1
|
Yotsomnuk P, Rajendran AP, Sundaram DNM, Morales LC, Kucharski C, Nasrullah M, Skolpap W, Jiang X, Gibson SB, Brandwein J, Uludağ H. Lipopolymers as the Basis of Non-Viral Delivery of Therapeutic siRNA Nanoparticles in a Leukemia (MOLM-13) Model. Biomolecules 2025; 15:115. [PMID: 39858509 PMCID: PMC11763671 DOI: 10.3390/biom15010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Small interfering RNA (siRNA) therapy in acute myeloid leukemia (AML) is a promising strategy as the siRNA molecule can specifically target proteins involved in abnormal cell proliferation. The development of a clinically applicable method for delivering siRNA molecules is imperative due to the challenges involved in effectively delivering the siRNA into cells. We investigated the delivery of siRNA to AML MOLM-13 cells with the use of two lipid-substituted polyethyleneimines (PEIs), a commercially available reagent (Prime-Fect) and a recently reported reagent with improved lipid substitution (PEI1.2k-PHPA-Lin9). The siRNAs utilized in this study were targeting the oncogenes FLT3 and KMT2A::MLLT3. Both lipopolymers gave similar-size siRNA complexes (210-220 nm) with positive ζ-potentials (+17 to +25 mV). While the binding efficiency of both lipopolymers to siRNA were similar, PEI1.2k-PHPA-Lin9 complexes were more resistant to heparin-induced dissociation. The quantitative analysis of gene silencing performed by qPCR as well as immunostaining/flow cytometry indicated significant reduction in both FLT3 expression and FLT3 protein after specific siRNA delivery. The desired inhibition of cell growth was attained with both FLT3 and KMT2A::MLLT3 siRNAs, and the combination provided more potent effects in both cell growth and colony formation assays. Induction of apoptosis was confirmed after specific siRNA treatments using the Annexin V assay. Using Luc(+) MOLM-13 cells, the growth of the xenografted cells was shown to be retarded with Prime-Fect-delivered FLT3 siRNA, unlike the siRNA delivered with PEI1.2k-PHPA-Lin9. These results demonstrate the potential of designed lipopolymers in implementing RNAi (via delivery of siRNA) for inhibition of leukemia growth and provide evidence for the feasibility of targeting different oncogenes using siRNA-mediated therapy.
Collapse
MESH Headings
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Humans
- Nanoparticles/chemistry
- Animals
- Cell Line, Tumor
- Polyethyleneimine/chemistry
- Mice
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Polymers/chemistry
- Lipids/chemistry
- Apoptosis/drug effects
- Cell Proliferation/drug effects
Collapse
Affiliation(s)
- Panadda Yotsomnuk
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada (M.N.)
- Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathumthani 12120, Thailand
| | - Amarnath Praphakar Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada (M.N.)
| | - Daniel Nisakar Meenakshi Sundaram
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada (M.N.)
| | - Luis Carlos Morales
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada (M.N.)
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada (M.N.)
| | - Mohammad Nasrullah
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada (M.N.)
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Wanwisa Skolpap
- Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathumthani 12120, Thailand
| | - Xiaoyan Jiang
- Department of Medical Genetics, Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Spencer B. Gibson
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Joseph Brandwein
- Division of Hematology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada (M.N.)
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| |
Collapse
|
2
|
Liu S, Chen Y, Li Q, Fan Z, Li M, Du P. A prognostic model for acute myeloid leukemia based on ferroptosis-related lncRNA and immune infiltration analysis. BIOPHYSICS REPORTS 2024; 10:377-387. [PMID: 39758420 PMCID: PMC11693502 DOI: 10.52601/bpr.2024.240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 01/07/2025] Open
Abstract
Acute myeloid leukemia (AML) is a rare tumor that invades the blood and bone marrow, it is rapidly progressive, highly aggressive, and difficult to cure. Studies have shown that long non-coding RNA (lncRNA) and ferroptosis play important roles in AML. However, few studies have been done on ferroptosis-related lncRNA for AML. To investigate the role of ferroptosis-related lncRNA in AML prognosis, we screened the differentially expressed genes related to ferroptosis and lncRNA. Ferroptosis-related lncRNA associated with AML prognosis was obtained by Pearson correlation analysis. By using univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) analysis, and multivariate Cox analysis, the ten prognostic genes were used for constructing the prognostic model. The model was then validated using a Kaplan-Meier analysis and Cox regression analysis. The ROC results have shown that the model could better predict AML survival. We identified some mutated genes that may affect the poor prognosis based on the somatic mutation analysis. The enrichment pathway analysis of prognostic genes revealed that these genes were mainly enriched in some immune pathways and cancer pathways. By immune infiltration analysis, we found that high-risk patients may respond better to immunotherapy.
