1
|
Yu B, Liu C, Qin P, Li Q, Li X. Blastic Plasmacytoid Dendritic Cell Neoplasm Presenting as a Mammary Gland Tumor in a Pediatric Patient: A Case Report. Int J Surg Pathol 2024; 32:1051-1057. [PMID: 37960848 DOI: 10.1177/10668969231211338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Emanating from a discrete category within the lympho-hematopoietic tumor system, as established by the World Health Organization in 2008, the blastic plasmacytoid dendritic cell neoplasm constitutes an uncommon malignant hematological disorder. It is routinely misidentified on account of its conspicuous dermatological manifestation, yet may insidiously permeate bone marrow and lymph nodes, involving peripheral blood and diverse extra-nodal tissues. Instances of mammary gland encroachment are extraordinarily infrequent. The current document delineates a case of a 14-year-old female patient contending with blastic plasmacytoid dendritic cell neoplasm, whose primary symptom was a mammary nodule, and whose breast and bone marrow/blood involvement were synchronous, in attempt to increase clinical vigilance.
Collapse
Affiliation(s)
- Baodan Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Chunping Liu
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Pengfei Qin
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Qingen Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xue Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| |
Collapse
|
2
|
Perruso LL, Velloso E, Rocha V, Rego EM, Silva WF. Patterns and prognostic impact of CNS infiltration in adults with newly diagnosed acute lymphoblastic leukemia. Ann Hematol 2024; 103:2033-2039. [PMID: 38180535 DOI: 10.1007/s00277-023-05609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is highly associated with central nervous system (CNS) infiltration and can be associated with higher risk of relapse. Conventional cytology (CC) is the traditional method for diagnosing CNS infiltration, although the use of immunophenotyping by flow cytometry (FC) has gained prominence in recent years due to its higher sensitivity. Also, some authors have proposed that CSF contamination by a traumatic lumbar puncture (TLP) could have a clinical impact. This retrospective study accessed the impact of CNS infiltration by CC or FC on overall survival, event-free survival, and relapse rate. In a cohort of 105 newly diagnosed ALL patients, CNS1, CNS2, and CNS3 status were found in 84%, 14%, and 2%, respectively. We found that extramedullary disease at the diagnosis, higher leukocyte counts, and higher blast percentage were associated with a positive CC. Sensitivity and specificity of CC were 53% and 98%, respectively. Three-year overall survival was 42.5%. Conversely, TLP was not associated with a positive CC nor had an impact on relapse rates. In multivariate analysis, a positive CC was associated with an increased relapse rate (HR 2.074, p = 0.037), while its detection by FC did not associate with this endpoint. Survival rates seem to be increasing over the last years by the adoption of a stratified CNS prophylaxis risk strategy. CSF contamination does not represent a major concern according to our report, as it did not increase CNS involvement or relapse rates.
Collapse
Affiliation(s)
- Luiza Lapolla Perruso
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Division of Hematology and Cell Therapy, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-000, Brazil
- Instituto Do Cancer Do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, Cerqueira César, São Paulo, SP, CEP 01246-000, Brazil
| | - Elvira Velloso
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Division of Hematology and Cell Therapy, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-000, Brazil
- Instituto Do Cancer Do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, Cerqueira César, São Paulo, SP, CEP 01246-000, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Division of Hematology and Cell Therapy, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-000, Brazil
- Instituto Do Cancer Do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, Cerqueira César, São Paulo, SP, CEP 01246-000, Brazil
| | - Eduardo Magalhaes Rego
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Division of Hematology and Cell Therapy, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-000, Brazil
- Instituto Do Cancer Do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, Cerqueira César, São Paulo, SP, CEP 01246-000, Brazil
| | - Wellington Fernandes Silva
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Division of Hematology and Cell Therapy, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-000, Brazil.
- Instituto Do Cancer Do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, Cerqueira César, São Paulo, SP, CEP 01246-000, Brazil.
| |
Collapse
|
3
|
Liu S, Wang Y. Diagnosis and management of adult central nervous system leukemia. BLOOD SCIENCE 2023; 5:141-149. [PMID: 37546706 PMCID: PMC10400053 DOI: 10.1097/bs9.0000000000000162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2023] [Indexed: 08/08/2023] Open
Abstract
Central nervous system leukemia (CNSL) is a prominent infiltration reason for therapy failing in acute leukemia. Recurrence rates and the prognosis have alleviated with current prophylactic regimens. However, the accurate stratification of relapse risk and treatment regimens for relapsed or refractory patients remain clinical challenges yet to be solved. Recently, with hematopoietic stem cell transplantation (HSCT) and chimeric antigen receptor-T (CAR-T) cellular therapy showing encouraging effects in some CNSL patients, advances in treating CNSL have already been reported. The development of molecular targeted agents as well as antibody-based drugs will provide patients with more personalized treatment. This article summarized recent research developments about risk factors, diagnosis, prevention, and treatment in adults with CNSL.
