1
|
Pombal MA, Megías M, Lozano D, López JM. Neuromeric Distribution of Nicotinamide Adenine Dinucleotide Phosphate-Diaphorase Activity in the Adult Lamprey Brain. Front Neuroanat 2022; 16:826087. [PMID: 35197830 PMCID: PMC8859838 DOI: 10.3389/fnana.2022.826087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
This study reports for the first time the distribution and morphological characterization of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d; a reliable marker of nitric oxide synthase activity) positive elements in the central nervous system of the adult river lamprey (Lampetra fluviatilis) on the framework of the neuromeric model and compares their cytoarchitectonic organization with that of gnathostomes. Both NADPH-d exhibiting cells and fibers were observed in all major divisions of the lamprey brain as well as in the spinal cord. In the secondary prosencephalon, NADPH-d positive cells were observed in the mitral cell layer of the olfactory bulb, evaginated pallium, amygdala, dorsal striatum, septum, lateral preoptic nucleus, caudal paraventricular area, posterior entopeduncular nucleus, nucleus of the stria medullaris, hypothalamic periventricular organ and mamillary region sensu lato. In the lamprey diencephalon, NADPH-d labeled cells were observed in several nuclei of the prethalamus, epithalamus, pretectum, and the basal plate. Especially remarkable was the staining observed in the right habenula and several pretectal nuclei. NADPH-d positive cells were also observed in the following mesencephalic areas: optic tectum (two populations), torus semicircularis, nucleus M5 of Schöber, and a ventral tegmental periventricular nucleus. Five different cell populations were observed in the isthmic region, whereas the large sensory dorsal cells, some cells located in the interpeduncular nucleus, the motor nuclei of most cranial nerves, the solitary tract nucleus, some cells of the reticular nuclei, and small cerebrospinal fluid-contacting (CSF-c) cells were the most evident stained cells of the rhombencephalon proper. Finally, several NADPH-d positive cells were observed in the rostral part of the spinal cord, including the large sensory dorsal cells, numerous CSF-c cells, and some dorsal and lateral interneurons. NADPH-d positive fibers were observed in the olfactory pathways (primary olfactory fibers and stria medullaris), the fasciculus retroflexus, and the dorsal column tract. Our results on the distribution of NADPH-d positive elements in the brain of the adult lamprey L. fluviatilis are significantly different from those previously reported in larval lampreys and demonstrated that these animals possess a complex nitrergic system readily comparable to those of other vertebrates, although important specific differences also exist.
Collapse
Affiliation(s)
- Manuel A. Pombal
- Neurolam Group, Facultade de Bioloxía-IBIV, Departamento de Bioloxía Funcional e Ciencias da Saúde, Universidade de Vigo, Vigo, Spain
- *Correspondence: Manuel A. Pombal,
| | - Manuel Megías
- Neurolam Group, Facultade de Bioloxía-IBIV, Departamento de Bioloxía Funcional e Ciencias da Saúde, Universidade de Vigo, Vigo, Spain
| | - Daniel Lozano
- Department of Cellular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Jesús M. López
- Department of Cellular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Marín O, Moreno N. Agustín González, an Inspirational Leader in Spanish Comparative Neuroanatomy. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:174-180. [PMID: 34644701 DOI: 10.1159/000519259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Nerea Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Wang XQ, Wang WB, Tang YZ, Dai ZD. Subdivisions of the mesencephalon and isthmus in the lizard Gekko gecko as revealed by ChAT immunohistochemistry. Anat Rec (Hoboken) 2021; 304:2014-2031. [PMID: 33554451 DOI: 10.1002/ar.24595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/07/2020] [Accepted: 01/05/2021] [Indexed: 11/05/2022]
Abstract
The distribution of cholinergic cell bodies and fibers was examined in the mesencephalon and isthmus of Gekko gecko. Distinct groups with prominent labeled cells were observed in the cranial nerve motor nuclei and isthmic nuclei, and weak labeled cell bodies and fibers were observed in the mesencephalic nucleus of the trigeminal nerve and the central nucleus of the torus semicircularis. After discussing the topological relationships within the tectum and isthmus, we unify the nomenclature of the caudal deep mesencephalic nucleus in lizards and the rostral magnocellular nucleus isthmi in turtles that is similar in terms of the preisthmic position, nontopographic connections with the tectum, and the same midbrain origin to the magnocellular preisthmic nucleus in birds, and may be homologous to the superficial cuneiform nucleus in mammals. None of them belong to the cholinergic nucleus isthmi, as the latter has isthmus origin and topographic reciprocal connections with the tectum. We also discuss the origin and intrinsic function of the inner longitudinal tract of the thick ChAT-ir fibers that course through the mesencephalon and diencephalon. We review the subdivisions of the mesencephalon and isthmus of Gekko gecko as revealed by ChAT immunohistochemistry, as well as the limits of the diencephalo-mesencephalic, mesencephalic-isthmo, and isthmo-rhombocephalic by the ChAT-ir cell- and fiber-poor distribution, and discuss the caudal limit of the isthmus. Our research on the subdivisions of the mesencephalon and isthmus in G. gecko as revealed by ChAT immunohistochemistry will serve as the neuroanatomical basis for subsequent relevant studies of Gekko gecko.