1
|
Udriștoiu AL, Podină N, Ungureanu BS, Constantin A, Georgescu CV, Bejinariu N, Pirici D, Burtea DE, Gruionu L, Udriștoiu S, Săftoiu A. Deep learning segmentation architectures for automatic detection of pancreatic ductal adenocarcinoma in EUS-guided fine-needle biopsy samples based on whole-slide imaging. Endosc Ultrasound 2024; 13:335-344. [PMID: 39802107 PMCID: PMC11723688 DOI: 10.1097/eus.0000000000000094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/27/2024] [Indexed: 01/16/2025] Open
Abstract
Background EUS-guided fine-needle biopsy is the procedure of choice for the diagnosis of pancreatic ductal adenocarcinoma (PDAC). Nevertheless, the samples obtained are small and require expertise in pathology, whereas the diagnosis is difficult in view of the scarcity of malignant cells and the important desmoplastic reaction of these tumors. With the help of artificial intelligence, the deep learning architectures produce a fast, accurate, and automated approach for PDAC image segmentation based on whole-slide imaging. Given the effectiveness of U-Net in semantic segmentation, numerous variants and improvements have emerged, specifically for whole-slide imaging segmentation. Methods In this study, a comparison of 7 U-Net architecture variants was performed on 2 different datasets of EUS-guided fine-needle biopsy samples from 2 medical centers (31 and 33 whole-slide images, respectively) with different parameters and acquisition tools. The U-Net architecture variants evaluated included some that had not been previously explored for PDAC whole-slide image segmentation. The evaluation of their performance involved calculating accuracy through the mean Dice coefficient and mean intersection over union (IoU). Results The highest segmentation accuracies were obtained using Inception U-Net architecture for both datasets. PDAC tissue was segmented with the overall average Dice coefficient of 97.82% and IoU of 0.87 for Dataset 1, respectively, overall average Dice coefficient of 95.70%, and IoU of 0.79 for Dataset 2. Also, we considered the external testing of the trained segmentation models by performing the cross evaluations between the 2 datasets. The Inception U-Net model trained on Train Dataset 1 performed with the overall average Dice coefficient of 93.12% and IoU of 0.74 on Test Dataset 2. The Inception U-Net model trained on Train Dataset 2 performed with the overall average Dice coefficient of 92.09% and IoU of 0.81 on Test Dataset 1. Conclusions The findings of this study demonstrated the feasibility of utilizing artificial intelligence for assessing PDAC segmentation in whole-slide imaging, supported by promising scores.
Collapse
Affiliation(s)
| | - Nicoleta Podină
- Department of Gastroenterology, Ponderas Academic Hospital, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Silviu Ungureanu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Alina Constantin
- Department of Gastroenterology, Ponderas Academic Hospital, Bucharest, Romania
| | | | - Nona Bejinariu
- REGINA MARIA Regional Laboratory, Pathological Anatomy Division, Cluj-Napoca, Romania
| | - Daniel Pirici
- Department of Histology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Elena Burtea
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Lucian Gruionu
- Faculty of Mechanics, University of Craiova, Craiova, Romania
| | - Stefan Udriștoiu
- Faculty of Automation, Computers and Electronics, University of Craiova, Craiova, Romania
| | - Adrian Săftoiu
- Department of Gastroenterology, Ponderas Academic Hospital, Bucharest, Romania
- Department of Gastroenterology and Hepatology, Elias University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
2
|
Noguchi A, Numata Y, Sugawara T, Miura H, Konno K, Adachi Y, Yamaguchi R, Ishida M, Kokumai T, Douchi D, Miura T, Ariake K, Nakayama S, Maeda S, Ohtsuka H, Mizuma M, Nakagawa K, Morikawa H, Akatsuka J, Maeda I, Unno M, Yamamoto Y, Furukawa T. Deep learning predicts the 1-year prognosis of pancreatic cancer patients using positive peritoneal washing cytology. Sci Rep 2024; 14:17059. [PMID: 39095474 PMCID: PMC11297136 DOI: 10.1038/s41598-024-67757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Peritoneal washing cytology (CY) in patients with pancreatic cancer is mainly used for staging; however, it may also be used to evaluate the intraperitoneal status to predict a more accurate prognosis. Here, we investigated the potential of deep learning of CY specimen images for predicting the 1-year prognosis of pancreatic cancer in CY-positive patients. CY specimens from 88 patients with prognostic information were retrospectively analyzed. CY specimens scanned by the whole slide imaging device were segmented and subjected to deep learning with a Vision Transformer (ViT) and a Convolutional Neural Network (CNN). The results indicated that ViT and CNN predicted the 1-year prognosis from scanned images with accuracies of 0.8056 and 0.8009 in the area under the curve of the receiver operating characteristic curves, respectively. Patients predicted to survive 1 year or more by ViT showed significantly longer survivals by Kaplan-Meier analyses. The cell nuclei found to have a negative prognostic impact by ViT appeared to be neutrophils. Our results indicate that AI-mediated analysis of CY specimens can successfully predict the 1-year prognosis of patients with pancreatic cancer positive for CY. Intraperitoneal neutrophils may be a novel prognostic marker and therapeutic target for CY-positive patients with pancreatic cancer.
Collapse
Affiliation(s)
- Aya Noguchi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yasushi Numata
- Pathology Informatics Team, RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Bldg. 15F, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Takanori Sugawara
- Department of Pathology, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Hiroshu Miura
- Department of Pathology, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Kaori Konno
- Department of Pathology, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Yuzu Adachi
- Department of Pathology, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Ruri Yamaguchi
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takashi Kokumai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Daisuke Douchi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takayuki Miura
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kyohei Ariake
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Shun Nakayama
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Shimpei Maeda
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hiromu Morikawa
- Pathology Informatics Team, RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Bldg. 15F, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Jun Akatsuka
- Pathology Informatics Team, RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Bldg. 15F, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
- Department of Urology, Nippon Medical School Hospital, Tokyo, 113-8603, Japan
| | - Ichiro Maeda
- Pathology Informatics Team, RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Bldg. 15F, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
- Department of Pathology, Kitasato University Kitasato Institute Hospital, Tokyo, 108-0072, Japan
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, 252-0373, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yoichiro Yamamoto
- Pathology Informatics Team, RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Bldg. 15F, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan.
- Mathematical Intelligence for Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
3
|
Kim D, Sundling KE, Virk R, Thrall MJ, Alperstein S, Bui MM, Chen-Yost H, Donnelly AD, Lin O, Liu X, Madrigal E, Michelow P, Schmitt FC, Vielh PR, Zakowski MF, Parwani AV, Jenkins E, Siddiqui MT, Pantanowitz L, Li Z. Digital cytology part 2: artificial intelligence in cytology: a concept paper with review and recommendations from the American Society of Cytopathology Digital Cytology Task Force. J Am Soc Cytopathol 2024; 13:97-110. [PMID: 38158317 DOI: 10.1016/j.jasc.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Digital cytology and artificial intelligence (AI) are gaining greater adoption in the cytology laboratory. However, peer-reviewed real-world data and literature are lacking in regard to the current clinical landscape. The American Society of Cytopathology in conjunction with the International Academy of Cytology and the Digital Pathology Association established a special task force comprising 20 members with expertise and/or interest in digital cytology. The aim of the group was to investigate the feasibility of incorporating digital cytology, specifically cytology whole slide scanning and AI applications, into the workflow of the laboratory. In turn, the impact on cytopathologists, cytologists (cytotechnologists), and cytology departments were also assessed. The task force reviewed existing literature on digital cytology, conducted a worldwide survey, and held a virtual roundtable discussion on digital cytology and AI with multiple industry corporate representatives. This white paper, presented in 2 parts, summarizes the current state of digital cytology and AI practice in global cytology practice. Part 1 of the white paper is presented as a separate paper which details a review and best practice recommendations for incorporating digital cytology into practice. Part 2 of the white paper presented here provides a comprehensive review of AI in cytology practice along with best practice recommendations and legal considerations. Additionally, the cytology global survey results highlighting current AI practices by various laboratories, as well as current attitudes, are reported.
