenetic changes, which may prove effective for the treatment of human PanNETs. EXPERT OPINION Constant advances in the PanNET medical approach, as reported in the clinical and therapeutic recommendations of ESMO, improved the overall survival of patients over the years. However, over 60% of the patients with metastatic disease still have poor prognosis. Epigenetic regulator drugs, currently approved to treat some human malignancies, that showed anti-tumoral activity also on PanNETs, in pre-clinical and clinical studies, could concur to ameliorate the prognosis and OS of advanced and metastatic PanNET, in combination with surgery and currently employed medical therapies.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of refereFlorence, Florence, Italy
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of refereFlorence, Florence, Italy
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| |
Collapse
|
15
|
Du B, Wang X, Zhang W, Tan Q, Wei Y, Shao Z. Management and outcomes of patients for non-functioning pancreatic neuroendocrine tumours: a multi-institutional analysis. ANZ J Surg 2021; 92:787-793. [PMID: 34723424 DOI: 10.1111/ans.17326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND To analysed the short- and long-term outcomes of patients who underwent surgical resection for non-functioning pancreatic neuroendocrine tumours (NF-PNETs) to gain insights into treatment approaches for this rare and heterogeneous entity. METHODS All patients who underwent surgical resection for NF-PNETs at The Second Affiliated Hospital of Guangzhou Medical University, and West China Hospital, Sichuan University, from 2009 to 2019 were retrospectively reviewed. The data of patients was including perioperative management, pathologic analysis and follow-up. RESULTS A total of 119 cases with histologically or cytologically confirmed NF-PNETs, The mean age of the patients was 52, and 56.3% were female. Twenty-three patients received post-operative adjuvant therapy, and five of nine (55.6%) patients with distant metastasis showed recurrence 14(60.9%) G2/G3 patients without distant metastasis received post-operative therapy with octreotide. Of these 14 patients, 3 (21.4%) revealed recurrence. Univariate analysis indicated that symptoms (P = 0.03), tumour size >4 cm (P = 0.029), ENETS stages III-IV (P < 0.001), positive lymph nodes (P < 0.001), vascular/perineural invasion (P < 0.001), and pathology grade G2 were associated with significantly higher risks of recurrence; age, gender, surgery type, and tumour location were not. Multivariate analysis revealed that positive lymph nodes (P < 0.001), vascular/peripheral invasion (P < 0.001), and pathology grade G3 (P = 0.03) are significant prognostic factors of tumour recurrence. CONCLUSION Positive lymph nodes, vascular/peripheral invasion and pathology grade G3 were related to recurrence of NF-PNETs. Lymph node resection is recommend when FNA biopsy indicates pathology grade G3 for patients with NF-PNETs.
Collapse
Affiliation(s)
- Bingqing Du
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xing Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wangfa Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingquan Tan
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yisheng Wei
- Department of Gastrointestinal Surgery, Lab of Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zili Shao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
17
|
RNA binding motif 47 (RBM47): emerging roles in vertebrate development, RNA editing and cancer. Mol Cell Biochem 2021; 476:4493-4505. [PMID: 34499322 DOI: 10.1007/s11010-021-04256-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
RNA-binding proteins (RBPs) are critical players in the post-transcriptional regulation of gene expression and are associated with each event in RNA metabolism. The term 'RNA-binding motif' (RBM) is assigned to novel RBPs with one or more RNA recognition motif (RRM) domains that are mainly involved in the nuclear processing of RNAs. RBM47 is a novel RBP conserved in vertebrates with three RRM domains whose contributions to various aspects of cellular functions are as yet emerging. Loss of RBM47 function affects head morphogenesis in zebrafish embryos and leads to perinatal lethality in mouse embryos, thereby assigning it to be an essential gene in early development of vertebrates. Its function as an essential cofactor for APOBEC1 in C to U RNA editing of several targets through substitution for A1CF in the A1CF-APOBEC1 editosome, established a new paradigm in the field. Recent advances in the understanding of its involvement in cancer progression assigned RBM47 to be a tumor suppressor that acts by inhibiting EMT and Wnt/[Formula: see text]-catenin signaling through post-transcriptional regulation. RBM47 is also required to maintain immune homeostasis, which adds another facet to its regulatory role in cellular functions. Here, we review the emerging roles of RBM47 in various biological contexts and discuss the current gaps in our knowledge alongside future perspectives for the field.
Collapse
|
18
|
Zhu L, Sun H, Tian G, Wang J, Zhou Q, Liu P, Tang X, Shi X, Yang L, Liu G. Development and validation of a risk prediction model and nomogram for colon adenocarcinoma based on methylation-driven genes. Aging (Albany NY) 2021; 13:16600-16619. [PMID: 34182539 PMCID: PMC8266312 DOI: 10.18632/aging.203179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Evidence suggests that abnormal DNA methylation patterns play a crucial role in the etiology and pathogenesis of colon adenocarcinoma (COAD). In this study, we identified a total of 97 methylation-driven genes (MDGs) through a comprehensive analysis of the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Univariate Cox regression analysis identified four MDGs (CBLN2, RBM47, SLCO4C1, and TMEM220) associated with overall survival (OS) in COAD patients. A risk prediction model was then developed based on these four MDGs to predict the prognosis of COAD patients. We also created a nomogram that incorporated risk scores, age, and TNM stage to promote a personalized prediction of OS in COAD patients. Compared with the traditional TNM staging system, our new nomogram was better at predicting the OS of COAD patients. In cell experiments, we confirmed that the mRNA expression levels of CLBN2 and TMEM220 were regulated by the methylation of their promoter regions. Moreover, immunohistochemistry showed that CBLN2 and TMEM220 were potential prognostic biomarkers for COAD patients. In summary, we have established a risk prediction model and nomogram that might be effectively utilized to promote the prediction of OS in COAD patients.