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Institute of Bio-Inspired Structure and Surface Engineering, Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Astronautics, Nanjing University of Aeronautics & Astronautics, Nanjing, China
| | - Wen-Bo Wang
- Institute of Bio-Inspired Structure and Surface Engineering, Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Astronautics, Nanjing University of Aeronautics & Astronautics, Nanjing, China
| | - Ye-Zhong Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zhen-Dong Dai
- Institute of Bio-Inspired Structure and Surface Engineering, Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Astronautics, Nanjing University of Aeronautics & Astronautics, Nanjing, China
| |
Collapse
|
4
|
de Girolamo P, Leggieri A, Palladino A, Lucini C, Attanasio C, D’Angelo L. Cholinergic System and NGF Receptors: Insights from the Brain of the Short-Lived Fish Nothobranchius furzeri. Brain Sci 2020; 10:brainsci10060394. [PMID: 32575701 PMCID: PMC7348706 DOI: 10.3390/brainsci10060394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023] Open
Abstract
Nerve growth factor (NGF) receptors are evolutionary conserved molecules, and in mammals are considered necessary for ensuring the survival of cholinergic neurons. The age-dependent regulation of NTRK1/NTRKA and p75/NGFR in mammalian brain results in a reduced response of the cholinergic neurons to neurotrophic factors and is thought to play a role in the pathogenesis of neurodegenerative diseases. Here, we study the age-dependent expression of NGF receptors (NTRK1/NTRKA and p75/NGFR) in the brain of the short-lived teleost fish Nothobranchius furzeri. We observed that NTRK1/NTRKA is more expressed than p75/NGFR in young and old animals, although both receptors do not show a significant age-dependent change. We then study the neuroanatomical organization of the cholinergic system, observing that cholinergic fibers project over the entire neuroaxis while cholinergic neurons appear restricted to few nuclei situated in the equivalent of mammalian subpallium, preoptic area and rostral reticular formation. Finally, our experiments do not confirm that NTRK1/NTRKA and p75/NGFR are expressed in cholinergic neuronal populations in the adult brain of N. furzeri. To our knowledge, this is the first study where NGF receptors have been analyzed in relation to the cholinergic system in a fish species along with their age-dependent modulation. We observed differences between mammals and fish, which make the African turquoise killifish an attractive model to further investigate the fish specific NGF receptors regulation.
Collapse
Affiliation(s)
- Paolo de Girolamo
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
- Correspondence: ; Tel.: +39-081-2536099
| | - Adele Leggieri
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Antonio Palladino
- CESMA—Centro Servizi metereologici e Tecnologici Avanzati, University of Naples Federico II, I-80126 Naples, Italy;
| | - Carla Lucini
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Chiara Attanasio
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Livia D’Angelo
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| |
Collapse
|
5
|
Bertuzzi M, Ampatzis K. Spinal cholinergic interneurons differentially control motoneuron excitability and alter the locomotor network operational range. Sci Rep 2018; 8:1988. [PMID: 29386582 PMCID: PMC5792632 DOI: 10.1038/s41598-018-20493-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/19/2018] [Indexed: 11/09/2022] Open
Abstract
While cholinergic neuromodulation is important for locomotor circuit operation, the specific neuronal mechanisms that acetylcholine employs to regulate and fine-tune the speed of locomotion are largely unknown. Here, we show that cholinergic interneurons are present in the zebrafish spinal cord and differentially control the excitability of distinct classes of motoneurons (slow, intermediate and fast) in a muscarinic dependent manner. Moreover, we reveal that m2-type muscarinic acetylcholine receptors (mAChRs) are present in fast and intermediate motoneurons, but not in the slow motoneurons, and that their activation decreases neuronal firing. We also reveal a strong correlation between the muscarinic receptor configuration on motoneurons and the ability of the animals to locomote at different speeds, which might serve as a plasticity mechanism to alter the operational range of the locomotor networks. These unexpected findings provide new insights into the functional flexibility of motoneurons and how they execute locomotion at different speeds.