Collapse
Affiliation(s)
- Shuhan Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Yingli Chen
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qianzhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Zhiyu Fan
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Menglan Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Pengyu Du
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
3
|
Wei Z, Su L, Gao S. The roles of ubiquitination in AML. Ann Hematol 2024; 103:3413-3428. [PMID: 37603061 DOI: 10.1007/s00277-023-05415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneously malignant disorder resulting in poor prognosis. Ubiquitination, a major post-translational modification (PTM), plays an essential role in regulating various cellular processes and determining cell fate. Despite these initial insights, the precise role of ubiquitination in AML pathogenesis and treatment remains largely unknown. In order to address this knowledge gap, we explore the relationship between ubiquitination and AML from the perspectives of signal transduction, cell differentiation, and cell cycle control; and try to find out how this relationship can be utilized to inform new therapeutic strategies for AML patients.
Collapse
Affiliation(s)
- Zhifeng Wei
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Perzolli A, Koedijk JB, Zwaan CM, Heidenreich O. Targeting the innate immune system in pediatric and adult AML. Leukemia 2024; 38:1191-1201. [PMID: 38459166 PMCID: PMC11147779 DOI: 10.1038/s41375-024-02217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
While the introduction of T cell-based immunotherapies has improved outcomes in many cancer types, the development of immunotherapies for both adult and pediatric AML has been relatively slow and limited. In addition to the need to identify suitable target antigens, a better understanding of the immunosuppressive tumor microenvironment is necessary for the design of novel immunotherapy approaches. To date, most immune characterization studies in AML have focused on T cells, while innate immune lineages such as monocytes, granulocytes and natural killer (NK) cells, received less attention. In solid cancers, studies have shown that innate immune cells, such as macrophages, myeloid-derived suppressor cells and neutrophils are highly plastic and may differentiate into immunosuppressive cells depending on signals received in their microenvironment, while NK cells appear to be functionally impaired. Hence, an in-depth characterization of the innate immune compartment in the TME is urgently needed to guide the development of immunotherapeutic interventions for AML. In this review, we summarize the current knowledge on the innate immune compartment in AML, and we discuss how targeting its components may enhance T cell-based- and other immunotherapeutic approaches.
Collapse
Affiliation(s)
- Alicia Perzolli
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - Joost B Koedijk
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands.
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
5
|
Bao X, Chen Y, Lou X, Du J, Li H, Liu N, Tang Z, Hua J, Guo W, Liu SB. Comprehensive analysis of ERCC3 prognosis value and ceRNA network in AML. Clin Transl Oncol 2023; 25:1053-1066. [PMID: 36472749 DOI: 10.1007/s12094-022-03012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematological malignancy with high molecular and clinical heterogeneity, and is the most common type of acute leukemia in adults. Due to limited treatment options, AML is prone to relapse and has a poor prognosis. Excision repair cross-complementing 3 (ERCC3) is an important member of nucleotide excision repair (NER) that is overexpressed in types of solid cancers and potentially regarded as a prognostic factor. However, its role in AML remains unclear. The purpose of this study was to explore ERCC3 expression and functions in AML. METHODS The Cancer Genome Atlas (TCGA) and GEO (Gene Expression Omnibus) were used to test the accuracy of ERCC3 expression levels for AML diagnosis. Using online databases and R packages, we also explored the signaling pathway, epigenetic regulation, infiltration of immune cells, clinical prognostic value, and ceRNA network in AML. RESULTS Our results revealed that ERCC3 expression was increased in AML and that high ERCC3 expression had good value for disease-free survival and overall survival in AML patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT). We found that ERCC3 and co-expressed genes were mainly involved in chemical carcinogenesis/reactive oxygen species, ubiquitin-mediated protein degradation and oxidative phosphorylation. In addition, almost all the m6A-related coding genes (except GF2BP1) were positively associated with ERCC3 expression. We also constructed a ceRNA regulatory network containing ERCC3 in AML and identified 6 pairs of ceRNA networks, indicating that ERCC3 expression is regulated by a noncoding RNA system. CONCLUSION This study demonstrated that ERCC3 was overexpressed in AML and that high ERCC3 expression can be considered a biomarker conducive to allo-HSCT in AML patients.
Collapse
Affiliation(s)
- Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yao Chen
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Xiao Lou
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Jiahui Du
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Huijun Li
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Nian Liu
- School of Chemistry and Life Science, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Jingsheng Hua
- Department of Hematology, Taizhou Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000, China.
| | - Weiqiang Guo
- School of Chemistry and Life Science, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China.
