1
|
Arora M, Singh AK, Kumar A, Singh H, Pathak P, Grishina M, Yadav JP, Verma A, Kumar P. Semisynthetic phytochemicals in cancer treatment: a medicinal chemistry perspective. RSC Med Chem 2024; 15:3345-3370. [PMID: 39430100 PMCID: PMC11484407 DOI: 10.1039/d4md00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer is the uncontrolled proliferation of abnormal cells that invade other areas, spread to other organs, and cause metastases, which is the most common cause of death. A review of all FDA-approved new molecular entities (NMEs) shows that natural products and derivatives account for over one-third of all NMEs. Before 1940, unmodified products and derivatives accounted for 43% and 14% of NME registrations, respectively. Since then, the share of unmodified products has decreased to 9.5% of all approved NMEs, while the share of derivatives has increased to 28%. Since the 1940s, semi-synthetic and synthetic derivatives of natural substances have gained importance, and this trend continues to date. In this study, we have discussed in detail isolated phytoconstituents with chemical modifications that are either FDA-approved or under clinical trials, such as podophyllotoxin, Taxol (paclitaxel, docetaxel), vinca alkaloids (vincristine, vinblastine), camptothecin, genistein, cephalotaxine, rohitukine, and many more, which may act as essential leads to the development of novel anticancer agents. Furthermore, we have also discussed recent developments in the most potent semisynthetic phytoconstituents, their unique properties, and their importance in cancer treatment.
Collapse
Affiliation(s)
- Meghna Arora
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Prateek Pathak
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to be University) Hyderabad Campus India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University Kanpur 209217 India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
2
|
Ruglioni M, Crucitta S, Luculli GI, Tancredi G, Del Giudice ML, Mechelli S, Galimberti S, Danesi R, Del Re M. Understanding mechanisms of resistance to FLT3 inhibitors in adult FLT3-mutated acute myeloid leukemia to guide treatment strategy. Crit Rev Oncol Hematol 2024; 201:104424. [PMID: 38917943 DOI: 10.1016/j.critrevonc.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
The presence of FLT3 mutations, including the most common FLT3-ITD (internal tandem duplications) and FLT3-TKD (tyrosine kinase domain), is associated with an unfavorable prognosis in patients affected by acute myeloid leukemia (AML). In this setting, in recent years, new FLT3 inhibitors have demonstrated efficacy in improving survival and treatment response. Nevertheless, the development of primary and secondary mechanisms of resistance poses a significant obstacle to their efficacy. Understanding these mechanisms is crucial for developing novel therapeutic approaches to overcome resistance and improve the outcomes of patients. In this context, the use of novel FLT3 inhibitors and the combination of different targeted therapies have been studied. This review provides an update on the molecular alterations involved in the resistance to FLT3 inhibitors, and describes how the molecular monitoring may be used to guide treatment strategy in FLT3-mutated AML.
Collapse
Affiliation(s)
- Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gaspare Tancredi
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Maria Livia Del Giudice
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Sandra Mechelli
- Unit of Internal Medicine 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
3
|
Joshi P, Keyvani Chahi A, Liu L, Moreira S, Vujovic A, Hope KJ. RNA binding protein-directed control of leukemic stem cell evolution and function. Hemasphere 2024; 8:e116. [PMID: 39175825 PMCID: PMC11339706 DOI: 10.1002/hem3.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/26/2024] [Indexed: 08/24/2024] Open
Abstract
Strict control over hematopoietic stem cell decision making is essential for healthy life-long blood production and underpins the origins of hematopoietic diseases. Acute myeloid leukemia (AML) in particular is a devastating hematopoietic malignancy that arises from the clonal evolution of disease-initiating primitive cells which acquire compounding genetic changes over time and culminate in the generation of leukemic stem cells (LSCs). Understanding the molecular underpinnings of these driver cells throughout their development will be instrumental in the interception of leukemia, the enabling of effective treatment of pre-leukemic conditions, as well as the development of strategies to target frank AML disease. To this point, a number of precancerous myeloid disorders and age-related alterations are proving as instructive models to gain insights into the initiation of LSCs. Here, we explore this myeloid dysregulation at the level of post-transcriptional control, where RNA-binding proteins (RBPs) function as core effectors. Through regulating the interplay of a myriad of RNA metabolic processes, RBPs orchestrate transcript fates to govern gene expression in health and disease. We describe the expanding appreciation of the role of RBPs and their post-transcriptional networks in sustaining healthy hematopoiesis and their dysregulation in the pathogenesis of clonal myeloid disorders and AML, with a particular emphasis on findings described in human stem cells. Lastly, we discuss key breakthroughs that highlight RBPs and post-transcriptional control as actionable targets for precision therapy of AML.