Collapse
Affiliation(s)
- David Kim
- Department of Pathology & Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Kaitlin E Sundling
- The Wisconsin State Laboratory of Hygiene and Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Renu Virk
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Michael J Thrall
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Susan Alperstein
- Department of Pathology and Laboratory Medicine, New York Presbyterian-Weill Cornell Medicine, New York, New York
| | - Marilyn M Bui
- The Department of Pathology, Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | - Amber D Donnelly
- Diagnostic Cytology Education, University of Nebraska Medical Center, College of Allied Health Professions, Omaha, Nebraska
| | - Oscar Lin
- Department of Pathology & Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xiaoying Liu
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Emilio Madrigal
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Pamela Michelow
- Division of Anatomical Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; Department of Pathology, National Health Laboratory Services, Johannesburg, South Africa
| | - Fernando C Schmitt
- Department of Pathology, Medical Faculty of Porto University, Porto, Portugal
| | - Philippe R Vielh
- Department of Pathology, Medipath and American Hospital of Paris, Paris, France
| | | | - Anil V Parwani
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Momin T Siddiqui
- Department of Pathology and Laboratory Medicine, New York Presbyterian-Weill Cornell Medicine, New York, New York
| | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
4
|
Singla N, Kundu R, Dey P. Artificial Intelligence: Exploring utility in detection and typing of fungus with futuristic application in fungal cytology. Cytopathology 2024; 35:226-234. [PMID: 37970960 DOI: 10.1111/cyt.13336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Artificial Intelligence (AI) is an emerging, transforming and revolutionary technology that has captured attention worldwide. It is translating research into precision oncology treatments. AI can analyse large or big data sets requiring high-speed specialized computing solutions. The data are big in terms of volume and multimodal with the amalgamation of images, text and structure. Machine learning has identified antifungal drug targets, and taxonomic and phylogenetic classification of fungi based on sequence analysis is now available. Real-time identification tools and user-friendly mobile applications for identifying fungi have been discovered. Akin to histopathology, AI can be applied to fungal cytology. AI has been fruitful in cytopathology of the thyroid gland, breast, urine and uterine cervical lesions. AI has a huge scope in fungal cytology and would certainly bear fruit with its accuracy, reproducibility and capacity for handling big data. The purpose of this systematic review was to highlight the AI's utility in detecting fungus and its typing with a special focus on future application in fungal cytology. We also touch upon the basics of AI in brief.
Collapse
Affiliation(s)
- Nidhi Singla
- Department of Microbiology, Government Medical College and Hospital, Chandigarh, India
| | - Reetu Kundu
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pranab Dey
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Rai HM, Yoo J, Atif Moqurrab S, Dashkevych S. Advancements in traditional machine learning techniques for detection and diagnosis of fatal cancer types: Comprehensive review of biomedical imaging datasets. MEASUREMENT 2024; 225:114059. [DOI: 10.1016/j.measurement.2023.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
6
|
Zhang T, Feng Y, Zhao Y, Lei Y, Ying N, Song F, He Y, Yan Z, Feng Y, Yang A, Zhang G. SI-ViT: Shuffle instance-based Vision Transformer for pancreatic cancer ROSE image classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107969. [PMID: 38064958 DOI: 10.1016/j.cmpb.2023.107969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND OBJECTIVE The rapid on-site evaluation (ROSE) technique improves pancreatic cancer diagnosis by enabling immediate analysis of fast-stained cytopathological images. Automating ROSE classification could not only reduce the burden on pathologists but also broaden the application of this increasingly popular technique. However, this approach faces substantial challenges due to complex perturbations in color distribution, brightness, and contrast, which are influenced by various staining environments and devices. Additionally, the pronounced variability in cancerous patterns across samples further complicates classification, underscoring the difficulty in precisely identifying local cells and establishing their global relationships. METHODS To address these challenges, we propose an instance-aware approach that enhances the Vision Transformer with a novel shuffle instance strategy (SI-ViT). Our approach presents a shuffle step to generate bags of shuffled instances and corresponding bag-level soft-labels, allowing the model to understand relationships and distributions beyond the limited original distributions. Simultaneously, combined with an un-shuffle step, the traditional ViT can model the relationships corresponding to the sample labels. This dual-step approach helps the model to focus on inner-sample and cross-sample instance relationships, making it potent in extracting diverse image patterns and reducing complicated perturbations. RESULTS Compared to state-of-the-art methods, significant improvements in ROSE classification have been achieved. Aiming for interpretability, equipped with instance shuffling, SI-ViT yields precise attention regions that identifying cancer and normal cells in various scenarios. Additionally, the approach shows excellent potential in pathological image analysis through generalization validation on other datasets. CONCLUSIONS By proposing instance relationship modeling through shuffling, we introduce a new insight in pathological image analysis. The significant improvements in ROSE classification leads to protential AI-on-site applications in pancreatic cancer diagnosis. The code and results are publicly available at https://github.com/sagizty/MIL-SI.
Collapse
Affiliation(s)
- Tianyi Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Youdan Feng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yu Zhao
- Department of Pathology, Peking Union Medical College Hospital, Beijing, 100006, China
| | - Yanli Lei
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Nan Ying
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Fan Song
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yufang He
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhiling Yan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yunlu Feng
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, 100006, China.
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, 100006, China
| | - Guanglei Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
7
|
Rawlani P, Ghosh NK, Kumar A. Role of artificial intelligence in the characterization of indeterminate pancreatic head mass and its usefulness in preoperative diagnosis. Artif Intell Gastroenterol 2023; 4:48-63. [DOI: 10.35712/aig.v4.i3.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2023] Open
Abstract
Artificial intelligence (AI) has been used in various fields of day-to-day life and its role in medicine is immense. Understanding of oncology has been improved with the introduction of AI which helps in diagnosis, treatment planning, management, prognosis, and follow-up. It also helps to identify high-risk groups who can be subjected to timely screening for early detection of malignant conditions. It is more important in pancreatic cancer as it is one of the major causes of cancer-related deaths worldwide and there are no specific early features (clinical and radiological) for diagnosis. With improvement in imaging modalities (computed tomography, magnetic resonance imaging, endoscopic ultrasound), most often clinicians were being challenged with lesions that were difficult to diagnose with human competence. AI has been used in various other branches of medicine to differentiate such indeterminate lesions including the thyroid gland, breast, lungs, liver, adrenal gland, kidney, etc. In the case of pancreatic cancer, the role of AI has been explored and is still ongoing. This review article will focus on how AI can be used to diagnose pancreatic cancer early or differentiate it from benign pancreatic lesions, therefore, management can be planned at an earlier stage.