- School of Chemistry and Life Science, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
6
|
Xu Q, Guo T. Somatic mutation-associated risk index based on lncRNA expression for predicting prognosis in acute myeloid leukemia. Hematology 2022; 27:659-671. [PMID: 35666642 DOI: 10.1080/16078454.2022.2056677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Objectives: Genomic instability has several implications for acute myeloid leukemia (AML) prognosis. This article aims to construct a somatic mutation-associated risk index (SMRI) of genomic instability for AML to predict prognosis and explore the potential determinants of AML prognosis.Methods: We obtained differentially expressed lncRNAs from genomic instability subtypes and selected six lncRNAs to construct the SMRI through multivariate Cox regression analysis. The median SMRI classified patients into high and low SMRI groups. Kaplan-Meier survival analysis was used to clarify the prognostic differences of SMRI subtypes. Receiver operating characteristic curve analysis was performed to elucidate the value of SMRI as a prognostic indicator. Gene set variation analysis, tumor mutation burden (TMB) analysis, immune infiltration, and immune checkpoint expression analysis were performed to investigate possible causes for the differences in prognosis of SMRI subtypes.Results: The high SMRI group exhibited a poor prognosis, which was characterized by elevated levels of TMB, mutation counts (TP53, NPM1, DNMT3A, and FLT3-TKD), CD8+ T cell infiltration, and immune checkpoint (PD-1, PD-L2, CTLA4, LAG3) expression. The SMRI was still associated with prognosis, even after adjustment for age, sex, cytogenetic risk, DNMT3A status, FLT3 status, and NPM1 status. Gene set variation analysis showed that AML with FLT3-ITD mutation, CEBPA mutation, and LSCs (leukemia stem cells) were enriched in the high SMRI group.Conclusion: Our research suggests that the SMRI derived from genomic instability subtypes is a useful biomarker for predicting prognosis and may be beneficial for improving the clinical outcome of patients with AML.
Collapse
Affiliation(s)
- Qiang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tao Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
7
|
Bhai P, Hsia CC, Schenkel LC, Hedley BD, Levy MA, Kerkhof J, Santos S, Stuart A, Lin H, Broadbent R, Nan S, Yang P, Xenocostas A, Chin-Yee I, Sadikovic B. Clinical Utility of Implementing a Frontline NGS-Based DNA and RNA Fusion Panel Test for Patients with Suspected Myeloid Malignancies. Mol Diagn Ther 2022; 26:333-343. [PMID: 35381971 DOI: 10.1007/s40291-022-00581-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The use of molecular genetic biomarkers is rapidly advancing to aid diagnosis, prognosis, and clinical management of hematological disorders. We have implemented a next-generation sequencing (NGS) assay for detection of genetic variants and fusions as a frontline test for patients suspected with myeloid malignancy. In this study, we summarize the findings and assess the clinical impact in the first 1613 patients tested. METHODS All patients were assessed using NGS based Oncomine Myeloid Research Assay (ThermoFisher) including 40 genes (17 full genes and 23 genes with clinically relevant "hotspot" regions), along with a panel of 29 fusion driver genes (including over fusion 600 partners). RESULTS Among 1613 patients with suspected myeloid malignancy, 43% patients harbored at least one clinically relevant variant: 91% (90/100) in acute myeloid leukemia patients, 71.7% (160/223) in myelodysplastic syndrome (MDS), 77.5% (308/397) in myeloproliferative neoplasm (MPN), 83% (34/41) in MPN/MDS, and 100% (40/40) in chronic myeloid leukemia patients. Comparison of NGS and cytogenetics results revealed a high degree of concordance in gene fusion detection. CONCLUSIONS Our findings demonstrate clinical utility and feasibility of integrating a NGS-based gene mutation and fusion testing assay as a frontline diagnostic test in a large reported cohort of patients with suspected myeloid malignancy, in a clinical laboratory setting. Overlap with cytogenetic test results provides opportunity for testing reduction and streamlining.
Collapse
Affiliation(s)
- Pratibha Bhai
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Cyrus C Hsia
- Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Laila C Schenkel
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Benjamin D Hedley
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael A Levy
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jennifer Kerkhof
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Stephanie Santos
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Alan Stuart
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Hanxin Lin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Robert Broadbent
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Shirley Nan
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ping Yang
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Anargyros Xenocostas
- Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ian Chin-Yee
- Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Victoria Hospital, London Health Sciences Centre, 800 Commissioners Road East, Room E6-211, London, ON, N6A 5W9, Canada.
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada.