Collapse
Affiliation(s)
- Liangyu Zhu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Hongyu Sun
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Guo Tian
- Department of Medical Record, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P.R. China
| | - Juan Wang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Qian Zhou
- Department of Clinical Pharmacology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P.R. China
| | - Pu Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Xuejiao Tang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Xinrui Shi
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Lei Yang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Guangjie Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P.R. China
| |
Collapse
|
19
|
Marini F, Giusti F, Tonelli F, Brandi ML. Pancreatic Neuroendocrine Neoplasms in Multiple Endocrine Neoplasia Type 1. Int J Mol Sci 2021; 22:4041. [PMID: 33919851 PMCID: PMC8070788 DOI: 10.3390/ijms22084041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are a rare group of cancers accounting for about 1-2% of all pancreatic neoplasms. About 10% of pNETs arise within endocrine tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1). pNETs affect 30-80% of MEN1 patients, manifesting prevalently as multiple microadenomas. pNETs in patients with MEN1 are particularly difficult to treat due to differences in their growth potential, their multiplicity, the frequent requirement of extensive surgery, the high rate of post-operative recurrences, and the concomitant development of other tumors. MEN1 syndrome is caused by germinal heterozygote inactivating mutation of the MEN1 gene, encoding the menin tumor suppressor protein. MEN1-related pNETs develop following the complete loss of function of wild-type menin. Menin is a key regulator of endocrine cell plasticity and its loss in these cells is sufficient for tumor initiation. Somatic biallelic loss of wild-type menin in the neuroendocrine pancreas presumably alters the epigenetic control of gene expression, mediated by histone modifications and DNA hypermethylation, as a driver of MEN1-associated pNET tumorigenesis. In this light, epigenetic-based therapies aimed to correct the altered DNA methylation, and/or histone modifications might be a possible therapeutic strategy for MEN1 pNETs, for whom standard treatments fail.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (F.M.); (F.G.)
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy;
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (F.M.); (F.G.)
| | - Francesco Tonelli
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy;
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy;
| |
Collapse
|
20
|
Calissendorff J, Bjellerup-Calissendorff F, Bränström R, Juhlin CC, Falhammar H. Characteristics, Treatment, Outcomes, and Survival in Neuroendocrine G1 and G2 Pancreatic Tumors: Experiences From a Single Tertiary Referral Center. Front Endocrinol (Lausanne) 2021; 12:657698. [PMID: 33927695 PMCID: PMC8076901 DOI: 10.3389/fendo.2021.657698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose Neuroendocrine tumors of the pancreas (Pan-NETs) are usually hormonally inactive with a capacity to metastasize. Since Pan-NETs are rare, more knowledge is needed. Methods We reviewed all patients' medical files with Pan-NET treated at a tertiary center (2006-2019). Grade 1 (G1) and grade 2 (G2) tumors were compared. The latter group was subdivided arbitrarily based on proliferation index into G2a (3-9.9%) and G2b (10-19.9%). Results We found 137 patients (76 females, 61 males; G1 n=66, G2 n=42), the median age at diagnosis 61 years (interquartile range (IQR) 50-71), and tumor size 2 cm (1.3-5 cm). The initial surgery was performed in 101 patients. The remaining (n=36) were followed conservatively. Metastatic disease was evident in 22 patients (16%) at diagnosis while new lesions developed in 13 out of 22 patients (59%). In patients without previous metastatic disease, progressive disease was discovered in 29% of G1 vs. 55% of G2 patients (P=0.009), 47% of G2a vs. 75% of G2b patients (NS). Survival was poorer in patients with metastasis at diagnosis vs. those with local disease (P<0.001). During follow-up of 74 months, Pan-NET related death was found in 10 patients. Survival was not different between G1 vs. G2 or G2a vs. G2b, or if tumors were functional. Size ≤2 cm was associated with a better outcome (P=0.004). During the follow-up of small tumors (≤2 cm, n=36) two were resected. Conclusion In small non-functional Pan-NETs, active surveillance is reasonable. Progressive disease was more common in G2, but survival was similar in G1, G2 and between G2 subgroups. Survival was poorer in patients with metastasis at diagnosis.