Collapse
Affiliation(s)
- Palash Rawlani
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Nalini Kanta Ghosh
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
8
|
Khozeymeh F, Ariamanesh M, Roshan NM, Jafarian A, Farzanehfar M, Majd HM, Sedghian A, Dehghani M. Comparison of FNA-based conventional cytology specimens and digital image analysis in assessment of pancreatic lesions. Cytojournal 2023; 20:39. [PMID: 37942305 PMCID: PMC10629281 DOI: 10.25259/cytojournal_61_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/05/2023] [Indexed: 11/10/2023] Open
Abstract
Objectives Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) is one of the most important diagnostic tools for investigation of suspected pancreatic masses, although the interpretation of the results is controversial. In recent decades, digital image analysis (DIA) has been considered in pathology. The aim of this study was to assess the DIA in the evaluation of EUS-FNA based cytopathological specimens of pancreatic masses and comparing it with conventional cytology analysis by pathologist. Material and Methods This study was performed using cytological slides related to EUS-FNA samples of pancreatic lesions. The digital images were prepared and then analyzed by ImageJ software. Factors such as perimeter, circularity, area, minimum, maximum, mean, median of gray value, and integrated chromatin density of cell nucleus were extracted by software ImageJ and sensitivity, specificity, and cutoff point were evaluated in the diagnosis of malignant and benign lesions. Results In this retrospective study, 115 cytology samples were examined. Each specimen was reviewed by a pathologist and 150 images were prepared from the benign and malignant lesions and then analyzed by ImageJ software and a cut point was established by SPSS 26. The cutoff points for perimeter, integrated density, and the sum of three factors of perimeter, integrated density, and circularity to differentiate between malignant and benign lesions were reported to be 204.56, 131953, and 24643077, respectively. At this cutting point, the accuracy of estimation is based on the factors of perimeter, integrated density, and the sum of the three factors of perimeter, integrated density, and circularity were 92%, 92%, and 94%, respectively. Conclusion The results of this study showed that digital analysis of images has a high accuracy in diagnosing malignant and benign lesions in the cytology of EUS-FNA in patients with suspected pancreatic malignancy and by obtaining cutoff points by software output factors; digital imaging can be used to differentiate between benign and malignant pancreatic tumors.
Collapse
Affiliation(s)
- Farzaneh Khozeymeh
- Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Ariamanesh
- Department of Pathology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | | | | | - Hassan Mehrad Majd
- Clinical Research Development Unit, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Sedghian
- Department of Computer, Ferdowsi University of Engineering, Mashhad, Iran
| | - Mansoureh Dehghani
- Department of Oncology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Qin X, Ran T, Chen Y, Zhang Y, Wang D, Zhou C, Zou D. Artificial Intelligence in Endoscopic Ultrasonography-Guided Fine-Needle Aspiration/Biopsy (EUS-FNA/B) for Solid Pancreatic Lesions: Opportunities and Challenges. Diagnostics (Basel) 2023; 13:3054. [PMID: 37835797 PMCID: PMC10572518 DOI: 10.3390/diagnostics13193054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Solid pancreatic lesions (SPLs) encompass a variety of benign and malignant diseases and accurate diagnosis is crucial for guiding appropriate treatment decisions. Endoscopic ultrasonography-guided fine-needle aspiration/biopsy (EUS-FNA/B) serves as a front-line diagnostic tool for pancreatic mass lesions and is widely used in clinical practice. Artificial intelligence (AI) is a mathematical technique that automates the learning and recognition of data patterns. Its strong self-learning ability and unbiased nature have led to its gradual adoption in the medical field. In this paper, we describe the fundamentals of AI and provide a summary of reports on AI in EUS-FNA/B to help endoscopists understand and realize its potential in improving pathological diagnosis and guiding targeted EUS-FNA/B. However, AI models have limitations and shortages that need to be addressed before clinical use. Furthermore, as most AI studies are retrospective, large-scale prospective clinical trials are necessary to evaluate their clinical usefulness accurately. Although AI in EUS-FNA/B is still in its infancy, the constant input of clinical data and the advancements in computer technology are expected to make computer-aided diagnosis and treatment more feasible.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunhua Zhou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (X.Q.); (T.R.); (Y.C.); (Y.Z.); (D.W.)
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (X.Q.); (T.R.); (Y.C.); (Y.Z.); (D.W.)
| |
Collapse
|
10
|
Qin X, Zhang M, Zhou C, Ran T, Pan Y, Deng Y, Xie X, Zhang Y, Gong T, Zhang B, Zhang L, Wang Y, Li Q, Wang D, Gao L, Zou D. A deep learning model using hyperspectral image for EUS-FNA cytology diagnosis in pancreatic ductal adenocarcinoma. Cancer Med 2023; 12:17005-17017. [PMID: 37455599 PMCID: PMC10501295 DOI: 10.1002/cam4.6335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND AND AIMS Endoscopic ultrasonography-guided fine-needle aspiration/biopsy (EUS-FNA/B) is considered to be a first-line procedure for the pathological diagnosis of pancreatic cancer owing to its high accuracy and low complication rate. The number of new cases of pancreatic ductal adenocarcinoma (PDAC) is increasing, and its accurate pathological diagnosis poses a challenge for cytopathologists. Our aim was to develop a hyperspectral imaging (HSI)-based convolution neural network (CNN) algorithm to aid in the diagnosis of pancreatic EUS-FNA cytology specimens. METHODS HSI images were captured of pancreatic EUS-FNA cytological specimens from benign pancreatic tissues (n = 33) and PDAC (n = 39) prepared using a liquid-based cytology method. A CNN was established to test the diagnostic performance, and Attribution Guided Factorization Visualization (AGF-Visualization) was used to visualize the regions of important classification features identified by the model. RESULTS A total of 1913 HSI images were obtained. Our ResNet18-SimSiam model achieved an accuracy of 0.9204, sensitivity of 0.9310 and specificity of 0.9123 (area under the curve of 0.9625) when trained on HSI images for the differentiation of PDAC cytological specimens from benign pancreatic cells. AGF-Visualization confirmed that the diagnoses were based on the features of tumor cell nuclei. CONCLUSIONS An HSI-based model was developed to diagnose cytological PDAC specimens obtained using EUS-guided sampling. Under the supervision of experienced cytopathologists, we performed multi-staged consecutive in-depth learning of the model. Its superior diagnostic performance could be of value for cytologists when diagnosing PDAC.
Collapse
Affiliation(s)
- Xianzheng Qin
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Minmin Zhang
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Chunhua Zhou
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Taojing Ran
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yundi Pan
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yingjiao Deng
- Shanghai Key Laboratory of Multidimensional Information ProcessingEast China Normal UniversityShanghaiChina
| | - Xingran Xie
- Shanghai Key Laboratory of Multidimensional Information ProcessingEast China Normal UniversityShanghaiChina
| | - Yao Zhang
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Tingting Gong
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Benyan Zhang
- Department of PathologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Ling Zhang
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yan Wang
- Shanghai Key Laboratory of Multidimensional Information ProcessingEast China Normal UniversityShanghaiChina
| | - Qingli Li
- Shanghai Key Laboratory of Multidimensional Information ProcessingEast China Normal UniversityShanghaiChina
| | - Dong Wang
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Lili Gao
- Department of PathologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Duowu Zou
- Department of GastroenterologyRuijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
11
|
Wang LM, Ang TL. Optimizing endoscopic ultrasound guided fine needle aspiration through artificial intelligence. J Gastroenterol Hepatol 2023; 38:839-840. [PMID: 37264500 DOI: 10.1111/jgh.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Lai Mun Wang
- Department of Anatomical Pathology, Changi General Hospital, SingHealth, Duke-NUS Medical School, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, SingHealth; Duke-NUS Medical School; Yong Loo Lin School of Medicine, National University of Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
12
|
Monabbati S, Leo P, Bera K, Michael CW, Nezami BG, Harbhajanka A, Madabhushi A. Automated analysis of computerized morphological features of cell clusters associated with malignancy on bile duct brushing whole slide images. Cancer Med 2023; 12:6365-6378. [PMID: 36281473 PMCID: PMC10028025 DOI: 10.1002/cam4.5365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Accepted: 08/07/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Bile duct brush specimens are difficult to interpret as they often present inflammatory and reactive backgrounds due to the local effects of stricture, atypical reactive changes, or previously installed stents, and often have low to intermediate cellularity. As a result, diagnosis of biliary adenocarcinomas is challenging and often results in large interobserver variability and low sensitivity OBJECTIVE: In this work, we used computational image analysis to evaluate the role of nuclear morphological and texture features of epithelial cell clusters to predict the presence of pancreatic and biliary tract adenocarcinoma on digitized brush cytology specimens. METHODS Whole slide images from 124 patients, either diagnosed as benign or malignant based on clinicopathological correlation, were collected and randomly split into training (ST , N = 58) and testing (Sv , N = 66) sets, with the exception of cases diagnosed as atypical on cytology were included in Sv . Nuclear boundaries on cell clusters extracted from each image were segmented via a watershed algorithm. A total of 536 quantitative morphometric features pertaining to nuclear shape, size, and aggregate cluster texture were extracted from within the cell clusters. The most predictive features from patients in ST were selected via rank-sum, t-test, and minimum redundancy maximum relevance (mRMR) schemes. The selected features were then used to train three machine-learning classifiers. RESULTS Malignant clusters tended to exhibit lower textural homogeneity within the nucleus, greater textural entropy around the nuclear membrane, and longer minor axis lengths. The sensitivity of cytology alone was 74% (without atypicals) and 46% (with atypicals). With machine diagnosis, the sensitivity improved to 68% from 46% when atypicals were included and treated as nonmalignant false negatives. The specificity of our model was 100% within the atypical category. CONCLUSION We achieved an area under the receiver operating characteristic curve (AUC) of 0.79 on Sv , which included atypical cytological diagnosis.