| |
Collapse
|
8
|
Watts J, Lin TL, Mims A, Patel P, Lee C, Shahidzadeh A, Shami P, Cull E, Cogle CR, Wang E, Uckun FM. Post-hoc Analysis of Pharmacodynamics and Single-Agent Activity of CD3xCD123 Bispecific Antibody APVO436 in Relapsed/Refractory AML and MDS Resistant to HMA or Venetoclax Plus HMA. Front Oncol 2022; 11:806243. [PMID: 35096610 PMCID: PMC8793782 DOI: 10.3389/fonc.2021.806243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
APVO436 is a recombinant bispecific antibody designed to direct host cytotoxic T-cells to CD123-expressing blast cells in patients with hematologic malignancies. APVO436 showed promising tolerability and single-agent activity in relapsed or refractory (R/R) acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). The primary purpose of this post-hoc analysis was to evaluate the therapeutic and pharmacodynamic effects of APVO436 in 14 R/R AML/MDS patients who had failed treatment with hypomethylating agents (HMA) or venetoclax plus HMA prior to being enrolled in the APVO436 Phase 1 dose-escalation study that was recently completed. Eight of these 14 patients had R/R AML and had failed treatment with HMA (N=2) or venetoclax plus HMA (N=6). The remaining 6 patients had R/R MDS and had also failed treatment with HMA (N=5) or venetoclax plus HMA (N=1). They were treated with APVO436 at submicrogram dose levels >0.08 mcg/kg that were active in preclinical NOD/SCID mouse xenograft models of AML. APVO436 activated patients' T-cells as evidenced by reduced numbers of circulating CD123+CD34+ and CD33+CD34+ peripheral blasts. Single-agent activity was observed at dose levels ranging from 0.1 mcg/kg to 0.7 mcg/kg in 4 R/R AML patients (50%), including 3 patients with prolonged stable disease (SD) and one patient with complete remission (CR). Likewise, 3 MDS patients had SD (50%) and 3 additional MDS patients (50%) had a marrow CR at dose levels ranging from 0.1 mcg/kg to 0.8 mcg/kg. The median survival for the combined group of 14 R/R AML/MDS patients was 282 days. This early evidence of single-agent activity of APVO436 in R/R AML/MDS patients who failed HMA with or without venetoclax provides proof of concept supporting its in vivo immunomodulatory and anti-leukemic activity and warrants further investigation of its clinical impact potential.
Collapse
Affiliation(s)
- Justin Watts
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Tara L Lin
- Cancer Center and Medical Pavillon, University of Kansas, Westwood, KS, United States
| | - Alice Mims
- Wexner Medical Center/James Cancer Hospital, The Ohio State University, Columbus, OH, United States
| | - Prapti Patel
- Harold C. Simmons Comprehensive Cancer Center, Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Cynthia Lee
- Department of Regulatory Affairs and Clinical Research, Aptevo Therapeutics, Seattle, WA, United States
| | - Anoush Shahidzadeh
- Department of Regulatory Affairs and Clinical Research, Aptevo Therapeutics, Seattle, WA, United States
| | - Paul Shami
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Elizabeth Cull
- Greenville Health System, Institute for Translational Oncology Research, Greenville, SC, United States
| | - Christopher R Cogle
- Department of Medicine, Division of Hematology & Oncology, University of Florida, Gainesville, FL, United States
| | - Eunice Wang
- Roswell Park Comprehensive Cancer Center, Department of Medicine, Buffalo, NY, United States
| | - Fatih M Uckun
- Department of Regulatory Affairs and Clinical Research, Aptevo Therapeutics, Seattle, WA, United States.,Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN, United States
| |
Collapse
|
9
|
Naji A, Ali K, Mohammad H, Alwan A. Serum hepcidin levels related to interlukin-6 in patients with acute myeloid leukemia before and after treatment. IRAQI JOURNAL OF HEMATOLOGY 2022. [DOI: 10.4103/ijh.ijh_16_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Uckun FM, Watts J, Mims AS, Patel P, Wang E, Shami PJ, Cull E, Lee C, Cogle CR, Lin TL. Risk, Characteristics and Biomarkers of Cytokine Release Syndrome in Patients with Relapsed/Refractory AML or MDS Treated with CD3xCD123 Bispecific Antibody APVO436. Cancers (Basel) 2021; 13:5287. [PMID: 34771451 PMCID: PMC8582601 DOI: 10.3390/cancers13215287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
We evaluate the risk, characteristics and biomarkers of treatment-emergent cytokine release syndrome (CRS) in patients with relapsed/refractory acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) who received APVO436 during the dose-escalation phase of a Phase 1B study (ClinicalTrials.gov, identifier: NCT03647800). Of four patients who developed Grade ≥ 3 CRS, two received steroid prophylaxis. The dose level, gender, race, obesity, or baseline hematologic parameters in peripheral blood did not predict the risk of CRS. Patients with a higher leukemia burden as determined by a higher total WBC, higher percentage of blasts in bone marrow, or higher percentage of blasts in peripheral blood (by hematopathology or immunophenotyping) did not have a higher incidence of CRS. There was an age difference between patients who did versus patients who did not develop CRS (72.9 ± 1.6 years (Median 73.5 years) vs. 63.3 ± 2.3 years (Median: 65.0 years), which was borderline significant (p = 0.04). Premedication with steroids did not eliminate the risk of CRS. Cytokine profiling in patients who developed CRS after APVO436 infusion indicates that the predominant cytokine in this inflammatory cytokine response was IL-6. APVO436-associated CRS was generally manageable with tocilizumab with or without dexamethasone. Notably, the development of CRS after APVO436 therapy did not appear to be associated with a response. The prolonged stabilization of disease, partial remissions and complete remissions were achieved in both patients who experienced CRS, as well as patients who did not experience CRS after APVO436 infusions.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Department of Regulatory Affairs and Clinical Research, Aptevo Therapeutics, Seattle, WA 98121, USA;