Collapse
Affiliation(s)
- Jan Calissendorff
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Freja Bjellerup-Calissendorff
- Department of Pathology, Västmanland County Hospital, Västerås, Sweden
- Center for Clinical Research, Uppsala University, Västmanland County Hospital, Västerås, Sweden
| | - Robert Bränström
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast, Endocrine and Sarcoma Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - C. Christofer Juhlin
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Falhammar
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Brandi ML, Agarwal SK, Perrier ND, Lines KE, Valk GD, Thakker RV. Multiple Endocrine Neoplasia Type 1: Latest Insights. Endocr Rev 2021; 42:133-170. [PMID: 33249439 PMCID: PMC7958143 DOI: 10.1210/endrev/bnaa031] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Multiple endocrine neoplasia type 1 (MEN1), a rare tumor syndrome that is inherited in an autosomal dominant pattern, is continuing to raise great interest for endocrinology, gastroenterology, surgery, radiology, genetics, and molecular biology specialists. There have been 2 major clinical practice guidance papers published in the past 2 decades, with the most recent published 8 years ago. Since then, several new insights on the basic biology and clinical features of MEN1 have appeared in the literature, and those data are discussed in this review. The genetic and molecular interactions of the MEN1-encoded protein menin with transcription factors and chromatin-modifying proteins in cell signaling pathways mediated by transforming growth factor β/bone morphogenetic protein, a few nuclear receptors, Wnt/β-catenin, and Hedgehog, and preclinical studies in mouse models have facilitated the understanding of the pathogenesis of MEN1-associated tumors and potential pharmacological interventions. The advancements in genetic diagnosis have offered a chance to recognize MEN1-related conditions in germline MEN1 mutation-negative patients. There is rapidly accumulating knowledge about clinical presentation in children, adolescents, and pregnancy that is translatable into the management of these very fragile patients. The discoveries about the genetic and molecular signatures of sporadic neuroendocrine tumors support the development of clinical trials with novel targeted therapies, along with advancements in diagnostic tools and surgical approaches. Finally, quality of life studies in patients affected by MEN1 and related conditions represent an effort necessary to develop a pharmacoeconomic interpretation of the problem. Because advances are being made both broadly and in focused areas, this timely review presents and discusses those studies collectively.
Collapse
Affiliation(s)
| | | | - Nancy D Perrier
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Gerlof D Valk
- University Medical Center Utrecht, CX Utrecht, the Netherlands
| | | |
Collapse
|
22
|
Lakis V, Lawlor RT, Newell F, Patch AM, Mafficini A, Sadanandam A, Koufariotis LT, Johnston RL, Leonard C, Wood S, Rusev B, Corbo V, Luchini C, Cingarlini S, Landoni L, Salvia R, Milella M, Chang D, Bailey P, Jamieson NB, Duthie F, Gingras MC, Muzny DM, Wheeler DA, Gibbs RA, Milione M, Pederzoli P, Samra JS, Gill AJ, Johns AL, Pearson JV, Biankin AV, Grimmond SM, Waddell N, Nones K, Scarpa A. DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association. Commun Biol 2021; 4:155. [PMID: 33536587 PMCID: PMC7859232 DOI: 10.1038/s42003-020-01469-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Here we report the DNA methylation profile of 84 sporadic pancreatic neuroendocrine tumors (PanNETs) with associated clinical and genomic information. We identified three subgroups of PanNETs, termed T1, T2 and T3, with distinct patterns of methylation. The T1 subgroup was enriched for functional tumors and ATRX, DAXX and MEN1 wild-type genotypes. The T2 subgroup contained tumors with mutations in ATRX, DAXX and MEN1 and recurrent patterns of chromosomal losses in half of the genome with no association between regions with recurrent loss and methylation levels. T2 tumors were larger and had lower methylation in the MGMT gene body, which showed positive correlation with gene expression. The T3 subgroup harboured mutations in MEN1 with recurrent loss of chromosome 11, was enriched for grade G1 tumors and showed histological parameters associated with better prognosis. Our results suggest a role for methylation in both driving tumorigenesis and potentially stratifying prognosis in PanNETs.
Collapse
Affiliation(s)
- Vanessa Lakis
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland, 4006, Australia
| | - Rita T Lawlor
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, 37134, Italy
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland, 4006, Australia
| | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland, 4006, Australia
| | - Andrea Mafficini
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, 37134, Italy
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Lambros T Koufariotis
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland, 4006, Australia
| | - Rebecca L Johnston
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland, 4006, Australia
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland, 4006, Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland, 4006, Australia
| | - Borislav Rusev
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, 37134, Italy
| | - Vincenzo Corbo
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, 37134, Italy
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Claudio Luchini
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, 37134, Italy
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Sara Cingarlini
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy
- Section of Oncology, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Landoni
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy
- The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Roberto Salvia
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy
- The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Michele Milella
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy
- Section of Oncology, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - David Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, G4 OSF, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Department of General Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Baden-Württemberg, Germany
| | - Nigel B Jamieson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, G4 OSF, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
| | - Fraser Duthie
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Department of Pathology, Queen Elizabeth University Hospital, Greater Glasgow & Clyde NHS, Glasgow, G51 4TF, UK
| | - Marie-Claude Gingras
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas, 77030-3411, USA
- Michael E. DeBakey Department of Surgery and The Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030-3411, USA
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas, 77030-3411, USA
| | - David A Wheeler
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas, 77030-3411, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas, 77030-3411, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Massimo Milione
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | | | - Anthony J Gill
- University of Sydney, Sydney, New South Wales, 2006, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 370 Victoria Street, Darlinghurst, Sydney, New South Wales, 2010, Australia
| | - Amber L Johns
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 370 Victoria Street, Darlinghurst, Sydney, New South Wales, 2010, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland, 4006, Australia
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Sean M Grimmond
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, Victoria, 3000, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland, 4006, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Katia Nones
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland, 4006, Australia.
| | - Aldo Scarpa
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, 37134, Italy.