Collapse
Affiliation(s)
- Pratik Joshi
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Ava Keyvani Chahi
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Lina Liu
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Steven Moreira
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Ana Vujovic
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Kristin J. Hope
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| |
Collapse
|
4
|
Yu S, Zhang Y, Yu G, Wang Y, Shao R, Du X, Xu N, Lin D, Zhao W, Zhang X, Xiao J, Sun Z, Deng L, Liang X, Zhang H, Guo Z, Dai M, Shi P, Huang F, Fan Z, Liu Q, Lin R, Jiang X, Xuan L, Liu Q, Jin H. Sorafenib plus triplet therapy with venetoclax, azacitidine and homoharringtonine for refractory/relapsed acute myeloid leukemia with FLT3-ITD: A multicenter phase 2 study. J Intern Med 2024; 295:216-228. [PMID: 37899297 DOI: 10.1111/joim.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
BACKGROUND Patients with relapsed or refractory acute myeloid leukemia (R/R AML) and FLT3-internal tandem duplication (FLT3-ITD) respond infrequently to salvage chemotherapy. OBJECTIVE To investigate the efficacy of sorafenib plus triplet therapy with venetoclax, azacitidine, and homoharringtonine (VAH) as a salvage therapy in this population. METHODS This multicenter, single-arm, phase 2 study was conducted at 12 hospitals across China. Eligible patients had R/R AML with FLT3-ITD (aged 18-65 years) who were treated with VAH. The primary endpoint was composite complete remission (CRc) after two cycles. Secondary outcomes included the overall response rate (ORR), safety, and survival. RESULTS Between July 9, 2020, and March 19, 2022, 58 patients were assessed for eligibility, 51 of whom were enrolled. The median patient age was 47 years (interquartile range [IQR] 31-57). CRc was 76.5% with ORR of 82.4%. At a median follow-up of 17.7 months (IQR, 8.7-24.7), the median duration of CRc was not reached (NR), overall survival was 18.1 months (95% confidence interval [CI], 11.8-NR) and event-free survival was 11.4 months (95% CI, 5.6-NR). Grade 3 or 4 adverse events occurring in ≥10% of patients included neutropenia in 47 (92.2%), thrombocytopenia in 41 (80.4%), anemia in 35 (68.6%), febrile neutropenia in 29 (56.9%), pneumonia in 13 (25.5%), and sepsis in 6 (11.8%) patients. Treatment-related death occurred in two (3.9%) patients. CONCLUSIONS The sorafenib plus VAH regimen was well tolerated and highly active against R/R AML with FLT3-ITD. This regimen may be a suitable therapeutic option for this population, but larger population trials are needed to be explored. TRIAL REGISTRATION Clinical Trials Registry: NCT04424147.
Collapse
Affiliation(s)
- Sijian Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Yu Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Ruoyang Shao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Xin Du
- Peking Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Weihua Zhao
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiong Zhang
- Department of Hematology, Maoming People's Hospital, Maoming, China
| | - Jie Xiao
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiqiang Sun
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lan Deng
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinquan Liang
- Department of Hematology, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ziwen Guo
- Department of Hematology, Zhongshan City People's Hospital, Zhongshan, China
| | - Min Dai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qiong Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
5
|
Wang S, Li J, Wang D, Xu D, Jin J, Wang Y. Predicting Drug-Disease Associations Through Similarity Network Fusion and Multi-View Feature Projection Representation. IEEE J Biomed Health Inform 2023; 27:5165-5176. [PMID: 37527303 DOI: 10.1109/jbhi.2023.3300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Predicting drug-disease associations (DDAs) through computational methods has become a prevalent trend in drug development because of their high efficiency and low cost. Existing methods usually focus on constructing heterogeneous networks by collecting multiple data resources to improve prediction ability. However, potential association possibilities of numerous unconfirmed drug-related or disease-related pairs are not sufficiently considered. In this article, we propose a novel computational model to predict new DDAs. First, a heterogeneous network is constructed, including four types of nodes (drugs, targets, cell lines, diseases) and three types of edges (associations, association scores, similarities). Second, an updating and merging-based similarity network fusion method, termed UM-SF, is presented to fuse various similarity networks with diverse weights. Finally, an intermediate layer-mediated multi-view feature projection representation method, termed IM-FP, is proposed to calculate the predicted DDA scores. This method uses multiple association scores to construct multi-view drug features, then projects them into disease space through the intermediate layer, where an intermediate layer similarity constraint is designed to learn the projection matrices. Results of comparative experiments reveal the effectiveness of our innovations. Comparisons with other state-of-the-art models by the 10-fold cross-validation experiment indicate our model's advantage on AUROC and AUPR metrics. Moreover, our proposed model successfully predicted 107 novel high-ranked DDAs.