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN 55110, USA
| | - Justin Watts
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Alice S. Mims
- The James Cancer Hospital, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Prapti Patel
- Harold C. Simmons Comprehensive Cancer Center, Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Eunice Wang
- Roswell Park Comprehensive Cancer Center, Department of Medicine, Buffalo, NY 14263, USA;
| | - Paul J. Shami
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA;
| | - Elizabeth Cull
- Greenville Health System, Institute for Translational Oncology Research, Greenville, SC 29605, USA;
| | - Cynthia Lee
- Department of Regulatory Affairs and Clinical Research, Aptevo Therapeutics, Seattle, WA 98121, USA;
| | - Christopher R. Cogle
- Department of Medicine, Division of Hematology & Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Tara L. Lin
- Division of Hematologic Malignancies and Cellular Therapeutics, The University of Kansas Cancer Center, Westwood, KS 66205, USA;
| |
Collapse
|
11
|
Zheng Z, Wu W, Lin Z, Liu S, Chen Q, Jiang X, Xue Y, Lin D. Identification of seven novel ferroptosis-related long non-coding RNA signatures as a diagnostic biomarker for acute myeloid leukemia. BMC Med Genomics 2021; 14:236. [PMID: 34579730 PMCID: PMC8474743 DOI: 10.1186/s12920-021-01085-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Background Ferroptosis is a newly discovered type of programmed cell death that participates in the biological processes of various cancers. However, the mechanism by which ferroptosis modulates acute myeloid leukemia (AML) remains unclear. This study aimed to investigate the role of ferroptosis-related long non-coding RNAs (lncRNAs) in AML and establish a corresponding prognostic model. Methods RNA-sequencing data and clinicopathological characteristics were obtained from The Cancer Genome Atlas database, and ferroptosis-related genes were obtained from the FerrDb database. The “limma” R package, Cox regression, and the least absolute shrinkage and selection operator were used to determine the ferroptosis-related lncRNA signature with the lowest Akaike information criteria (AIC). The risk score of ferroptosis-related lncRNAs was calculated and patients with AML were divided into high- and low-risk groups based on the median risk score. The Kaplan–Meier curve and Cox regression were used to evaluate the prognostic value of the risk score. Finally, gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA) were performed to explore the biological functions of the ferroptosis-related lncRNAs. Results Seven ferroptosis-related lncRNA signatures were identified in the training group, and Kaplan–Meier and Cox regression analyses confirmed that risk scores were independent prognostic predictors of AML in both the training and validation groups (All P < 0.05). In addition, the area under the curve (AUC) analysis confirmed that the signatures had a good predictive ability for the prognosis of AML. GSEA and ssGSEA showed that the seven ferroptosis-related lncRNAs were related to glutathione metabolism and tumor immunity. Conclusions In this study, seven novel ferroptosis-related lncRNA signatures (AP001266.2, AC133961.1, AF064858.3, AC007383.2, AC008906.1, AC026771.1, and KIF26B-AS1) were established. These signatures were shown to accurately predict the prognosis of AML, which would provide new insights into strategies for the development of new AML therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01085-9.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- Medical Technology and Engineering College of Fujian Medical University, Fuzhou, 350001, Fujian, China.,Medical Technology Experimental Teaching Center of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Wei Wu
- Medical Technology and Engineering College of Fujian Medical University, Fuzhou, 350001, Fujian, China.,Medical Technology Experimental Teaching Center of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Zehang Lin
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, 361024, Fujian, China
| | - Shuhan Liu
- Medical Technology and Engineering College of Fujian Medical University, Fuzhou, 350001, Fujian, China.,Medical Technology Experimental Teaching Center of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Qiaoqian Chen
- Medical Technology and Engineering College of Fujian Medical University, Fuzhou, 350001, Fujian, China.,Medical Technology Experimental Teaching Center of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Xiandong Jiang
- Medical Technology and Engineering College of Fujian Medical University, Fuzhou, 350001, Fujian, China.,Medical Technology Experimental Teaching Center of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yan Xue
- Medical Technology and Engineering College of Fujian Medical University, Fuzhou, 350001, Fujian, China.,Medical Technology Experimental Teaching Center of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Donghong Lin
- Medical Technology and Engineering College of Fujian Medical University, Fuzhou, 350001, Fujian, China. .,Medical Technology Experimental Teaching Center of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
12
|
Lanza F, Bazarbachi A. Targeted Therapies and Druggable Genetic Anomalies in Acute Myeloid Leukemia: From Diagnostic Tools to Therapeutic Interventions. Cancers (Basel) 2021; 13:4698. [PMID: 34572925 PMCID: PMC8466687 DOI: 10.3390/cancers13184698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder resulting from acquired somatic mutations in hematopoietic progenitor cells that lead to the dysregulation of differentiation and the proliferation of hematopoietic cells [...].