Collapse
Affiliation(s)
- Shayan Monabbati
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Patrick Leo
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Kaustav Bera
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Claire W. Michael
- Department of PathologyCase Western Reserve University School of Medicine, University Hospitals Cleveland Medical CenterClevelandOhioUSA
| | - Behtash G. Nezami
- Department of PathologyCase Western Reserve University School of Medicine, University Hospitals Cleveland Medical CenterClevelandOhioUSA
| | - Aparna Harbhajanka
- Department of PathologyCase Western Reserve University School of Medicine, University Hospitals Cleveland Medical CenterClevelandOhioUSA
| | - Anant Madabhushi
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
- Louis Stokes Cleveland Veterans Administration Medical CenterClevelandOhioUSA
| |
Collapse
|
13
|
Yin H, Zhang F, Yang X, Meng X, Miao Y, Noor Hussain MS, Yang L, Li Z. Research trends of artificial intelligence in pancreatic cancer: a bibliometric analysis. Front Oncol 2022; 12:973999. [PMID: 35982967 PMCID: PMC9380440 DOI: 10.3389/fonc.2022.973999] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 01/03/2023] Open
Abstract
Purpose We evaluated the related research on artificial intelligence (AI) in pancreatic cancer (PC) through bibliometrics analysis and explored the research hotspots and current status from 1997 to 2021. Methods Publications related to AI in PC were retrieved from the Web of Science Core Collection (WoSCC) during 1997-2021. Bibliometrix package of R software 4.0.3 and VOSviewer were used to bibliometrics analysis. Results A total of 587 publications in this field were retrieved from WoSCC database. After 2018, the number of publications grew rapidly. The United States and Johns Hopkins University were the most influential country and institution, respectively. A total of 2805 keywords were investigated, 81 of which appeared more than 10 times. Co-occurrence analysis categorized these keywords into five types of clusters: (1) AI in biology of PC, (2) AI in pathology and radiology of PC, (3) AI in the therapy of PC, (4) AI in risk assessment of PC and (5) AI in endoscopic ultrasonography (EUS) of PC. Trend topics and thematic maps show that keywords " diagnosis ", “survival”, “classification”, and “management” are the research hotspots in this field. Conclusion The research related to AI in pancreatic cancer is still in the initial stage. Currently, AI is widely studied in biology, diagnosis, treatment, risk assessment, and EUS of pancreatic cancer. This bibliometrics study provided an insight into AI in PC research and helped researchers identify new research orientations.
Collapse
Affiliation(s)
- Hua Yin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Feixiong Zhang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoli Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiangkun Meng
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yu Miao
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | | | - Li Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
- *Correspondence: Zhaoshen Li, ; Li Yang,
| | - Zhaoshen Li
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
- *Correspondence: Zhaoshen Li, ; Li Yang,
| |
Collapse
|
14
|
Thakur N, Alam MR, Abdul-Ghafar J, Chong Y. Recent Application of Artificial Intelligence in Non-Gynecological Cancer Cytopathology: A Systematic Review. Cancers (Basel) 2022; 14:cancers14143529. [PMID: 35884593 PMCID: PMC9316753 DOI: 10.3390/cancers14143529] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Artificial intelligence (AI) has attracted significant interest in the healthcare sector due to its promising results. Cytological examination is a critical step in the initial diagnosis of cancer. Here, we conducted a systematic review with quantitative analysis to understand the current status of AI applications in non-gynecological (non-GYN) cancer cytology. In our analysis, we found that most of the studies focused on classification and segmentation tasks. Overall, AI showed promising results for non-GYN cancer cytopathology analysis. However, the lack of well-annotated, large-scale datasets with Z-stacking and external cross-validation was the major limitation across all studies. Abstract State-of-the-art artificial intelligence (AI) has recently gained considerable interest in the healthcare sector and has provided solutions to problems through automated diagnosis. Cytological examination is a crucial step in the initial diagnosis of cancer, although it shows limited diagnostic efficacy. Recently, AI applications in the processing of cytopathological images have shown promising results despite the elementary level of the technology. Here, we performed a systematic review with a quantitative analysis of recent AI applications in non-gynecological (non-GYN) cancer cytology to understand the current technical status. We searched the major online databases, including MEDLINE, Cochrane Library, and EMBASE, for relevant English articles published from January 2010 to January 2021. The searched query terms were: “artificial intelligence”, “image processing”, “deep learning”, “cytopathology”, and “fine-needle aspiration cytology.” Out of 17,000 studies, only 26 studies (26 models) were included in the full-text review, whereas 13 studies were included for quantitative analysis. There were eight classes of AI models treated of according to target organs: thyroid (n = 11, 39%), urinary bladder (n = 6, 21%), lung (n = 4, 14%), breast (n = 2, 7%), pleural effusion (n = 2, 7%), ovary (n = 1, 4%), pancreas (n = 1, 4%), and prostate (n = 1, 4). Most of the studies focused on classification and segmentation tasks. Although most of the studies showed impressive results, the sizes of the training and validation datasets were limited. Overall, AI is also promising for non-GYN cancer cytopathology analysis, such as pathology or gynecological cytology. However, the lack of well-annotated, large-scale datasets with Z-stacking and external cross-validation was the major limitation found across all studies. Future studies with larger datasets with high-quality annotations and external validation are required.
Collapse
|
15
|
Wu H, Ou S, Zhang H, Huang R, Yu S, Zhao M, Tai S. Advances in biomarkers and techniques for pancreatic cancer diagnosis. Cancer Cell Int 2022; 22:220. [PMID: 35761336 PMCID: PMC9237966 DOI: 10.1186/s12935-022-02640-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/18/2022] [Indexed: 12/31/2022] Open
Abstract
Pancreatic cancer is the most lethal type of malignancy and is characterized by high invasiveness without severe symptoms. It is difficult to detect PC at an early stage because of the low diagnostic accuracy of existing routine methods, such as abdominal ultrasound, CT, MRI, and endoscopic ultrasound (EUS). Therefore, it is of value to develop new diagnostic techniques for early detection with high accuracy. In this review, we aim to highlight research progress on novel biomarkers, artificial intelligence, and nanomaterial applications on the diagnostic accuracy of pancreatic cancer.