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy.
| |
Collapse
|
23
|
Arakelyan J, Zohrabyan D, Philip PA. Molecular profile of pancreatic neuroendocrine neoplasms (PanNENs): Opportunities for personalized therapies. Cancer 2020; 127:345-353. [PMID: 33270905 DOI: 10.1002/cncr.33354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic neuroendocrine neoplasms (panNENs) are the second most common epithelial tumors of the pancreas. Despite improvements in prognostic grading and staging systems, it remains a challenge to predict the clinical behavior of panNENs and the response to specific therapies given the high degree of heterogeneity of these tumors. Most panNENs are nonfunctional and present as advanced disease. However, systemic therapies provide modest benefits. Therefore, there is a need for predictive biomarkers to develop personalized treatment and to advance new drug development. The somatostatin receptors remain the only clinically established prognostic and predictive biomarkers in panNENs. Oncogenic drivers are at a very low frequency. Commonly mutated genes in panNENs include MEN1, chromatin remodeling genes (DAXX and ATRX), and mammalian target of rapamycin pathway genes. In contrast, poorly differentiated neuroendocrine carcinomas (panNECs), which carry a very poor prognosis, have distinctive mutations in certain genes (eg, RB1 and p53). Ongoing research to integrate epigenomics will provide tremendous opportunities to improve current understanding of the clinical heterogeneity of pancreatic neuroendocrine tumors and provide invaluable insight into the biology of these tumors, new drug development, and establishing personalized therapies.
Collapse
Affiliation(s)
- Jemma Arakelyan
- Department of Oncology, Yerevan State Medical University, Yerevan, Armenia.,Adult Solid Tumor Chemotherapy Clinic, Professor Yeolan Hematology Center, Yerevan, Armenia
| | - Davit Zohrabyan
- Department of Oncology, Yerevan State Medical University, Yerevan, Armenia.,Adult Solid Tumor Chemotherapy Clinic, Professor Yeolan Hematology Center, Yerevan, Armenia
| | - Philip A Philip
- Department of Oncology, Yerevan State Medical University, Yerevan, Armenia.,Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan.,Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan.,Barbara Ann Karmanos Cancer Center, Detroit, Michigan
| |
Collapse
|
24
|
Jiang R, Hong X, Zhao Y, Wu W. Application of multiomics sequencing and advances in the molecular mechanisms of pancreatic neuroendocrine neoplasms. Cancer Lett 2020; 499:39-48. [PMID: 33246093 DOI: 10.1016/j.canlet.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/10/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
The incidence of pancreatic neuroendocrine neoplasms (PanNENs) has gradually increased. PanNENs comprise two subtypes with different clinical manifestations and molecular mechanisms: functional PanNENs and nonfunctional PanNENs. Excessive hormones and tumor progression severely affect the quality of life of patients or are even life threatening. However, the molecular mechanisms of hormone secretion and tumor progression in PanNENs have not yet been fully elucidated. At present, advancements in sequencing technologies have led to the exploration of new biological markers and an advanced understanding of molecular mechanisms in PanNENs. Multiomics sequencing could reveal differences and similarities in molecular features in different fields. However, sequencing studies of PanNENs are booming and should be summarized to integrate the current findings. In this review, we summarize the current status of multiomics sequencing in PanNENs to further guide its application. We explore mainly advancements in the genome, transcriptome, and DNA methylation fields. In addition, the cell origin of PanNENs, which has been a hot issue in sequencing research, is described in multiple fields.