Collapse
Affiliation(s)
- Siyu Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
4
|
Ma L, Xu LP, Wang Y, Zhang XH, Chen H, Chen YH, Wang FR, Han W, Sun YQ, Yan CH, Lv M, Tang FF, Mo XD, Wang ZD, Jiang Q, Lu J, Jiang H, Liu YR, Liu KY, Chang YJ, Huang XJ. Effects of isolated central nervous system involvement evaluated by multiparameter flow cytometry prior to allografting on outcomes of patients with acute lymphoblastic leukemia. Front Oncol 2023; 13:1166990. [PMID: 37251948 PMCID: PMC10209422 DOI: 10.3389/fonc.2023.1166990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a major strategy to cure patients with acute lymphoblastic leukemia (ALL). The aim of this study was to evaluate whether isolated flow cytometry (FCM)-positive central nervous system (CNS) involvement before allo-HSCT is clinically significant. Methods The effects of isolated FCM-positive CNS involvement prior to transplantation on the outcomes of 1406 ALL patients with complete remission (CR) were retrospectively investigated. Results Patients were classified into isolated FCM-positive CNS involvement (n=31), cytology-positive CNS involvement (n = 43), and negative CNS involvement (n = 1332) groups. Among the three groups, the 5-year cumulative incidence of relapse (CIR) values were 42.3%, 48.8%, and 23.4%, respectively (P<0.001). The 5-year leukemia-free survival (LFS) values were 44.7%, 34.9%, and 60.8%, respectively (P<0.001). Compared with the negative CNS group (n=1332), the 5-year CIR of the pre-HSCT CNS involvement group (n=74) was higher (46.3% vs. 23.4%, P<0.001], and the 5-year LFS was inferior (39.1% vs. 60.8%, P<0.001). Multivariate analysis indicated that four variables, T-cell ALL, in second complete remission or beyond (CR2+) at HSCT, pre-HSCT measurable residual disease positivity, and pre-HSCT CNS involvement, were independently associated with a higher CIR and inferior LFS. A new scoring system was developed using the following four variables: low-risk, intermediate-risk, high-risk, and extremely high-risk groups. The 5-year CIR values were 16.9%, 27.8%, 50.9%, and 66.7%, respectively (P<0.001), while the 5-year LFS values were 67.6%, 56.9%, 31.0%, and 13.3%, respectively (P<0.001). Conclusion Our results suggest that ALL patients with isolated FCM-positive CNS involvement are at a higher risk of recurrence after transplantation. Patients with pre-HSCT CNS involvement had higher CIR and inferior survival outcomes.
Collapse
|
5
|
Kopmar NE, Cassaday RD. How I prevent and treat central nervous system disease in adults with acute lymphoblastic leukemia. Blood 2023; 141:1379-1388. [PMID: 36548957 PMCID: PMC10082377 DOI: 10.1182/blood.2022017035] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The central nervous system (CNS) is the most important site of extramedullary disease in adults with acute lymphoblastic leukemia (ALL). Although CNS disease is identified only in a minority of patients at the time of diagnosis, subsequent CNS relapses (either isolated or concurrent with other sites) occur in some patients even after the delivery of prophylactic therapy targeted to the CNS. Historically, prophylaxis against CNS disease has included intrathecal (IT) chemotherapy and radiotherapy (RT), although the latter is being used with decreasing frequency. Treatment of a CNS relapse usually involves intensive systemic therapy and cranial or craniospinal RT along with IT therapy and consideration of allogeneic hematopoietic cell transplant. However, short- and long-term toxicities can make these interventions prohibitively risky, particularly for older adults. As new antibody-based immunotherapy agents have been approved for relapsed/refractory B-cell ALL, their use specifically for patients with CNS disease is an area of keen interest not only because of the potential for efficacy but also concerns of unique toxicity to the CNS. In this review, we discuss data-driven approaches for these common and challenging clinical scenarios as well as highlight how recent findings potentially support the use of novel immunotherapeutic strategies for CNS disease.
Collapse
Affiliation(s)
- Noam E. Kopmar
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ryan D. Cassaday
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
6
|
Dekker SE, Leonard J, Muffly L. SOHO State of the Art Updates and Next Questions: Measurable Residual Disease in Acute Lymphoblastic Leukemia - Optimization and Innovation in 2022 and Beyond. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:878-882. [PMID: 36130863 DOI: 10.1016/j.clml.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023]
Abstract
Measurable residual disease (MRD) is an established component of acute lymphoblastic leukemia (ALL) management in both children and adults. Society guidelines and expert consensus documents include assessment of MRD as the standard of care following induction therapy, consolidation therapy, and at additional time points, depending on the treatment regimen administered. Further, the approval of blinatumomab for MRD+ B-ALL has advanced the concept of MRD response as a clinical endpoint in ALL. Although the utility of MRD in ALL has been well defined over the last decades, several questions remain. In this review we focus on areas of ongoing controversy and exploration in ALL MRD, including the following: (1) Does increasing the depth of MRD assessment add prognostic value? (2) Is there a role for ongoing MRD monitoring once patients achieve MRD response? (3) Can MRD assessment of the peripheral blood be substituted for bone marrow? (4) Should MRD assays be applied to the analysis of the central nervous system (CNS)? Ongoing studies should answer the majority of these questions in the coming years.
Collapse
Affiliation(s)
- Simone E Dekker
- Department of Medicine, Oregon Health and Science University, Portland, OR
| | - Jessica Leonard
- Division of Hematology-Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Lori Muffly
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA.
| |
Collapse
|
7
|
Moppett J. Metabolomics: A biomarker to improve the assessment of central nervous system positive acute lymphoblastic leukaemia? Br J Haematol 2022; 198:939-940. [DOI: 10.1111/bjh.18353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022]
|