Collapse
|
16
|
Zhang S, Zhou Y, Tang D, Ni M, Zheng J, Xu G, Peng C, Shen S, Zhan Q, Wang X, Hu D, Li WJ, Wang L, Lv Y, Zou X. A deep learning-based segmentation system for rapid onsite cytologic pathology evaluation of pancreatic masses: A retrospective, multicenter, diagnostic study. EBioMedicine 2022; 80:104022. [PMID: 35512608 PMCID: PMC9079232 DOI: 10.1016/j.ebiom.2022.104022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background We aimed to develop a deep learning-based segmentation system for rapid on-site cytopathology evaluation (ROSE) to improve the diagnostic efficiency of endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) biopsy. Methods A retrospective, multicenter, diagnostic study was conducted using 5345 cytopathological slide images from 194 patients who underwent EUS-FNA. These patients were from Nanjing Drum Tower Hospital (109 patients), Wuxi People's Hospital (30 patients), Wuxi Second People's Hospital (25 patients), and The Second Affiliated Hospital of Soochow University (30 patients). A deep convolutional neural network (DCNN) system was developed to segment cell clusters and identify cancer cell clusters with cytopathological slide images. Internal testing, external testing, subgroup analysis, and human–machine competition were used to evaluate the performance of the system. Findings The DCNN system segmented stained cells from the background in cytopathological slides with an F1-score of 0·929 and 0·899–0·938 in internal and external testing, respectively. For cancer identification, the DCNN system identified images containing cancer clusters with AUCs of 0·958 and 0·948–0·976 in internal and external testing, respectively. The generalizable and robust performance of the DCNN system was validated in sensitivity analysis (AUC > 0·900) and was superior to that of trained endoscopists and comparable to cytopathologists on our testing datasets. Interpretation The DCNN system is feasible and robust for identifying sample adequacy and pancreatic cancer cell clusters. Prospective studies are warranted to evaluate the clinical significance of the system. Funding Jiangsu Natural Science Foundation; Nanjing Medical Science and Technology Development Funding; National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Song Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yangfan Zhou
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, Jiangsu 210008, China; National Key Laboratory for Novel Software Technology, Department of Computer Science and Technology, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Dehua Tang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Muhan Ni
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jinyu Zheng
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Chunyan Peng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Qiang Zhan
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xiaoyun Wang
- Department of Gastroenterology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, China
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Wu-Jun Li
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, Jiangsu 210008, China; National Key Laboratory for Novel Software Technology, Department of Computer Science and Technology, Nanjing University, Nanjing, Jiangsu 210008, China; Center for Medical Big Data, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
17
|
Chen HY, Ge P, Liu JY, Qu JL, Bao F, Xu CM, Chen HL, Shang D, Zhang GX. Artificial intelligence: Emerging player in the diagnosis and treatment of digestive disease. World J Gastroenterol 2022; 28:2152-2162. [PMID: 35721881 PMCID: PMC9157617 DOI: 10.3748/wjg.v28.i20.2152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/24/2021] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
Given the breakthroughs in key technologies, such as image recognition, deep learning and neural networks, artificial intelligence (AI) continues to be increasingly developed, leading to closer and deeper integration with an increasingly data-, knowledge- and brain labor-intensive medical industry. As society continues to advance and individuals become more aware of their health needs, the problems associated with the aging of the population are receiving increasing attention, and there is an urgent demand for improving medical technology, prolonging human life and enhancing health. Digestive system diseases are the most common clinical diseases and are characterized by complex clinical manifestations and a general lack of obvious symptoms in the early stage. Such diseases are very difficult to diagnose and treat. In recent years, the incidence of diseases of the digestive system has increased. As AI applications in the field of health care continue to be developed, AI has begun playing an important role in the diagnosis and treatment of diseases of the digestive system. In this paper, the application of AI in assisted diagnosis and the application and prospects of AI in malignant and benign digestive system diseases are reviewed.
Collapse
Affiliation(s)
- Hai-Yang Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Peng Ge
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Jia-Yue Liu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Jia-Lin Qu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Fang Bao
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Cai-Ming Xu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Hai-Long Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Dong Shang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Gui-Xin Zhang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
18
|
Painuli D, Bhardwaj S, Köse U. Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review. Comput Biol Med 2022; 146:105580. [PMID: 35551012 DOI: 10.1016/j.compbiomed.2022.105580] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/14/2022] [Accepted: 04/30/2022] [Indexed: 02/07/2023]
Abstract
Being a second most cause of mortality worldwide, cancer has been identified as a perilous disease for human beings, where advance stage diagnosis may not help much in safeguarding patients from mortality. Thus, efforts to provide a sustainable architecture with proven cancer prevention estimate and provision for early diagnosis of cancer is the need of hours. Advent of machine learning methods enriched cancer diagnosis area with its overwhelmed efficiency & low error-rate then humans. A significant revolution has been witnessed in the development of machine learning & deep learning assisted system for segmentation & classification of various cancers during past decade. This research paper includes a review of various types of cancer detection via different data modalities using machine learning & deep learning-based methods along with different feature extraction techniques and benchmark datasets utilized in the recent six years studies. The focus of this study is to review, analyse, classify, and address the recent development in cancer detection and diagnosis of six types of cancers i.e., breast, lung, liver, skin, brain and pancreatic cancer, using machine learning & deep learning techniques. Various state-of-the-art technique are clustered into same group and results are examined through key performance indicators like accuracy, area under the curve, precision, sensitivity, dice score on benchmark datasets and concluded with future research work challenges.
Collapse
Affiliation(s)
- Deepak Painuli
- Department of Computer Science and Engineering, Gurukula Kangri Vishwavidyalaya, Haridwar, India.
| | - Suyash Bhardwaj
- Department of Computer Science and Engineering, Gurukula Kangri Vishwavidyalaya, Haridwar, India
| | - Utku Köse
- Department of Computer Engineering, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
19
|
Alrafiah AR. Application and performance of artificial intelligence technology in cytopathology. Acta Histochem 2022; 124:151890. [PMID: 35366580 DOI: 10.1016/j.acthis.2022.151890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/27/2022]
Abstract
Deep learning algorithms and artificial intelligence (AI) are making great progress in their capacity to evaluate and interpret image data recent advancements in computer vision and machine learning. The first use of AI in a pathology lab was in cytopathology, when a computer-assisted Pap test screening was created. Initially designed to diagnose rather than screen, there was a lot of disagreement concerning their wide use to clinical specimens. However, whole-slide imaging of both gynaecological and non-gynaecological histopathology have been the subject of recent AI work. An overview of the literature on AI in cytopathology is provided in this brief review. To be more precise, it intends to emphasize the relevance of applications of AI algorithms to gynaecological and non-gynaecologic cytology. Between January 2000 and December 2021, a search on artificial intelligence in cytopathology was conducted in several well-known databases, including PubMed, Web of Science, Scopus, Embase, and Google Scholar. Only full-text papers that could be accessed online were evaluated.
Collapse
|
20
|
Lin KW, Ang TL, Li JW. Role of artificial intelligence in early detection and screening for pancreatic adenocarcinoma. Artif Intell Med Imaging 2022; 3:21-32. [DOI: 10.35711/aimi.v3.i2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/12/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma remains to be one of the deadliest malignancies in the world despite treatment advancement over the past few decades. Its low survival rates and poor prognosis can be attributed to ambiguity in recommendations for screening and late symptom onset, contributing to its late presentation. In the recent years, artificial intelligence (AI) as emerged as a field to aid in the process of clinical decision making. Considerable efforts have been made in the realm of AI to screen for and predict future development of pancreatic ductal adenocarcinoma. This review discusses the use of AI in early detection and screening for pancreatic adenocarcinoma, and factors which may limit its use in a clinical setting.