Collapse
Affiliation(s)
- Rui Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Xiafei Hong
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
25
|
Zhou JD, Zhang TJ, Xu ZJ, Deng ZQ, Gu Y, Ma JC, Wen XM, Leng JY, Lin J, Chen SN, Qian J. Genome-wide methylation sequencing identifies progression-related epigenetic drivers in myelodysplastic syndromes. Cell Death Dis 2020; 11:997. [PMID: 33219204 PMCID: PMC7679421 DOI: 10.1038/s41419-020-03213-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
The potential mechanism of myelodysplastic syndromes (MDS) progressing to acute myeloid leukemia (AML) remains poorly elucidated. It has been proved that epigenetic alterations play crucial roles in the pathogenesis of cancer progression including MDS. However, fewer studies explored the whole-genome methylation alterations during MDS progression. Reduced representation bisulfite sequencing was conducted in four paired MDS/secondary AML (MDS/sAML) patients and intended to explore the underlying methylation-associated epigenetic drivers in MDS progression. In four paired MDS/sAML patients, cases at sAML stage exhibited significantly increased methylation level as compared with the matched MDS stage. A total of 1090 differentially methylated fragments (DMFs) (441 hypermethylated and 649 hypomethylated) were identified involving in MDS pathogenesis, whereas 103 DMFs (96 hypermethylated and 7 hypomethylated) were involved in MDS progression. Targeted bisulfite sequencing further identified that aberrant GFRA1, IRX1, NPY, and ZNF300 methylation were frequent events in an additional group of de novo MDS and AML patients, of which only ZNF300 methylation was associated with ZNF300 expression. Subsequently, ZNF300 hypermethylation in larger cohorts of de novo MDS and AML patients was confirmed by real-time quantitative methylation-specific PCR. It was illustrated that ZNF300 methylation could act as a potential biomarker for the diagnosis and prognosis in MDS and AML patients. Functional experiments demonstrated the anti-proliferative and pro-apoptotic role of ZNF300 overexpression in MDS-derived AML cell-line SKM-1. Collectively, genome-wide DNA hypermethylation were frequent events during MDS progression. Among these changes, ZNF300 methylation, a regulator of ZNF300 expression, acted as an epigenetic driver in MDS progression. These findings provided a theoretical basis for the usage of demethylation drugs in MDS patients against disease progression.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhao-Qun Deng
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jia-Yan Leng
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China. .,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.
| | - Su-Ning Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China. .,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Tirosh A, Killian JK, Petersen D, Zhu YJ, Walker RL, Blau JE, Nilubol N, Patel D, Agarwal SK, Weinstein LS, Meltzer P, Kebebew E. Distinct DNA Methylation Signatures in Neuroendocrine Tumors Specific for Primary Site and Inherited Predisposition. J Clin Endocrinol Metab 2020; 105:5876017. [PMID: 32706863 PMCID: PMC7456345 DOI: 10.1210/clinem/dgaa477] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/17/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE To compare the deoxyribonucleic acid (DNA) methylation signature of neuroendocrine tumors (NETs) by primary tumor site and inherited predisposition syndromes von Hippel-Lindau disease (VHL) and multiple endocrine neoplasia type 1 (MEN1). METHODS Genome-wide DNA methylation (835 424 CpGs) of 96 NET samples. Principal components analysis (PCA) and unsupervised hierarchical clustering analyses were used to determine DNA methylome signatures. RESULTS Hypomethylated CpGs were significantly more common in VHL-related versus sporadic and MEN1-related NETs (P < .001 for both comparisons). Small-intestinal NETs (SINETs) had the most differentially methylated CpGs, either hyper- or hypomethylated, followed by duodenal NETs (DNETs) and pancreatic NETs (PNETs, P < .001 for all comparisons). There was complete separation of SINETs on PCA, and 3 NETs of unknown origin clustered with the SINET samples. Sporadic, VHL-related, and MEN1-related PNETs formed distinct groups on PCA, and VHL clustered separately, showing pronounced DNA hypomethylation, while sporadic and MEN1-related NETs clustered together. MEN1-related PNETs, DNETs, and gastric NETs each had a distinct DNA methylome signature, with complete separation by PCA and unsupervised clustering. Finally, we identified 12 hypermethylated CpGs in the 1A promoter of the APC (adenomatous polyposis coli) gene, with higher methylation levels in MEN1-related NETs versus VHL-related and sporadic NETs (P < .001 for both comparisons). CONCLUSIONS DNA CpG methylation profiles are unique in different primary NET types even when occurring in MEN1-related NETs. This tumor DNA methylome signature may be utilized for noninvasive molecular characterization of NETs, through DNA methylation profiling of biopsy samples or even circulating tumor DNA in the near future.