Collapse
Affiliation(s)
- Francesco Lanza
- Hematology Service and Romagna Transplant Network for HSCT, 48121 Ravenna, Italy
| | - Ali Bazarbachi
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| |
Collapse
|
13
|
Qing Y, Su R, Chen J. RNA modifications in hematopoietic malignancies: a new research frontier. Blood 2021; 138:637-648. [PMID: 34157073 PMCID: PMC8394902 DOI: 10.1182/blood.2019004263] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 06/22/2021] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Protein-coding and noncoding RNAs can be decorated with a wealth of chemical modifications, and such modifications coordinately orchestrate gene expression during normal hematopoietic differentiation and development. Aberrant expression and/or dysfunction of the relevant RNA modification modulators/regulators ("writers," "erasers," and "readers") drive the initiation and progression of hematopoietic malignancies; targeting these dysregulated modulators holds potent therapeutic potential for the treatment of hematopoietic malignancies. In this review, we summarize current progress in the understanding of the biological functions and underlying mechanisms of RNA modifications in normal and malignant hematopoiesis, with a focus on the N6-methyladenosine modification, as well as discuss the therapeutic potential of targeting RNA modifications for the treatment of hematopoietic malignancies, especially acute myeloid leukemia.
Collapse
MESH Headings
- Adenosine/genetics
- Adenosine/metabolism
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/metabolism
- Hematologic Neoplasms/pathology
- Hematologic Neoplasms/therapy
- Hematopoiesis/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Methylation
- RNA Processing, Post-Transcriptional/genetics
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
Collapse
Affiliation(s)
- Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA; and
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA; and
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA; and
- City of Hope Comprehensive Cancer Center, and
- The Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA
| |
Collapse
|
14
|
Uckun FM, Lin TL, Mims AS, Patel P, Lee C, Shahidzadeh A, Shami PJ, Cull E, Cogle CR, Watts J. A Clinical Phase 1B Study of the CD3xCD123 Bispecific Antibody APVO436 in Patients with Relapsed/Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome. Cancers (Basel) 2021; 13:4113. [PMID: 34439266 PMCID: PMC8394899 DOI: 10.3390/cancers13164113] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023] Open
Abstract
APVO436 is a recombinant T cell-engaging humanized bispecific antibody designed to redirect host T cell cytotoxicity in an MHC-independent manner to CD123-expressing blast cells from patients with hematologic malignancies and has exhibited single-agent anti-leukemia activity in murine xenograft models of acute myeloid leukemia (AML). In this first-in-human (FIH) multicenter phase 1B study, we sought to determine the safety and tolerability of APVO436 in R/R AML/myelodysplastic syndrome (MDS) patients and identify a clinically active recommended phase 2 dose (RP2D) level for its further clinical development. A total of 46 R/R AML/MDS patients who had failed 1-8 prior lines of therapy received APVO436 as weekly intravenous (IV) infusions at 10 different dose levels, ranging from a Minimum Anticipated Biological Effect Level (MABEL) of 0.3 mcg to 60 mcg. APVO436 exhibited a favorable safety profile with acceptable tolerability and manageable drug-related adverse events (AEs), and its maximum tolerated dose (MTD) was not reached at a weekly dose of 60 mcg. The most common APVO436-related AEs were infusion-related reactions (IRR) occurring in 13 (28.3%) patients and cytokine release syndrome (CRS) occurring in 10 (21.7%). The single dose RP2D level was identified as 0.2 mcg/kg. Preliminary efficacy signals were observed in both AML and MDS patients: Prolonged stable disease (SD), partial remissions (PR), and complete remissions (CR) were observed in R/R AML patients as best overall responses to APVO436 at the RP2D level. Three of six evaluable MDS patients had marrow CRs. The safety and preliminary evidence of efficacy of APVO436 in R/R AML and MDS patients warrant further investigation of its clinical impact potential.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Aptevo Therapeutics, Seattle, WA 98121, USA; (C.L.); (A.S.)
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN 55110, USA
| | - Tara L. Lin
- University of Kansas Cancer Center and Medical Pavillon, University of Kansas, Westwood, KS 66205, USA;
| | - Alice S. Mims
- Wexner Medical Center, James Cancer Hospital, The Ohio State University, Columbus, OH 43210, USA;
| | - Prapti Patel
- Southwestern Medical Center, University of Texas, Dallas, TX 75390, USA;
| | - Cynthia Lee
- Aptevo Therapeutics, Seattle, WA 98121, USA; (C.L.); (A.S.)
