1
|
Wichmann G, Vetter N, Lehmann C, Landgraf R, Doxiadis I, Großmann R, Vorobeva E, Dietz A, Zebralla V, Wiegand S, Wald T. Outcome differences in HPV-driven head and neck squamous cell carcinoma attributable to altered human leukocyte antigen frequencies. Front Oncol 2023; 13:1212454. [PMID: 38192630 PMCID: PMC10772155 DOI: 10.3389/fonc.2023.1212454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Background Effective immune surveillance requires a functioning immune system and natural killer (NK) and T cells for adequate innate and antigen-specific immune responses critically depending on human leukocyte antigens (HLAs) and haplotypes representing advantageous combinations of HLA antigens. Recently, we reported a link between altered frequencies of HLA alleles and haplotypes and developing head and neck squamous cell carcinoma (HNSCC). Whereas the majority of HNSCCs seem to be related to classical risk factors alcohol and tobacco, a subset of HNSCC and especially oropharyngeal squamous cell carcinoma (OPSCC) were etiologically linked to human papillomavirus (HPV) recently. Here, we demonstrate in HPV-driven (p16-positive high risk-HPV DNA-positive) HNSCC a deviating distribution of HLA antigens and haplotypes and their relevance to outcome. Methods Leukocyte DNA of n = 94 HPV-driven HNSCC patients (n = 57 OPSCC, n = 37 outside oropharynx) underwent HLA SSO typing, allowing allele, antigen (allele group), and haplo-typing. Besides comparing these frequencies with those of German blood donors, we analyzed their impact on outcome using Kaplan-Meier plots and Cox proportional hazard regression. Results Antigen and haplotype frequencies demonstrate enrichment of rare antigens and haplotypes. The HLA score for unselected HNSCC patients was not predictive for outcome here. However, together with alcohol consumption, tobacco smoking, T category, and extranodal extension of locoregional metastases and treatment applied, eight HLA traits allow for predicting progression-free and tumor-specific survival. Conclusion Patients can be categorized into low, intermediate-low, intermediate-high, and high risk groups. Using a new PFS risk score for HPV-driven HNSCC may allow to improve prognostication.
Collapse
Affiliation(s)
- Gunnar Wichmann
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Nathalie Vetter
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Claudia Lehmann
- Institute for Transfusion Medicine, Transplantation Immunology, University Hospital Leipzig, Leipzig, Germany
| | - Ramona Landgraf
- Institute for Transfusion Medicine, Transplantation Immunology, University Hospital Leipzig, Leipzig, Germany
| | - Ilias Doxiadis
- Institute for Transfusion Medicine, Transplantation Immunology, University Hospital Leipzig, Leipzig, Germany
| | - Rebecca Großmann
- Institute for Transfusion Medicine, Transplantation Immunology, University Hospital Leipzig, Leipzig, Germany
| | - Ekaterina Vorobeva
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Andreas Dietz
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Veit Zebralla
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Susanne Wiegand
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Theresa Wald
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Altynova N, Khamdiyeva O, Garshin A, Baratzhanova G, Amirgaliyeva A, Seisenbayeva A, Abylkassymova G, Yergali K, Tolebaeva A, Skvortsova L, Zhunussova G, Bekmanov B, Cakir-Kiefer C, Djansugurova L. Case-Control Study of the Association between Single Nucleotide Polymorphisms of Genes Involved in Xenobiotic Detoxification and Antioxidant Protection with the Long-Term Influence of Organochlorine Pesticides on the Population of the Almaty Region. TOXICS 2023; 11:948. [PMID: 38133349 PMCID: PMC10747153 DOI: 10.3390/toxics11120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
The association of genetic polymorphisms with the individual sensitivity of humans to the action of pesticide pollution is being actively studied in the world. The aim of this study was a molecular epidemiological analysis of candidate polymorphisms of genes involved in pesticide metabolism, detoxification, and antioxidant protection. Some of the selected polymorphisms also relate to susceptibility to cancer and cardiovascular, respiratory, and immune system diseases in individuals exposed to pesticides for a long time. For a case-control study of a unique cohort of people exposed to organochlorine pesticides for 10 years or more were chosen, a control cohort was selected that matched with the experimental group by the main population characteristics. PCR-PRLF and genome-wide microarray genotyping (GWAS) methods were used. We identified 17 polymorphisms of xenobiotic detoxification genes and 27 polymorphisms of antioxidant defense genes, which had a significantly high statistical association with the negative impact of chronic pesticide intoxication on human health. We also found 17 polymorphisms of xenobiotic detoxification genes and 12 polymorphisms of antioxidant defense genes that have a protective effect. Data obtained added to the list of potential polymorphisms that define a group at high risk or resistant to the negative effects of pesticides.