Collapse
Affiliation(s)
- Kenneth Weicong Lin
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore 529889, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore 529889, Singapore
| | - James Weiquan Li
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore 529889, Singapore
| |
Collapse
|
21
|
Dey P. Artificial neural network in diagnostic cytology. Cytojournal 2022; 19:27. [PMID: 35510103 PMCID: PMC9063555 DOI: 10.25259/cytojournal_33_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022] Open
Abstract
The artificial neural network (ANN) is a computer software design or model that simulates the biological neural network of the human brain. Instead of biological neurons, ANN is composed of many layers of nodes that carry the signal and process it to make the final decision. ANN is a modern technology that is widely used in different fields of science. The ANN is reshaping the medical system and the various areas of pathology. In this paper, the basic concept and applications of ANN in cytology have been discussed. In this paper, the various articles published on ANN in the field of cytology have been systemically reviewed. The ANN is relatively less used in cytology. After introducing convolutional neural network and whole slide scanners in the commercial market, it is now essential to have thorough knowledge in this field to start diagnostic application of ANN.
Collapse
|
22
|
Goyal H, Sherazi SAA, Mann R, Gandhi Z, Perisetti A, Aziz M, Chandan S, Kopel J, Tharian B, Sharma N, Thosani N. Scope of Artificial Intelligence in Gastrointestinal Oncology. Cancers (Basel) 2021; 13:5494. [PMID: 34771658 PMCID: PMC8582733 DOI: 10.3390/cancers13215494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancers are among the leading causes of death worldwide, with over 2.8 million deaths annually. Over the last few decades, advancements in artificial intelligence technologies have led to their application in medicine. The use of artificial intelligence in endoscopic procedures is a significant breakthrough in modern medicine. Currently, the diagnosis of various gastrointestinal cancer relies on the manual interpretation of radiographic images by radiologists and various endoscopic images by endoscopists. This can lead to diagnostic variabilities as it requires concentration and clinical experience in the field. Artificial intelligence using machine or deep learning algorithms can provide automatic and accurate image analysis and thus assist in diagnosis. In the field of gastroenterology, the application of artificial intelligence can be vast from diagnosis, predicting tumor histology, polyp characterization, metastatic potential, prognosis, and treatment response. It can also provide accurate prediction models to determine the need for intervention with computer-aided diagnosis. The number of research studies on artificial intelligence in gastrointestinal cancer has been increasing rapidly over the last decade due to immense interest in the field. This review aims to review the impact, limitations, and future potentials of artificial intelligence in screening, diagnosis, tumor staging, treatment modalities, and prediction models for the prognosis of various gastrointestinal cancers.
Collapse
Affiliation(s)
- Hemant Goyal
- Department of Internal Medicine, The Wright Center for Graduate Medical Education, 501 S. Washington Avenue, Scranton, PA 18505, USA
| | - Syed A. A. Sherazi
- Department of Medicine, John H Stroger Jr Hospital of Cook County, 1950 W Polk St, Chicago, IL 60612, USA;
| | - Rupinder Mann
- Department of Medicine, Saint Agnes Medical Center, 1303 E. Herndon Ave, Fresno, CA 93720, USA;
| | - Zainab Gandhi
- Department of Medicine, Geisinger Wyoming Valley Medical Center, 1000 E Mountain Dr, Wilkes-Barre, PA 18711, USA;
| | - Abhilash Perisetti
- Division of Interventional Oncology & Surgical Endoscopy (IOSE), Parkview Cancer Institute, 11050 Parkview Circle, Fort Wayne, IN 46845, USA; (A.P.); (N.S.)
| | - Muhammad Aziz
- Department of Gastroenterology and Hepatology, University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, OH 43614, USA;
| | - Saurabh Chandan
- Division of Gastroenterology and Hepatology, CHI Health Creighton University Medical Center, 7500 Mercy Rd, Omaha, NE 68124, USA;
| | - Jonathan Kopel
- Department of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430, USA;
| | - Benjamin Tharian
- Department of Gastroenterology and Hepatology, The University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA;
| | - Neil Sharma
- Division of Interventional Oncology & Surgical Endoscopy (IOSE), Parkview Cancer Institute, 11050 Parkview Circle, Fort Wayne, IN 46845, USA; (A.P.); (N.S.)
| | - Nirav Thosani
- Division of Gastroenterology, Hepatology & Nutrition, McGovern Medical School, UTHealth, 6410 Fannin, St #1014, Houston, TX 77030, USA;
| |
Collapse
|
23
|
Kröner PT, Engels MML, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27:6794-6824. [PMID: 34790008 PMCID: PMC8567482 DOI: 10.3748/wjg.v27.i40.6794] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The development of artificial intelligence (AI) has increased dramatically in the last 20 years, with clinical applications progressively being explored for most of the medical specialties. The field of gastroenterology and hepatology, substantially reliant on vast amounts of imaging studies, is not an exception. The clinical applications of AI systems in this field include the identification of premalignant or malignant lesions (e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett’s esophagus, pancreatic malignancies), detection of lesions (e.g., polyp identification and classification, small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), development of objective scoring systems for risk stratification, predicting disease prognosis or treatment response [e.g., determining survival in patients post-resection of hepatocellular carcinoma), determining which patients with inflammatory bowel disease (IBD) will benefit from biologic therapy], or evaluation of metrics such as bowel preparation score or quality of endoscopic examination. The objective of this comprehensive review is to analyze the available AI-related studies pertaining to the entirety of the gastrointestinal tract, including the upper, middle and lower tracts; IBD; the hepatobiliary system; and the pancreas, discussing the findings and clinical applications, as well as outlining the current limitations and future directions in this field.
Collapse
Affiliation(s)
- Paul T Kröner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Megan ML Engels
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Cancer Center Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam 1105, The Netherlands
| | - Benjamin S Glicksberg
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kipp W Johnson
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Obaie Mzaik
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Amsterdam 2300, The Netherlands
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
| | - Chayakrit Krittanawong
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| |
Collapse
|
24
|
Mendoza Ladd A, Diehl DL. Artificial intelligence for early detection of pancreatic adenocarcinoma: The future is promising. World J Gastroenterol 2021; 27:1283-1295. [PMID: 33833482 PMCID: PMC8015296 DOI: 10.3748/wjg.v27.i13.1283] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a worldwide public health concern. Despite extensive research efforts toward improving diagnosis and treatment, the 5-year survival rate at best is approximately 15%. This dismal figure can be attributed to a variety of factors including lack of adequate screening methods, late symptom onset, and treatment resistance. Pancreatic ductal adenocarcinoma remains a grim diagnosis with a high mortality rate and a significant psy-chological burden for patients and their families. In recent years artificial intelligence (AI) has permeated the medical field at an accelerated pace, bringing potential new tools that carry the promise of improving diagnosis and treatment of a variety of diseases. In this review we will summarize the landscape of AI in diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Antonio Mendoza Ladd
- Department of Internal Medicine, Division of Gastroenterology, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, United States
| | - David L Diehl
- Department of Gastroenterology and Nutrition, Geisinger Medical Center, Danville, PA 17822, United States
| |
Collapse
|
25
|
Akshintala VS, Khashab MA. Artificial intelligence in pancreaticobiliary endoscopy. J Gastroenterol Hepatol 2021; 36:25-30. [PMID: 33448514 DOI: 10.1111/jgh.15343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) applications in health care have exponentially increased in recent years, and a few of these are related to pancreatobiliary disorders. AI-based methods were applied to extract information, in prognostication, to guide clinical treatment decisions and in pancreatobiliary endoscopy to characterize lesions. AI applications in endoscopy are expected to reduce inter-operator variability, improve the accuracy of diagnosis, and assist in therapeutic decision-making in real time. AI-based literature must however be interpreted with caution given the limited external validation. A multidisciplinary approach combining clinical and imaging or endoscopy data will better utilize AI-based technologies to further improve patient care.