| | | | - Paul J. Shami
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Elizabeth Cull
- Institute for Translational Oncology Research, Greenville Health System, Greenville, SC 29605, USA;
| | - Christopher R. Cogle
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Justin Watts
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
15
|
Development of Multidrug Resistance in Acute Myeloid Leukemia Is Associated with Alterations of the LPHN1/GAL-9/TIM-3 Signaling Pathway. Cancers (Basel) 2021; 13:cancers13143629. [PMID: 34298843 PMCID: PMC8304048 DOI: 10.3390/cancers13143629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
P-glycoprotein (known as ABCB1 transporter) expression in myeloid blasts of acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) leads to the commonly observed multidrug resistance. Overexpression of latrophilin-1 was detected in leukemic cells from AML patients. In a previous study, we showed that ABCB1 overexpression is associated with decreased latrophilin-1 expression in MOLM-13/VCR and SKM-1/VCR AML cell variants derived from MOLM-13 and SKM-1 cells by vincristine selection/adaptation. In the present study, we found that if ABCB1 overexpression occurs in myeloid blasts of newly diagnosed MDS patients, latrophilin-1 expression is attenuated. Latrophilin-1 may initiate TIM-3- and galectin-9-mediated immune escape. We demonstrated changes in the expression of both proteins by comparing ABCB1-positive cell variants (MOLM-13/VCR, SKM-1/VCR) with their ABCB1-negative counterparts. Galectin-9 was present in our cell lines in eight protein isoforms for which we identified the respective transcription variants resulting from alternative splicing, and we verified their structure by sequencing. The isoform profile of galectin-9 was different between ABCB1-positive and ABCB1-negative cell variants. The interaction partner of galectin-9 is CD44, and its expression was altered in the ABCB1-positive variants MOLM-13/VCR and SKM-1/VCR compared to their ABCB1-negative counterparts.
Collapse
|
16
|
Kolosenko I, Goroshchuk O, Vidarsdottir L, Björklund AC, Dowdy SF, Palm-Apergi C. RNAi prodrugs decrease elevated mRNA levels of Polo-like kinase 1 in ex vivo cultured primary cells from pediatric acute myeloid leukemia patients. FASEB J 2021; 35:e21476. [PMID: 33788972 DOI: 10.1096/fj.202002454rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 12/19/2022]
Abstract
Polo-like kinase 1 (Plk1) is an important regulator of the cell cycle and it is frequently overexpressed in cancer cells. Several small molecule inhibitors have been developed to target Plk1 and some of them have reached clinical trials in adults with acute myeloid leukemia (AML). Pediatric AML patients have a poor prognosis and survivors suffer from long-term side effects. As adult AML cells have an elevated expression of Plk1, AML is a disease candidate for Plk1 inhibition. However, the relative success of clinical trials have been hampered by adverse reactions. Herein, PLK1-targeting RNA interference (RNAi) prodrugs that enter cells without a transfection reagent are used to target PLK1 selectively in primary cells from pediatric AML patients. We show that PLK1 and PLK4 mRNA expression are significantly higher in pediatric AML patients when compared to healthy donors and that PLK1 is downregulated by on average 50% using RNAi prodrugs without a significant effect on other PLK family members. In addition, the RNAi prodrug-induced decrease in PLK1 can be used to potentiate the effect of cytarabine. In summary, PLK1-targeting RNAi prodrugs can decrease the elevated levels of PLK1 in primary cells from pediatric AML patients and sensitize pediatric AML cells to chemotherapeutics.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Cell Cycle
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Movement
- Cell Proliferation
- Child
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Prodrugs/administration & dosage
- Prognosis
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA Interference
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- Tumor Cells, Cultured
- Tumor Suppressor Proteins/antagonists & inhibitors
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Iryna Kolosenko
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Oksana Goroshchuk
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Vidarsdottir
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ann-Charlotte Björklund
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Steven F Dowdy
- Department of Cellular & Molecular Medicine, UCSD School of Medicine, La Jolla, CA, USA
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Sletta KY, Castells O, Gjertsen BT. Colony Stimulating Factor 1 Receptor in Acute Myeloid Leukemia. Front Oncol 2021; 11:654817. [PMID: 33842370 PMCID: PMC8027480 DOI: 10.3389/fonc.2021.654817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive heterogeneous blood cancer derived from hematopoietic stem cells. Tumor-stromal interactions in AML are of importance for disease development and therapy resistance, and bone marrow stroma seem like an attractive therapeutic target. Of particular interest is colony stimulating factor 1 receptor (CSF1R, M-CSFR, c-FMS, CD115) and its role in regulating plasticity of tumor-associated macrophages. We discuss first the potential of CSF1R-targeted therapy as an attractive concept with regards to the tumor microenvironment in the bone marrow niche. A second therapy approach, supported by preclinical research, also suggests that CSF1R-targeted therapy may increase the beneficial effect of conventional and novel therapeutics. Experimental evidence positioning inhibitors of CSF1R as treatment should, together with data from preclinical and early phase clinical trials, facilitate translation and clinical development of CSF1R-targeted therapy for AML.