Collapse
Affiliation(s)
- Amit Tirosh
- Endocrine Oncology Bioinformatics Lab and NET Service, Endocrine Institute, Chaim Sheba Medical Centre, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases
- Correspondence and Reprint Requests: Amit Tirosh, MD, Endocrine Oncology Bioinformatics Lab, Division of Endocrinology, Diabetes and Metabolism, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. E-mail:
| | | | - David Petersen
- Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yuelin Jack Zhu
- Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Robert L Walker
- Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jenny E Blau
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Naris Nilubol
- Endocrine Oncology Branches, National Cancer Institute, NIH, Bethesda, Maryland
| | - Dhaval Patel
- Endocrine Oncology Branches, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Lee Scott Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Paul Meltzer
- Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Electron Kebebew
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, California
| |
Collapse
|
27
|
Boons G, Vandamme T, Ibrahim J, Roeyen G, Driessen A, Peeters D, Lawrence B, Print C, Peeters M, Van Camp G, Op de Beeck K. PDX1 DNA Methylation Distinguishes Two Subtypes of Pancreatic Neuroendocrine Neoplasms with a Different Prognosis. Cancers (Basel) 2020; 12:cancers12061461. [PMID: 32512761 PMCID: PMC7352978 DOI: 10.3390/cancers12061461] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is a crucial epigenetic mechanism for gene expression regulation and cell differentiation. Furthermore, it was found to play a major role in multiple pathological processes, including cancer. In pancreatic neuroendocrine neoplasms (PNENs), epigenetic deregulation is also considered to be of significance, as the most frequently mutated genes have an important function in epigenetic regulation. However, the exact changes in DNA methylation between PNENs and the endocrine cells of the pancreas, their likely cell-of-origin, remain largely unknown. Recently, two subtypes of PNENs have been described which were linked to cell-of-origin and have a different prognosis. A difference in the expression of the transcription factor PDX1 was one of the key molecular differences. In this study, we performed an exploratory genome-wide DNA methylation analysis using Infinium Methylation EPIC arrays (Illumina) on 26 PNENs and pancreatic islets of five healthy donors. In addition, the methylation profile of the PDX1 region was used to perform subtyping in a global cohort of 83 PNEN, 2 healthy alpha cell and 3 healthy beta cell samples. In our exploratory analysis, we identified 26,759 differentially methylated CpGs and 79 differentially methylated regions. The gene set enrichment analysis highlighted several interesting pathways targeted by altered DNA methylation, including MAPK, platelet-related and immune system-related pathways. Using the PDX1 methylation in 83 PNEN, 2 healthy alpha cell and 3 healthy beta cell samples, two subtypes were identified, subtypes A and B, which were similar to alpha and beta cells, respectively. These subtypes had different clinicopathological characteristics, a different pattern of chromosomal alterations and a different prognosis, with subtype A having a significantly worse prognosis compared with subtype B (HR 0.22 [95% CI: 0.051–0.95], p = 0.043). Hence, this study demonstrates that several cancer-related pathways are differently methylated between PNENs and normal islet cells. In addition, we validated the use of the PDX1 methylation status for the subtyping of PNENs and its prognostic importance.
Collapse
Affiliation(s)
- Gitta Boons
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, 2610 Antwerp, Belgium; (G.B.); (T.V.); (J.I.); (M.P.); (G.V.C.)
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Timon Vandamme
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, 2610 Antwerp, Belgium; (G.B.); (T.V.); (J.I.); (M.P.); (G.V.C.)
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
- Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands
- NETwerk, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Joe Ibrahim
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, 2610 Antwerp, Belgium; (G.B.); (T.V.); (J.I.); (M.P.); (G.V.C.)
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Geert Roeyen
- Department of Hepatobiliary, Endocrine and Transplantation Surgery, Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Ann Driessen
- Department of Pathology, Antwerp University Hospital and University of Antwerp, 2650 Edegem, Belgium;
| | - Dieter Peeters
- Histopathology, Imaging and Quantification Unit, HistoGeneX, 2610 Antwerp, Belgium;
- Department of Pathology, AZ Sint-Maarten, 2800 Mechelen, Belgium
| | - Ben Lawrence
- Discipline of Oncology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
- Maurice Wilkins Centre Hosted by the University of Auckland, Auckland 1023, New Zealand;
| | - Cristin Print
- Maurice Wilkins Centre Hosted by the University of Auckland, Auckland 1023, New Zealand;
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medicine and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Marc Peeters
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, 2610 Antwerp, Belgium; (G.B.); (T.V.); (J.I.); (M.P.); (G.V.C.)
| | - Guy Van Camp
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, 2610 Antwerp, Belgium; (G.B.); (T.V.); (J.I.); (M.P.); (G.V.C.)
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Ken Op de Beeck
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, 2610 Antwerp, Belgium; (G.B.); (T.V.); (J.I.); (M.P.); (G.V.C.)
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
- Correspondence: ; Tel.: +32-3275-97-91
| |
Collapse
|
28
|
Abstract
Neuroendocrine tumors (NETs) are a heterogenous group of tumors that originate from neuroendocrine cells, mainly in the pancreas and the gastrointestinal and bronchopulmonary tracts. There has been considerable progress in our understanding of the genetic and epigenetic changes associated with pancreatic NETs (PNETs). The main genetic alterations that drive PNETs include genetic alterations in MEN1, VHL and genes involved in the mTOR pathway, DAXX and/or ATRX mutations and their association with alternative telomere lengthening, and genes involved in DNA damage repair and chromatin modification. The epigenetic alterations in PNETs are also common based on genome-wide DNA methylation profiling studies, with a high rate of CpG hypermethylation in MEN1-associated PNETs compared to sporadic and VHL-associated PNETs. Moreover, the dysregulated DNA methylation status is associated with distinct gene expression profiles. This article reviews the commonly and recently discovered genetic and epigenetic changes that are associated with PNETs, inherited PNETs, and genotype-phenotype associations, and it discusses their clinical relevance.