Collapse
|
6
|
Singh H, Kumar M, Kanungo H. Role of Gene Mutations in Acute Myeloid Leukemia: A Review Article. Glob Med Genet 2023; 10:123-128. [PMID: 37360004 PMCID: PMC10289861 DOI: 10.1055/s-0043-1770768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Acute myeloid leukemia (AML) is an immensely heterogeneous disease characterized by the clonal growth of promyelocytes or myeloblasts in bone marrow as well as in peripheral blood or tissue. Enhancement in the knowledge of the molecular biology of cancer and recognition of intermittent mutations in AML contribute to favorable circumstances to establish targeted therapies and enhance the clinical outcome. There is high interest in the development of therapies that target definitive abnormalities in AML while eradicating leukemia-initiating cells. In recent years, there has been a better knowledge of the molecular abnormalities that lead to the progression of AML, and the application of new methods in molecular biology techniques has increased that facilitating the advancement of investigational drugs. In this review, literature or information on various gene mutations for AML is discussed. English language articles were scrutinized in plentiful directories or databases like PubMed, Science Direct, Web of Sciences, Google Scholar, and Scopus. The important keywords used for searching databases is "Acute myeloid leukemia", "Gene mutation in Acute myeloid leukemia", "Genetic alteration in Acute myeloid leukemia," and "Genetic abnormalities in Acute myeloid leukemia."
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| | - Magesh Kumar
- Department of Periodontics, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| | - Himanshu Kanungo
- Department of Orthodontics and Dentofacial Orthopaedics, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| |
Collapse
|
7
|
Jin H, Zhang Y, Yu S, Du X, Xu N, Shao R, Lin D, Chen Y, Xiao J, Sun Z, Deng L, Liang X, Zhang H, Guo Z, Dai M, Shi P, Huang F, Fan Z, Yin Z, Xuan L, Lin R, Jiang X, Yu G, Liu Q. Venetoclax Combined with Azacitidine and Homoharringtonine in Relapsed/Refractory AML: A Multicenter, Phase 2 Trial. J Hematol Oncol 2023; 16:42. [PMID: 37120593 PMCID: PMC10149010 DOI: 10.1186/s13045-023-01437-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/08/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Relapsed or refractory acute myeloid leukemia (R/R AML) has a dismal prognosis. The aim of this study was to investigate the activity and tolerability of venetoclax combined with azacitidine plus homoharringtonine (VAH) regimen for R/R AML. METHODS This phase 2 trial was done at ten hospitals in China. Eligible patients were R/R AML (aged 18-65 years) with an Eastern Cooperative Oncology Group performance status of 0-2. Patients received venetoclax (100 mg on day 1, 200 mg on day 2, and 400 mg on days 3-14) and azacitidine (75 mg/m2 on days 1-7) and homoharringtonine (1 mg/m2 on days 1-7). The primary endpoint was composite complete remission rate [CRc, complete response (CR) plus complete response with incomplete blood count recovery (CRi)] after 2 cycles of treatment. The secondary endpoints include safety and survival. RESULTS Between May 27, 2020, and June 16, 2021, we enrolled 96 patients with R/R AML, including 37 primary refractory AML and 59 relapsed AML (16 relapsed after chemotherapy and 43 after allo-HSCT). The CRc rate was 70.8% (95% CI 60.8-79.2). In the patients with CRc, measurable residual disease (MRD)-negative was attained in 58.8% of CRc patients. Accordingly, overall response rate (ORR, CRc plus partial remission (PR)) was 78.1% (95% CI 68.6-85.4). At a median follow-up of 14.7 months (95% CI 6.6-22.8) for all patients, median overall survival (OS) was 22.1 months (95% CI 12.7-Not estimated), and event-free survival (EFS) was 14.3 months (95% CI 7.0-Not estimated). The 1-year OS was 61.5% (95% CI 51.0-70.4), and EFS was 51.0% (95% CI 40.7-60.5). The most common grade 3-4 adverse events were febrile neutropenia (37.4%), sepsis (11.4%), and pneumonia (21.9%). CONCLUSIONS VAH is a promising and well-tolerated regimen in R/R AML, with high CRc and encouraging survival. Further randomized studies are needed to be explored. Trial registration clinicaltrials.gov identifier: NCT04424147.