Collapse
Affiliation(s)
- Nazym Altynova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
| | - Ozada Khamdiyeva
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Aleksandr Garshin
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
| | - Gulminyam Baratzhanova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
- INRAE, UR AFPA, USC 340, University of Lorraine, Nancy F-54000, France;
| | - Almira Amirgaliyeva
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Akerke Seisenbayeva
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Gulnar Abylkassymova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Kanagat Yergali
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Anar Tolebaeva
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Liliya Skvortsova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Gulnur Zhunussova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Bakhytzhan Bekmanov
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
| | | | - Leyla Djansugurova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
| |
Collapse
|
3
|
Huang X, Duijf PHG, Sriram S, Perera G, Vasani S, Kenny L, Leo P, Punyadeera C. Circulating tumour DNA alterations: emerging biomarker in head and neck squamous cell carcinoma. J Biomed Sci 2023; 30:65. [PMID: 37559138 PMCID: PMC10413618 DOI: 10.1186/s12929-023-00953-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023] Open
Abstract
Head and Neck cancers (HNC) are a heterogeneous group of upper aero-digestive tract cancer and account for 931,922 new cases and 467,125 deaths worldwide. About 90% of these cancers are of squamous cell origin (HNSCC). HNSCC is associated with excessive tobacco and alcohol consumption and infection with oncogenic viruses. Genotyping tumour tissue to guide clinical decision-making is becoming common practice in modern oncology, but in the management of patients with HNSCC, cytopathology or histopathology of tumour tissue remains the mainstream for diagnosis and treatment planning. Due to tumour heterogeneity and the lack of access to tumour due to its anatomical location, alternative methods to evaluate tumour activities are urgently needed. Liquid biopsy approaches can overcome issues such as tumour heterogeneity, which is associated with the analysis of small tissue biopsy. In addition, liquid biopsy offers repeat biopsy sampling, even for patients with tumours with access limitations. Liquid biopsy refers to biomarkers found in body fluids, traditionally blood, that can be sampled to provide clinically valuable information on both the patient and their underlying malignancy. To date, the majority of liquid biopsy research has focused on blood-based biomarkers, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), and circulating microRNA. In this review, we will focus on ctDNA as a biomarker in HNSCC because of its robustness, its presence in many body fluids, adaptability to existing clinical laboratory-based technology platforms, and ease of collection and transportation. We will discuss mechanisms of ctDNA release into circulation, technological advances in the analysis of ctDNA, ctDNA as a biomarker in HNSCC management, and some of the challenges associated with translating ctDNA into clinical and future perspectives. ctDNA provides a minimally invasive method for HNSCC prognosis and disease surveillance and will pave the way in the future for personalized medicine, thereby significantly improving outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Xiaomin Huang
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, QLD, Brisbane, Australia
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- University Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Ganganath Perera
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Sarju Vasani
- Department of Otolaryngology, Royal Brisbane Women's Hospital, Brisbane, QLD, Australia
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Lizbeth Kenny
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Paul Leo
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Translational Genomics Centre, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, QLD, Brisbane, Australia.
- Menzies Health Institute Queensland (MIHQ), Griffith University, Gold coast, QLD, Australia.
| |
Collapse
|
4
|
Head and neck cancer patient-derived tumouroid cultures: opportunities and challenges. Br J Cancer 2023; 128:1807-1818. [PMID: 36765173 PMCID: PMC10147637 DOI: 10.1038/s41416-023-02167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Head and neck cancers (HNC) are the seventh most prevalent cancer type globally. Despite their common categorisation, HNCs are a heterogeneous group of malignancies arising in various anatomical sites within the head and neck region. These cancers exhibit different clinical and biological manifestations, and this heterogeneity also contributes to the high rates of treatment failure and mortality. To evaluate patients who will respond to a particular treatment, there is a need to develop in vitro model systems that replicate in vivo tumour status. Among the methods developed, patient-derived cancer organoids, also known as tumouroids, recapitulate in vivo tumour characteristics including tumour architecture. Tumouroids have been used for general disease modelling and genetic instability studies in pan-cancer research. However, a limited number of studies have thus far been conducted using tumouroid-based drug screening. Studies have concluded that tumouroids can play an essential role in bringing precision medicine for highly heterogenous cancer types such as HNC.
Collapse
|