Collapse
Affiliation(s)
- Venkata S Akshintala
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Mouen A Khashab
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Parasher G, Wong M, Rawat M. Evolving role of artificial intelligence in gastrointestinal endoscopy. World J Gastroenterol 2020; 26:7287-7298. [PMID: 33362384 PMCID: PMC7739161 DOI: 10.3748/wjg.v26.i46.7287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/02/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is a combination of different technologies that enable machines to sense, comprehend, and learn with human-like levels of intelligence. AI technology will eventually enhance human capability, provide machines genuine autonomy, and reduce errors, and increase productivity and efficiency. AI seems promising, and the field is full of invention, novel applications; however, the limitation of machine learning suggests a cautious optimism as the right strategy. AI is also becoming incorporated into medicine to improve patient care by speeding up processes and achieving greater accuracy for optimal patient care. AI using deep learning technology has been used to identify, differentiate catalog images in several medical fields including gastrointestinal endoscopy. The gastrointestinal endoscopy field involves endoscopic diagnoses and prognostication of various digestive diseases using image analysis with the help of various gastrointestinal endoscopic device systems. AI-based endoscopic systems can reliably detect and provide crucial information on gastrointestinal pathology based on their training and validation. These systems can make gastroenterology practice easier, faster, more reliable, and reduce inter-observer variability in the coming years. However, the thought that these systems will replace human decision making replace gastrointestinal endoscopists does not seem plausible in the near future. In this review, we discuss AI and associated various technological terminologies, evolving role in gastrointestinal endoscopy, and future possibilities.
Collapse
Affiliation(s)
- Gulshan Parasher
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Morgan Wong
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Manmeet Rawat
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| |
Collapse
|
27
|
Lin HM, Xue XF, Wang XG, Dang SC, Gu M. Application of artificial intelligence for the diagnosis, treatment, and prognosis of pancreatic cancer. Artif Intell Gastroenterol 2020; 1:19-29. [DOI: 10.35712/aig.v1.i1.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a complex cancer of the digestive tract. Diagnosis and treatment can be very difficult because of unclear early symptoms, the deep anatomical location of cancer tissues, and the high degree of cancer cell invasion. The prognosis is extremely poor; the 5-year survival rate of patients with pancreatic cancer is less than 1%. Artificial intelligence (AI) has great potential for application in the medical field. In addition to AI-based applications, such as disease data processing, imaging, and pathological image recognition, robotic surgery has revolutionized surgical procedures. To better understand the current role of AI in pancreatic cancer and predict future development trends, this article comprehensively reports the application of AI to the diagnosis, treatment, and prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Hai-Min Lin
- Department of General Surgery, the Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Xiao-Fei Xue
- Department of General Surgery, Pucheng Hospital, Weinan 715500, Shaanxi Province, China
| | - Xiao-Gang Wang
- Department of General Surgery, Pucheng Hospital, Weinan 715500, Shaanxi Province, China
| | - Sheng-Chun Dang
- Department of General Surgery, the Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of General Surgery, Pucheng Hospital, Weinan 715500, Shaanxi Province, China
| | - Min Gu
- Department of Oncology, Zhenjiang Hospital of Traditional Chinese and Western Medicine, Zhenjiang 212000 Jiangsu Province, China
| |
Collapse
|
28
|
Application of artificial intelligence for the diagnosis, treatment, and prognosis of pancreatic cancer. Artif Intell Gastroenterol 2020. [DOI: 10.35712/wjg.v1.i1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Xia R, Boroujeni AM, Shea S, Pan Y, Agrawal R, Yousefi E, Fiel MI, Haseeb MA, Gupta R. Diagnosis of Liver Neoplasms by Computational and Statistical Image Analysis. Gastroenterology Res 2019; 12:288-298. [PMID: 31803308 PMCID: PMC6879028 DOI: 10.14740/gr1210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background Distinguishing well-differentiated hepatocellular carcinoma (WD-HCC), hepatocellular adenoma (HA) and non-neoplastic liver tissue (NNLT) solely on morphology is often challenging. The purpose of this study was to evaluate the use of computational image analysis to distinguish WD-HCC, HA and NNLT. Methods Seventy-seven cases comprising of WD-HCC (n = 26), HA (n = 23) and NNLT (n = 28) were retrieved and reviewed. A total of 485 hematoxylin and eosin (H&E) photomicrographs (× 400, 0.09 µm2) of WD-HCC (n = 183), HA (n = 173), NNLT (n = 129) and nine whole-slide scans (three of each diagnosis) were obtained, color deconvoluted and digitally transformed. Quantitative data including nuclear density, nuclear sphericity, nuclear perimeter, and nuclear eccentricity from each image were acquired. The data were analyzed by one-way analysis of variance (ANOVA) with Tukey post hoc test, followed by unsupervised and supervised (Chi-square automatic interaction detection (CHAID)) cluster analysis. Results Unsupervised cluster analysis identified three well defined clusters of WD-HCC, HA and NNLT. Employing the four most discriminating nuclear features, supervised analysis was performed on a training set of 383 images, and validated on the remaining 102 test images. The analysis identified WD-HCC (sensitivity 100%, specificity 98%), HA (sensitivity 71%, specificity 85%) and NNLT (sensitivity 70%, specificity 86%). An analysis of whole-slide images identified WD-HCC with sensitivity and specificity of 100%. Conclusions We have successfully demonstrated that computational image analysis of nuclear features can differentiate WD-HCC from non-malignant liver with high accuracy, and can be used to assist in the histopathological diagnosis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rong Xia
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Amir M Boroujeni
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Stephanie Shea
- Department of Pathology, Mount Sinai Hospital and Icahn School of Medicine, New York, NY 10029, USA
| | - Yongsheng Pan
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Raag Agrawal
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Elhem Yousefi
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - M Isabel Fiel
- Department of Pathology, Mount Sinai Hospital and Icahn School of Medicine, New York, NY 10029, USA
| | - M A Haseeb
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Raavi Gupta
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
30
|
Cazacu IM, Udristoiu A, Gruionu LG, Iacob A, Gruionu G, Saftoiu A. Artificial intelligence in pancreatic cancer: Toward precision diagnosis. Endosc Ultrasound 2019; 8:357-359. [PMID: 31854344 PMCID: PMC6927145 DOI: 10.4103/eus.eus_76_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Irina M. Cazacu
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Anca Udristoiu
- Faculty of Automation, Computers and Electronics, University of Craiova, Craiova, Romania
| | | | - Andreea Iacob
- Faculty of Automation, Computers and Electronics, University of Craiova, Craiova, Romania
| | - Gabriel Gruionu
- Faculty of Mechanics, University of Craiova, Craiova, Romania
| | - Adrian Saftoiu
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
31
|
Xu J, Jing M, Wang S, Yang C, Chen X. A review of medical image detection for cancers in digestive system based on artificial intelligence. Expert Rev Med Devices 2019; 16:877-889. [PMID: 31530047 DOI: 10.1080/17434440.2019.1669447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: At present, cancer imaging examination relies mainly on manual reading of doctors, which requests a high standard of doctors' professional skills, clinical experience, and concentration. However, the increasing amount of medical imaging data has brought more and more challenges to radiologists. The detection of digestive system cancer (DSC) based on artificial intelligence (AI) can provide a solution for automatic analysis of medical images and assist doctors to achieve high-precision intelligent diagnosis of cancers. Areas covered: The main goal of this paper is to introduce the main research methods of the AI based detection of DSC, and provide relevant reference for researchers. Meantime, it summarizes the main problems existing in these methods, and provides better guidance for future research. Expert commentary: The automatic classification, recognition, and segmentation of DSC can be better realized through the methods of machine learning and deep learning, which minimize the internal information of images that are difficult for humans to discover. In the diagnosis of DSC, the use of AI to assist imaging surgeons can achieve cancer detection rapidly and effectively and save doctors' diagnosis time. These can lay the foundation for better clinical diagnosis, treatment planning and accurate quantitative evaluation of DSC.