Collapse
Affiliation(s)
- Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sijian Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Du
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoyang Shao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yanqiu Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, Maoming People's Hospital, Maoming, China
| | - Jie Xiao
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiqiang Sun
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lan Deng
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinquan Liang
- Department of Hematology, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ziwen Guo
- Department of Hematology, Zhongshan City People's Hospital, Zhongshan, China
| | - Min Dai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangzhou, China.
| |
Collapse
|
8
|
Overcoming Resistance: FLT3 Inhibitors Past, Present, Future and the Challenge of Cure. Cancers (Basel) 2022; 14:cancers14174315. [PMID: 36077850 PMCID: PMC9454516 DOI: 10.3390/cancers14174315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
FLT3 ITD and TKD mutations occur in 20% and 10% of Acute Myeloid Leukemia (AML), respectively, and they represent the target of the first approved anti-leukemic therapies in the 2000s. Type I and type II FLT3 inhibitors (FLT3i) are active against FLT3 TKD/ITD and FLT3 ITD mutations alone respectively, but they still fail remissions in 30-40% of patients due to primary and secondary mechanisms of resistance, with variable relapse rate of 30-50%, influenced by NPM status and FLT3 allelic ratio. Mechanisms of resistance to FLT3i have recently been analyzed through NGS and single cell assays that have identified and elucidated the polyclonal nature of relapse in clinical and preclinical studies, summarized here. Knowledge of tumor escape pathways has helped in the identification of new targeted drugs to overcome resistance. Immunotherapy and combination or sequential use of BCL2 inhibitors and experimental drugs including aurora kinases, menin and JAK2 inhibitors will be the goal of present and future clinical trials, especially in patients with FLT3-mutated (FLT3mut) AML who are not eligible for allogeneic transplantation.
Collapse
|
9
|
Acharya B, Saha D, Armstrong D, Lakkaniga NR, Frett B. FLT3 inhibitors for acute myeloid leukemia: successes, defeats, and emerging paradigms. RSC Med Chem 2022; 13:798-816. [PMID: 35923716 PMCID: PMC9298189 DOI: 10.1039/d2md00067a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/21/2022] [Indexed: 09/10/2023] Open
Abstract
FLT3 mutations are one of the most common genetic aberrations found in nearly 30% of acute myeloid leukemias (AML). The mutations are associated with poor prognosis despite advances in the understanding of the biological mechanisms of AML. Numerous small molecule FLT3 inhibitors have been developed in an effort to combat AML. Even with the development of these inhibitors, the five-year overall survival for newly diagnosed AML is less than 30%. In 2017, midostaurin received FDA approval to treat AML, which was the first approved FLT3 inhibitor in the U.S. and Europe. Following, gilteritinib received FDA approval in 2018 and in 2019 quizartinib received approval in Japan. This review parallels these clinical success stories along with other pre-clinical and clinical investigations of FLT3 inhibitors.