Collapse
Affiliation(s)
- Amit Tirosh
- Endocrine Oncology Bioinformatics Laboratory, Endocrine Institute Research Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Electron Kebebew
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
29
|
Sadowski SM, Pieterman CRC, Perrier ND, Triponez F, Valk GD. Prognostic factors for the outcome of nonfunctioning pancreatic neuroendocrine tumors in MEN1: a systematic review of literature. Endocr Relat Cancer 2020; 27:R145-R161. [PMID: 32229700 PMCID: PMC7304521 DOI: 10.1530/erc-19-0372] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Metastatic duodenopancreatic neuro-endocrine tumors (dpNETs) are the most important disease-related cause of death in patients with multiple endocrine neoplasia type 1 (MEN1). Nonfunctioning pNETs (NF-pNETs) are highly prevalent in MEN1 and clinically heterogeneous. Therefore, management is controversial. Data on prognostic factors for risk stratification are limited. This systematic review aims to establish the current state of evidence regarding prognostic factors in MEN1-related NF-pNETs. We systematically searched four databases for studies assessing prognostic value of any factor on NF-pNET progression, development of distant metastases, and/or overall survival. In- and exclusion, critical appraisal and data-extraction were performed independently by two authors according to pre-defined criteria. Thirteen studies (370 unique patients) were included. Prognostic factors investigated were tumor size, timing of surgical resection, WHO grade, methylation, p27/p18 expression by immunohistochemistry (IHC), ARX/PDX1 IHC and alternative lengthening of telomeres. Results were complemented with evidence from studies in MEN1-related pNET for which data could not be separately extracted for NF-pNET and data from sporadic NF-pNET. We found that the most important prognostic factors used in clinical decision making in MEN1-related NF-pNETs are tumor size and grade. NF-pNETs <2 cm may be managed with watchful waiting, while surgical resection is advised for NF-pNETs ≥2 cm. Grade 2 NF-pNETs should be considered high risk. The most promising and MEN1-relevant avenues of prognostic research are multi-analyte circulating biomarkers, tissue-based molecular factors and imaging-based prognostication. Multi-institutional collaboration between clinical, translation and basic scientists with uniform data and biospecimen collection in prospective cohorts should advance the field.
Collapse
Affiliation(s)
- S M Sadowski
- Endocrine Surgery, Surgical Oncology Program, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - C R C Pieterman
- Department of Surgical Oncology, Section of Surgical Endocrinology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N D Perrier
- Department of Surgical Oncology, Section of Surgical Endocrinology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - F Triponez
- Thoracic and Endocrine Surgery and Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - G D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Kit OI, Trifanov VS, Petrusenko NA, Gvaldin DY, Kutilin DS, Timoshkina NN. Identification of new candidate genes and signalling pathways associated with the development of neuroendocrine pancreatic tumours based on next generation sequencing data. Mol Biol Rep 2020; 47:4233-4243. [PMID: 32451928 DOI: 10.1007/s11033-020-05534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Despite advances in classification, treatment, and imaging, neuroendocrine tumours remain a clinically complex subject. In this work, we studied the genetic profile of well-differentiated pancreatic neuroendocrine tumours (PanNETs) in a cohort of Caucasian patients and analysed the signalling pathways and candidate genes potentially associated with the development of this oncological disease. Twenty-four formalin-fixed paraffin-embedded (FFPE) samples of well-differentiated PanNETs were subjected to massive parallel sequencing using the targeted gene panel (409 genes) of the Illumina NextSeq 550 platform (San Diego, USA). In 24 patients, 119 variants were identified in 54 genes. The median mutation rate per patient was 5 (2.8-7). The detected genetic changes were dominated by missense mutations (67%) and nonsense mutations (29%). 18% of the mutations were activating, 35% of the variants led to a loss of function of the encoded protein, and 52% were not classified. Twenty-six variants were described as new. Functionally significant changes in the tertiary structure and activity of the protein molecules in an in silico assay were predicted for 5 new genetic variants. The 5 highest priority candidate genes were selected: CREB1, TCF12, PRKAR1A, BCL11A, and BUB1B. Genes carrying the identified mutations participate in signalling pathways known to be involved in PanNETs; in addition, 38% of the cases showed genetic changes in the regulation of the SMAD2/3 signalling pathway. Well-differentiated PanNETs in a Russian cohort demonstrate various molecular genetic features, including new genetic variations and potential driver genes. The highlighted molecular genetic changes in the SMAD2/3 signalling pathway suggest new prospects for targeted therapy.
Collapse
Affiliation(s)
- Oleg I Kit
- Department of Abdominal Oncology No. 1, Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - Vladimir S Trifanov
- Department of Abdominal Oncology No. 1, Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - Nataliya A Petrusenko
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037
| | - Dmitry Y Gvaldin
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037.
| | - Denis S Kutilin
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037
| | - Nataliya N Timoshkina
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037
| |
Collapse
|
31
|
Yan J, Yu S, Jia C, Li M, Chen J. Molecular subtyping in pancreatic neuroendocrine neoplasms: New insights into clinical, pathological unmet needs and challenges. Biochim Biophys Acta Rev Cancer 2020; 1874:188367. [PMID: 32339609 DOI: 10.1016/j.bbcan.2020.188367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/04/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) contain two primary subtypes with distinct molecular features and associated clinical outcomes: well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). PanNENs are a group of clinically heterogeneous tumors, whose diagnosis is based on tumor morphologic features and proliferation indices. However, these standards incompletely meet clinical needs by failing to adequately assess the likelihood of tumor recurrence and the potential for therapeutic response. We therefore focused on discussing molecular advances that facilitate the understanding of heterogeneity and exploration of reliable recurrence/treatment predictors. Taking advantage of high-throughput technologies, emerging methods of molecular subtyping in PanNETs include classifications based on co-existing multi-gene mutations, a large-scale loss of heterozygosity or copy number variation, and islet cell type-specific signatures. PanNEC molecular updates were discussed as well. This review aims to help the field classify PanNEN molecular subtypes, gain insights to aid in the solving of clinical, pathological unmet needs, and detect challenges and concerns of genetically-driven trials.