Collapse
Affiliation(s)
- Kristine Yttersian Sletta
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
| | - Oriol Castells
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Tore Gjertsen
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
18
|
Lainez-González D, Serrano-López J, Alonso-Domínguez JM. Understanding the Hedgehog Signaling Pathway in Acute Myeloid Leukemia Stem Cells: A Necessary Step toward a Cure. BIOLOGY 2021; 10:biology10040255. [PMID: 33804919 PMCID: PMC8063837 DOI: 10.3390/biology10040255] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary The Hedgehog signaling pathway is related to the cell cycle. In particular, it is considered to play a fundamental role in the quiescence of leukemic stem cell (i.e., a temporary resting state without cell replication). Leukemic stem cells are the cells supposed to give rise to the relapses of the leukemia. Therefore, the Hedgehog pathway must be understood to improve the current treatments against acute myeloid leukemia and avoid the relapse of the disease. In this review, we gather the present knowledge about the physiological Hedgehog pathway function, the aberrant activation of Hedgehog in leukemia, and highlight the lack of evidence regarding some aspects of this important pathway. Finally, we summarize the acute myeloid leukemia treatments targeting this signaling pathway. Abstract A better understanding of how signaling pathways govern cell fate is fundamental to advances in cancer development and treatment. The initialization of different tumors and their maintenance are caused by the deregulation of different signaling pathways and cancer stem cell maintenance. Quiescent stem cells are resistant to conventional chemotherapeutic treatments and, consequently, are responsible for disease relapse. In this review we focus on the conserved Hedgehog (Hh) signaling pathway which is involved in regulating the cell cycle of hematopoietic and leukemic stem cells. Thus, we examine the role of the Hh signaling pathway in normal and leukemic stem cells and dissect its role in acute myeloid leukemia. We explain not only the connection between illness and the signaling pathway but also evaluate innovative therapeutic approaches that could affect the outcome of patients with acute myeloid leukemia. We found that many aspects of the Hedgehog signaling pathway remain unknown. The role of Hh has only been proven in embryo and hematopoietic stem cell development. Further research is needed to elucidate the role of GLI transcription factors for therapeutic targeting. Glasdegib, an SMO inhibitor, has shown clinical activity in acute myeloid leukemia; however, its mechanism of action is not clear.
Collapse
Affiliation(s)
- Daniel Lainez-González
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
| | - Juana Serrano-López
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
| | - Juan Manuel Alonso-Domínguez
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
- Hematology Department, Hospital Universitario Fundación Jiménez Díaz, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-918488100-2673
| |
Collapse
|
19
|
Levin M, Stark M, Ofran Y, Assaraf YG. Deciphering molecular mechanisms underlying chemoresistance in relapsed AML patients: towards precision medicine overcoming drug resistance. Cancer Cell Int 2021; 21:53. [PMID: 33446189 PMCID: PMC7809753 DOI: 10.1186/s12935-021-01746-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Acute myeloid leukemia (AML) remains a devastating disease with a 5-year survival rate of less than 30%. AML treatment has undergone significant changes in recent years, incorporating novel targeted therapies along with improvements in allogeneic bone marrow transplantation techniques. However, the standard of care remains cytarabine and anthracyclines, and the primary hindrance towards curative treatment is the frequent emergence of intrinsic and acquired anticancer drug resistance. In this respect, patients presenting with chemoresistant AML face dismal prognosis even with most advanced therapies. Herein, we aimed to explore the potential implementation of the characterization of chemoresistance mechanisms in individual AML patients towards efficacious personalized medicine. Methods Towards the identification of tailored treatments for individual patients, we herein present the cases of relapsed AML patients, and compare them to patients displaying durable remissions following the same chemotherapeutic induction treatment. We quantified the expression levels of specific genes mediating drug transport and metabolism, nucleotide biosynthesis, and apoptosis, in order to decipher the molecular mechanisms underlying intrinsic and/or acquired chemoresistance modalities in relapsed patients. This was achieved by real-time PCR using patient cDNA, and could be readily implemented in the clinical setting. Results This analysis revealed pre-existing differences in gene expression levels between the relapsed patients and patients with lasting remissions, as well as drug-induced alterations at different relapse stages compared to diagnosis. Each of the relapsed patients displayed unique chemoresistance mechanisms following similar treatment protocols, which could have been missed in a large study aimed at identifying common drug resistance determinants. Conclusions Our findings emphasize the need for standardized evaluation of key drug transport and metabolism genes as an integral component of routine AML management, thereby allowing for the selection of treatments of choice for individual patients. This approach could facilitate the design of efficacious personalized treatment regimens, thereby reducing relapse rates of therapy refractory disease.
Collapse
Affiliation(s)
- May Levin
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yishai Ofran
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
20
|
Xu J, Niu T. Natural killer cell-based immunotherapy for acute myeloid leukemia. J Hematol Oncol 2020; 13:167. [PMID: 33287858 PMCID: PMC7720594 DOI: 10.1186/s13045-020-00996-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Despite considerable progress has been achieved in the treatment of acute myeloid leukemia over the past decades, relapse remains a major problem. Novel therapeutic options aimed at attaining minimal residual disease-negative complete remission are expected to reduce the incidence of relapse and prolong survival. Natural killer cell-based immunotherapy is put forward as an option to tackle the unmet clinical needs. There have been an increasing number of therapeutic dimensions ranging from adoptive NK cell transfer, chimeric antigen receptor-modified NK cells, antibodies, cytokines to immunomodulatory drugs. In this review, we will summarize different forms of NK cell-based immunotherapy for AML based on preclinical investigations and clinical trials.
Collapse
Affiliation(s)
- Jing Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|