Collapse
Affiliation(s)
- Baku Acharya
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Daniel Armstrong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad Jharkhand 826004 India
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| |
Collapse
|
10
|
Zhang Y, Li N, Chang Z, Wang H, Pei H, Zhang D, Zhang Q, Huang J, Guo Y, Zhao Y, Pan Y, Chen C, Chen Y. The Metabolic Signature of AML Cells Treated With Homoharringtonine. Front Oncol 2022; 12:931527. [PMID: 35774129 PMCID: PMC9237253 DOI: 10.3389/fonc.2022.931527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy. The overall prognosis is poor and therapeutic strategies still need to be improved. Studies have found that abnormalities in metabolisms promote the survival of AML cells. In recent years, an increasing number of studies have reported the effectiveness of a protein synthesis inhibitor, homoharringtonine (HHT), for the treatment of AML. In this study, we demonstrated that HHT effectively inhibited AML cells, especially MV4-11, a cell line representing human AML carrying the poor prognostic marker FLT3-ITD. We analyzed the transcriptome of MV4-11 cells treated with HHT, and identified the affected metabolic pathways including the choline metabolism process. In addition, we generated a line of MV4-11 cells that were resistant to HHT. The transcriptome analysis showed that the resistant mechanism was closely related to the ether lipid metabolism pathway. The key genes involved in these processes were AL162417.1, PLA2G2D, and LPCAT2 by multiple intergroup comparison and Venn analysis. In conclusion, we found that the treatment of HHT significantly changed metabolic signatures of AML cells, which may contribute to the precise clinical use of HHT and the development of novel strategies to treat HHT-resistant AML.
Collapse
Affiliation(s)
- Yulong Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Na Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Huabin Wang
- Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Hanzhong Pei
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Qi Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Junbin Huang
- Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yihang Pan
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen, ; Yihang Pan,
| | - Chun Chen
- Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen, ; Yihang Pan,
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen, ; Yihang Pan,
| |
Collapse
|
11
|
Koppenhafer SL, Goss KL, Voigt E, Croushore E, Terry WW, Ostergaard J, Gordon PM, Gordon DJ. Inhibitor of DNA binding 2 (ID2) regulates the expression of developmental genes and tumorigenesis in ewing sarcoma. Oncogene 2022; 41:2873-2884. [PMID: 35422476 PMCID: PMC9107507 DOI: 10.1038/s41388-022-02310-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
Abstract
Sarcomas are difficult to treat and the therapy, even when effective, is associated with long-term and life-threatening side effects. In addition, the treatment regimens for many sarcomas, including Ewing sarcoma, rhabdomyosarcoma, and osteosarcoma, are relatively unchanged over the past two decades, indicating a critical lack of progress. Although differentiation-based therapies are used for the treatment of some cancers, the application of this approach to sarcomas has proven challenging. Here, using a CRISPR-mediated gene knockout approach, we show that Inhibitor of DNA Binding 2 (ID2) is a critical regulator of developmental-related genes and tumor growth in vitro and in vivo in Ewing sarcoma tumors. We also identified that homoharringtonine, which is an inhibitor of protein translation and FDA-approved for the treatment of leukemia, decreases the level of the ID2 protein and significantly reduces tumor growth and prolongs mouse survival in an Ewing sarcoma xenograft model. Furthermore, in addition to targeting ID2, homoharringtonine also reduces the protein levels of ID1 and ID3, which are additional members of the ID family of proteins with well-described roles in tumorigenesis, in multiple types of cancer. Overall, these results provide insight into developmental regulation in Ewing sarcoma tumors and identify a novel, therapeutic approach to target the ID family of proteins using an FDA-approved drug.
Collapse
Affiliation(s)
- Stacia L Koppenhafer
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kelli L Goss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ellen Voigt
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Emma Croushore
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - William W Terry
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jason Ostergaard
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Peter M Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David J Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
12
|
Fodil S, Arnaud M, Vaganay C, Puissant A, Lengline E, Mooney N, Itzykson R, Zafrani L. Endothelial cells: major players in acute myeloid leukaemia. Blood Rev 2022; 54:100932. [DOI: 10.1016/j.blre.2022.100932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
|
13
|
Machado CB, de Pinho Pessoa FMC, da Silva EL, da Costa Pantoja L, Ribeiro RM, de Moraes Filho MO, de Moraes MEA, Montenegro RC, Burbano RMR, Khayat AS, Moreira-Nunes CA. Kinase Inhibition in Relapsed/Refractory Leukemia and Lymphoma Settings: Recent Prospects into Clinical Investigations. Pharmaceutics 2021; 13:1604. [PMID: 34683897 PMCID: PMC8540545 DOI: 10.3390/pharmaceutics13101604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer is still a major barrier to life expectancy increase worldwide, and hematologic neoplasms represent a relevant percentage of cancer incidence rates. Tumor dependence of continuous proliferative signals mediated through protein kinases overexpression instigated increased strategies of kinase inhibition in the oncologic practice over the last couple decades, and in this review, we focused our discussion on relevant clinical trials of the past five years that investigated kinase inhibitor (KI) usage in patients afflicted with relapsed/refractory (R/R) hematologic malignancies as well as in the pharmacological characteristics of available KIs and the dissertation about traditional chemotherapy treatment approaches and its hindrances. A trend towards investigations on KI usage for the treatment of chronic lymphoid leukemia and acute myeloid leukemia in R/R settings was observed, and it likely reflects the existence of already established treatment protocols for chronic myeloid leukemia and acute lymphoid leukemia patient cohorts. Overall, regimens of KI treatment are clinically manageable, and results are especially effective when allied with tumor genetic profiles, giving rise to encouraging future prospects of an era where chemotherapy-free treatment regimens are a reality for many oncologic patients.