Collapse
Affiliation(s)
- Jie Yan
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shuangni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congwei Jia
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
32
|
Chatani PD, Agarwal SK, Sadowski SM. Molecular Signatures and Their Clinical Utility in Pancreatic Neuroendocrine Tumors. Front Endocrinol (Lausanne) 2020; 11:575620. [PMID: 33537001 PMCID: PMC7848028 DOI: 10.3389/fendo.2020.575620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are classified based on their histologic differentiation and proliferative indices, which have been used extensively to determine prognosis. Advances in next-generation sequencing and other high-throughput techniques have allowed researchers to objectively explore tumor specimens and learn about the genetic alterations associated with malignant transformation in PNETs. As a result, targeted, pathway-specific therapies have been emerging for the treatment of unresectable and metastatic disease. As we continue to trial various pharmaceutical products, evidence from studies using multi-omics approaches indicates that clinical aggressiveness stratifies along other genotypic and phenotypic demarcations, as well. In this review, we explore the clinically relevant and potentially targetable molecular signatures of PNETs, their associated trials, and the overall differences in reported prognoses and responses to existing therapies.
Collapse
Affiliation(s)
- Praveen Dilip Chatani
- Endocrine Surgery Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sunita Kishore Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Samira Mercedes Sadowski
- Endocrine Surgery Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Samira Mercedes Sadowski,
| |
Collapse
|
33
|
Colao A, de Nigris F, Modica R, Napoli C. Clinical Epigenetics of Neuroendocrine Tumors: The Road Ahead. Front Endocrinol (Lausanne) 2020; 11:604341. [PMID: 33384663 PMCID: PMC7770585 DOI: 10.3389/fendo.2020.604341] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroendocrine tumors, or NETs, are cancer originating in neuroendocrine cells. They are mostly found in the gastrointestinal tract or lungs. Functional NETs are characterized by signs and symptoms caused by the oversecretion of hormones and other substances, but most NETs are non-functioning and diagnosis in advanced stages is common. Thus, novel diagnostic and therapeutic strategies are warranted. Epigenetics may contribute to refining the diagnosis, as well as to identify targeted therapy interfering with epigenetic-sensitive pathways. The goal of this review was to discuss the recent advancement in the epigenetic characterization of NETs highlighting their role in clinical findings.
Collapse
Affiliation(s)
- Annamaria Colao
- Department of Clinical Medicine and Surgery, Unesco Chair Health Education and Sustainable Development, Federico II University of Naples, Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberta Modica
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
- *Correspondence: Roberta Modica,
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
34
|
Boons G, Vandamme T, Peeters M, Van Camp G, Op de Beeck K. Clinical applications of (epi)genetics in gastroenteropancreatic neuroendocrine neoplasms: Moving towards liquid biopsies. Rev Endocr Metab Disord 2019; 20:333-351. [PMID: 31368038 DOI: 10.1007/s11154-019-09508-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-throughput analysis, including next-generation sequencing and microarrays, have strongly improved our understanding of cancer biology. However, genomic data on rare cancer types, such as neuroendocrine neoplasms, has been lagging behind. Neuroendocrine neoplasms (NENs) develop from endocrine cells spread throughout the body and are highly heterogeneous in biological behavior. In this challenging disease, there is an urgent need for new therapies and new diagnostic, prognostic, follow-up and predictive biomarkers to aid patient management. The last decade, molecular data on neuroendocrine neoplasms of the gastrointestinal tract and pancreas, termed gastroenteropancreatic NENs (GEP-NENs), has strongly expanded. The aim of this review is to give an overview of the recent advances on (epi)genetic level and highlight their clinical applications to address the current needs in GEP-NENs. We illustrate how molecular alterations can be and are being used as therapeutic targets, how mutations in DAXX/ATRX and copy number variations could be used as prognostic biomarkers, how far we are in identifying predictive biomarkers and how genetics can contribute to GEP-NEN classification. Finally, we discuss recent studies on liquid biopsies in the field of GEP-NENs and illustrate how liquid biopsies can play a role in patient management. In conclusion, molecular studies have suggested multiple potential biomarkers, but further validation is ongoing.
Collapse
Affiliation(s)
- Gitta Boons
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
| | - Timon Vandamme
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE, Rotterdam, The Netherlands
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Guy Van Camp
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium.
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium.
| | - Ken Op de Beeck
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
| |
Collapse
|
35
|
Concomitant pancreatic neuroendocrine tumors in hereditary tumor syndromes: who, when and how to operate? JOURNAL OF PANCREATOLOGY 2019. [DOI: 10.1097/jp9.0000000000000016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|