Collapse
Affiliation(s)
- Jiangchang Xu
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai , China
| | - Mengjie Jing
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai , China
| | - Shiming Wang
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai , China
| | - Cuiping Yang
- Department of Gastroenterology, Ruijin North Hospital of Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiaojun Chen
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
32
|
Guan Q, Wang Y, Ping B, Li D, Du J, Qin Y, Lu H, Wan X, Xiang J. Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study. J Cancer 2019; 10:4876-4882. [PMID: 31598159 PMCID: PMC6775529 DOI: 10.7150/jca.28769] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/28/2019] [Indexed: 12/22/2022] Open
Abstract
Objective: In this study, we exploited a VGG-16 deep convolutional neural network (DCNN) model to differentiate papillary thyroid carcinoma (PTC) from benign thyroid nodules using cytological images. Methods: A pathology-proven dataset was built from 279 cytological images of thyroid nodules. The images were cropped into fragmented images and divided into a training dataset and a test dataset. VGG-16 and Inception-v3 DCNNs were trained and tested to make differential diagnoses. The characteristics of tumor cell nucleus were quantified as contours, perimeter, area and mean of pixel intensity and compared using independent Student's t-tests. Results: In the test group, the accuracy rates of the VGG-16 model and Inception-v3 on fragmented images were 97.66% and 92.75%, respectively, and the accuracy rates of VGG-16 and Inception-v3 in patients were 95% and 87.5%, respectively. The contours, perimeter, area and mean of pixel intensity of PTC in fragmented images were more than the benign nodules, which were 61.01±17.10 vs 47.00±24.08, p=0.000, 134.99±21.42 vs 62.40±29.15, p=0.000, 1770.89±627.22 vs 1157.27±722.23, p=0.013, 165.84±26.33 vs 132.94±28.73, p=0.000), respectively. Conclusion: In summary, after training with a large dataset, the DCNN VGG-16 model showed great potential in facilitating PTC diagnosis from cytological images. The contours, perimeter, area and mean of pixel intensity of PTC in fragmented images were more than the benign nodules.
Collapse
Affiliation(s)
- Qing Guan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical Colloge, Fudan University, Shanghai, 200032, China
| | - Yunjun Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical Colloge, Fudan University, Shanghai, 200032, China
| | - Bo Ping
- Department of Oncology, Shanghai Medical Colloge, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Duanshu Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical Colloge, Fudan University, Shanghai, 200032, China
| | - Jiajun Du
- Depertment of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Yu Qin
- Depertment of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Hongtao Lu
- Depertment of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Xiaochun Wan
- Department of Oncology, Shanghai Medical Colloge, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jun Xiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical Colloge, Fudan University, Shanghai, 200032, China
| |
Collapse
|
33
|
Sanghvi AB, Allen EZ, Callenberg KM, Pantanowitz L. Performance of an artificial intelligence algorithm for reporting urine cytopathology. Cancer Cytopathol 2019; 127:658-666. [PMID: 31412169 DOI: 10.1002/cncy.22176] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Unlike Papanicolaou tests, there are no commercially available computer-assisted automated screening systems for urine specimens. Despite The Paris System for Reporting Urinary Cytology, there still is poor interobserver agreement with urine cytology and many cases in which a definitive diagnosis cannot be made. In the current study, the authors have reported on the development of an image algorithm that applies computational methods to digitized liquid-based urine cytology slides. METHODS A total of 2405 archival ThinPrep glass slides, including voided and instrumented urine cytology cases, were digitized. A deep learning computational pipeline with multiple tiers of convolutional neural network models was developed for processing whole slide images (WSIs) and predicting diagnoses. The algorithm was validated using a separate test data set comprised of consecutive cases encountered in routine clinical practice. RESULTS There were 1.9 million urothelial cells analyzed. An average of 5400 urothelial cells were identified in each WSI. The algorithm achieved an area under the curve of 0.88 (95% CI, 0.83-0.93). Using the optimal operating point, the algorithm's sensitivity was 79.5% (95% CI, 64.7%-90.2%) and the specificity was 84.5% (95% CI, 81.6%-87.1%) for high-grade urothelial carcinoma. CONCLUSIONS The authors successfully developed a computational algorithm capable of accurately analyzing WSIs of urine cytology cases. Compared with prior studies, this effort used a much larger data set, exploited whole slide-level and not just cell-level features, and used a cell gallery to display the algorithm's output for easy end-user review. This algorithm provides computer-assisted interpretation of urine cytology cases, akin to the machine learning technology currently used for automated Papanicolaou test screening.
Collapse
Affiliation(s)
| | | | | | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Guan Q, Wan X, Lu H, Ping B, Li D, Wang L, Zhu Y, Wang Y, Xiang J. Deep convolutional neural network Inception-v3 model for differential diagnosing of lymph node in cytological images: a pilot study. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:307. [PMID: 31475177 DOI: 10.21037/atm.2019.06.29] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background In this study, we exploited the Inception-v3 deep convolutional neural network (DCNN) model to differentiate cervical lymphadenopathy using cytological images. Methods A dataset of 80 cases was collected through the fine-needle aspiration (FNA) of enlarged cervical lymph nodes, which consisted of 20 cases of reactive lymphoid hyperplasia, 24 cases of non-Hodgkin's lymphoma (NHL), 16 cases of squamous cell carcinoma (SCC), and 20 cases of adenocarcinoma. The images were cropped into fragmented images and divided into a training dataset and a test dataset. Inception-v3 was trained to make differential diagnoses and then tested. The features of misdiagnosed images were further analysed to discover the features that may influence the diagnostic efficiency of such a DCNN. Results A total of 742 original images were derived from the cases, from which a total of 7,934 fragmented images were cropped. The classification accuracies for the original images of reactive lymphoid hyperplasia, NHL, SCC and adenocarcinoma were 88.46%, 80.77%, 89.29% and 100%, respectively. The total accuracy on the test dataset was 89.62%. Three fragmented images of reactive lymphoid hyperplasia and three fragmented images of SCC were misclassified as NHL. Three fragmented images of NHL were misclassified as reactive lymphoid hyperplasia, one was misclassified as SCC, and one was misclassified as adenocarcinoma. Conclusions In summary, after training with a large dataset, the Inception-v3 DCNN model showed great potential in facilitating the diagnosis of cervical lymphadenopathy using cytological images. Analysis of the misdiagnosed cases revealed that NHL was the most challenging cytology type for DCNN to differentiate.
Collapse
Affiliation(s)
- Qing Guan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaochun Wan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Hongtao Lu
- Depertment of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Bo Ping
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Duanshu Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Wang
- Depertment of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yongxue Zhu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunjun Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jun Xiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Landau MS, Pantanowitz L. Artificial intelligence in cytopathology: a review of the literature and overview of commercial landscape. J Am Soc Cytopathol 2019; 8:230-241. [PMID: 31272605 DOI: 10.1016/j.jasc.2019.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/17/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Artificial intelligence (AI) has made impressive strides recently in interpreting complex images, thanks to improvements in deep learning techniques and increasing computational power. Researchers have started applying these advanced techniques to pathology images, although most efforts have been focused on histopathology. Cytopathology, however, remains the original field of pathology for which AI models for clinical use were successfully commercialized, to assist with automating Papanicolaou test screening. Recent AI efforts have focused on whole slide images of both gynecologic and non-gynecologic cytopathology. This review summarizes the literature and commercial landscape of AI as applied to cytopathology.
Collapse
Affiliation(s)
- Michael S Landau
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|