Collapse
Affiliation(s)
- Caio Bezerra Machado
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Flávia Melo Cunha de Pinho Pessoa
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Emerson Lucena da Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém 60430-275, Brazil;
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| | | | - Manoel Odorico de Moraes Filho
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Rommel Mário Rodriguez Burbano
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| | - André Salim Khayat
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| |
Collapse
|
14
|
Vasconcelos FC, de Souza PS, Hancio T, de Faria FCC, Maia RC. Update on drug transporter proteins in acute myeloid leukemia: Pathological implication and clinical setting. Crit Rev Oncol Hematol 2021; 160:103281. [PMID: 33667660 DOI: 10.1016/j.critrevonc.2021.103281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/11/2020] [Accepted: 02/27/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematological neoplasia causing death worldwide. The long-term overall survival is unsatisfactory due to many factors including older age, genetic heterogeneity and molecular characteristics comprising additional mutations, and resistance to chemotherapeutic drugs. The expression of ABCB1/P-glycoprotein, ABCC1/MRP1, ABCG2/BCRP and LRP transporter proteins is considered the major reason for multidrug resistance (MDR) in AML, however conflicting data have been reported. Here, we review the main issues about drug transporter proteins in AML clinical scenario, and highlight the clinicopathological significance of MDR phenotype associated with ABCB1 polymorphisms and FLT3 mutation.
Collapse
Affiliation(s)
- Flavia Cunha Vasconcelos
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Paloma Silva de Souza
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Laboratório de Produtos Bioativos, Polo Novo Cavaleiros/IMCT, Campus Professor Aloisio Teixeira (UFRJ/Macaé), Universidade Federal do Rio de Janeiro (UFRJ), Macaé, RJ, Brazil
| | - Thaís Hancio
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação Stricto Sensu em Oncologia, INCA, RJ, Brazil
| | - Fernanda Costas Casal de Faria
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Low-Dose Triptolide Enhanced Activity of Idarubicin Against Acute Myeloid Leukemia Stem-like Cells Via Inhibiting DNA Damage Repair Response. Stem Cell Rev Rep 2020; 17:616-627. [PMID: 33078278 DOI: 10.1007/s12015-020-10054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Leukemia stem cells (LSCs) are considered to be the root of relapse for acute myeloid leukemia (AML). Conventional chemotherapeutic drugs fail to eliminate LSCs. Therefore, new therapeutic strategies eliminating LSCs are urgently needed. Our results showed that low-dose Triptolide (TPL) enhanced the anti-AML activity of Idarubicin (IDA) in vitro against LSC-like cells (CD34 + CD38- KG1αand CD34 + CD38- kasumi-1 cells) and CD34+ primary AML cells, while sparing normal cells. Inspiringly, the combination treatment with low-dose TPL and IDA was also effective against CD34 + blasts from AML patients with FLT3-ITD mutation, which is an unfavorable risk factor for AML patients. Moreover, the combination of TPL and IDA induced a remarkable suppression of human leukemia growth in a xenograft mouse model. Mechanistically, the enhanced effect of low dose TPL on IDA against LSCs was attributed to inhibiting DNA damage repair response. Thus, our study may provide a theoretical basis to facilitate the development of a novel LSCs-targeting strategy for AML.Graphical abstract.
Collapse
|
16
|
Cerella C, Dicato M, Diederich M. BH3 Mimetics in AML Therapy: Death and Beyond? Trends Pharmacol Sci 2020; 41:793-814. [PMID: 33032835 DOI: 10.1016/j.tips.2020.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
B cell lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics are targeted therapeutic agents that allow response prediction and patient stratification. BH3 mimetics are prototypical activators of the mitochondrial death program in cancer. They emerged as important modulators of cellular mechanisms contributing to poor therapeutic responses, including cancer cell stemness, cancer-specific metabolic routes, paracrine signaling to the tumor microenvironment, and immune modulation. We present an overview of the antagonism between BH3 mimetics and antiapoptotic BCL2 proteins. We focus on acute myeloid leukemia (AML), a cancer with reduced therapeutic options that have recently been improved by BH3 mimetics.
Collapse
Affiliation(s)
- Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| |
Collapse
|
17
|
Yu J, Jiang PYZ, Sun H, Zhang X, Jiang Z, Li Y, Song Y. Advances in targeted therapy for acute myeloid leukemia. Biomark Res 2020; 8:17. [PMID: 32477567 PMCID: PMC7238648 DOI: 10.1186/s40364-020-00196-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal malignancy characterized by genetic heterogeneity due to recurrent gene mutations. Treatment with cytotoxic chemotherapy has been the standard of care for more than half of a century. Although much progress has been made toward improving treatment related mortality rate in the past few decades, long term overall survival has stagnated. Exciting developments of gene mutation-targeted therapeutic agents are now changing the landscape in AML treatment. New agents offer more clinical options for patients and also confer a more promising outcome. Since Midostaurin, a FLT3 inhibitor, was first approved by US FDA in 2017 as the first gene mutation-targeted therapeutic agent, an array of new gene mutation-targeted agents are now available for AML treatment. In this review, we will summarize the recent advances in gene mutation-targeted therapies for patients with AML.
Collapse
Affiliation(s)
- Jifeng Yu
- The First Affiliated Hospital of Zhengzhou University, #1 East Jianshe Road, Zhengzhou, 450052 China
- Academy of Medical and Pharmaceutical Sciences of Zhengzhou University, #1 East Jianshe Road, Zhengzhou, 450052 China
| | - Peter Y. Z. Jiang
- Department of Hematology and Oncology, The Everett Clinic and Providence Regional Cancer Partnership, 1717 13th Street, Everett, WA 98201 USA
| | - Hao Sun
- The First Affiliated Hospital of Zhengzhou University, #1 East Jianshe Road, Zhengzhou, 450052 China
| | - Xia Zhang
- The First Affiliated Hospital of Zhengzhou University, #1 East Jianshe Road, Zhengzhou, 450052 China
| | - Zhongxing Jiang
- The First Affiliated Hospital of Zhengzhou University, #1 East Jianshe Road, Zhengzhou, 450052 China
| | - Yingmei Li
- The First Affiliated Hospital of Zhengzhou University, #1 East Jianshe Road, Zhengzhou, 450052 China
| | - Yongping Song
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008 China
| |
Collapse
|
18
|
Lam SS, Leung AY. Overcoming Resistance to FLT3 Inhibitors in the Treatment of FLT3-Mutated AML. Int J Mol Sci 2020; 21:E1537. [PMID: 32102366 PMCID: PMC7073218 DOI: 10.3390/ijms21041537] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/13/2023] Open
Abstract
Acute myeloid leukaemia (AML) carrying internal tandem duplication (ITD) of Fms-Like Tyrosine kinase 3 (FLT3) gene is associated with high risk of relapse and poor clinical outcome upon treatment with conventional chemotherapy. FLT3 inhibitors have been approved for the treatment of this AML subtype but leukaemia relapse remains to be a major cause of treatment failure. Mechanisms of drug resistance have been proposed, including evolution of resistant leukaemic clones; adaptive cellular mechanisms and a protective leukaemic microenvironment. These models have provided important leads that may inform design of clinical trials. Clinically, FLT3 inhibitors in combination with conventional chemotherapy as induction treatment for fit patients; with low-intensity treatment as salvage treatment or induction for unfit patients as well as maintenance treatment with FLT3 inhibitors post HSCT hold promise to improve survival in this AML subtype.
Collapse
Affiliation(s)
| | - Anskar Y.H. Leung
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|