Collapse
Affiliation(s)
- Maria Bertuzzi
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | |
Collapse
|
6
|
López JM, Lozano D, Morona R, González A. Organization of the nitrergic neuronal system in the primitive bony fishes Polypterus senegalus and Erpetoichthys calabaricus (Actinopterygii: Cladistia). J Comp Neurol 2015; 524:1770-804. [PMID: 26517971 DOI: 10.1002/cne.23922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/22/2023]
Abstract
Cladistians are a group of basal actinopterygian fishes that constitute a good model for studying primitive brain features, most likely present in the ancestral bony fishes. The analysis of the nitrergic neurons (with the enzyme nitric oxide synthase; NOS) has helped in understanding important aspects of brain organization in all vertebrates studied. We investigated the nitrergic system of two cladistian species by means of specific antibodies against NOS and NADPH-diaphorase (NADPH-d) histochemistry, which, with the exception of the primary olfactory and terminal nerve fibers, labeled only for NADPH-d, yielded identical results. Double immunohistochemistry was conducted for simultaneous detection of NOS with tyrosine hydroxylase, choline acetyltransferase, calbindin, calretinin, and serotonin, to establish accurately the localization of the nitrergic neurons and fibers and to assess possible interactions between these neuroactive substances. The pattern of distribution in both species showed only subtle differences in the density of labeled cells. Distinct groups of NOS-immunoreactive cells were observed in pallial and subpallial areas, paraventricular region, tuberal and retromammillary hypothalamic areas, posterior tubercle, prethalamic and thalamic areas, optic tectum, torus semicircularis, mesencephalic tegmentum, interpeduncular nucleus, superior and middle reticular nuclei, magnocellular vestibular nucleus, solitary tract nucleus, nucleus medianus magnocellularis, the spinal cord and amacrine cells in the retina. Large neurons in cranial nerve sensory ganglia were also labeled. The comparison of these results with those from other vertebrates, using a neuromeric analysis, reveals a conserved pattern of organization of the nitrergic system from this primitive fish group to amniotes, including mammals.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| |
Collapse
|
7
|
Graña P, Folgueira M, Huesa G, Anadón R, Yáñez J. Immunohistochemical distribution of calretinin and calbindin (D-28k) in the brain of the cladistian Polypterus senegalus. J Comp Neurol 2014; 521:2454-85. [PMID: 23296683 DOI: 10.1002/cne.23293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/05/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Polypteriform fishes are believed to be basal to other living ray-finned bony fishes, and they may be useful for providing information of the neural organization that existed in the brain of the earliest ray-finned fishes. The calcium-binding proteins calretinin (CR) and calbindin-D28k (CB) have been widely used to characterize neuronal populations in vertebrate brains. Here, the distribution of the immunoreactivity against CR and CB was investigated in the olfactory organ and brain of Polypterus senegalus and compared to the distribution of these molecules in other ray-finned fishes. In general, CB-immunoreactive (ir) neurons were less abundant than CR-ir cells. CR immunohistochemistry revealed segregation of CR-ir olfactory receptor neurons in the olfactory mucosa and their bulbar projections. Our results confirmed important differences between pallial regions in terms of CR immunoreactivity of cell populations and afferent fibers. In the habenula, these calcium-binding proteins revealed right-left asymmetry of habenular subpopulations and segregation of their interpeduncular projections. CR immunohistochemistry distinguished among some thalamic, pretectal, and posterior tubercle-derived populations. Abundant CR-ir populations were observed in the midbrain, including the tectum. CR immunoreactivity was also useful for characterizing a putative secondary gustatory/visceral nucleus in the isthmus, and for distinguishing territories in the primary viscerosensory column and octavolateral region. Comparison of the data obtained within a segmental neuromeric context indicates that some CB-ir and CR-ir populations in polypteriform fishes are shared with other ray-finned fishes, but other positive structures appear to have evolved following the separation between polypterids and other ray-finned fishes.
Collapse
Affiliation(s)
- Patricia Graña
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15008-A Coruña, Spain
| | | | | | | | | |
Collapse
|
8
|
López JM, Perlado J, Morona R, Northcutt RG, González A. Neuroanatomical organization of the cholinergic system in the central nervous system of a basal actinopterygian fish, the senegal bichir Polypterus senegalus. J Comp Neurol 2013; 521:24-49. [PMID: 22628072 DOI: 10.1002/cne.23155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/09/2012] [Accepted: 05/18/2012] [Indexed: 11/10/2022]
Abstract
Polypterid bony fishes are believed to be basal to other living ray-finned fishes, and their brain organization is therefore critical in providing information as to primitive neural characters that existed in the earliest ray-finned fishes. The cholinergic system has been characterized in more advanced ray-finned fishes, but not in polypterids. In order to establish which cholinergic neural centers characterized the earliest ray-finned fishes, the distribution of choline acetyltransferase (ChAT) is described in Polypterus and compared with the distribution of this molecule in other ray-finned fishes. Cell groups immunoreactive for ChAT were observed in the hypothalamus, the habenula, the optic tectum, the isthmus, the cranial motor nuclei, and the spinal motor column. Cholinergic fibers were observed in both the telencephalic pallium and the subpallium, in the thalamus and pretectum, in the optic tectum and torus semicircularis, in the mesencephalic tegmentum, in the cerebellar crest, in the solitary nucleus, and in the dorsal column nuclei. Comparison of the data within a segmental neuromeric context indicates that the cholinergic system in polypterid fishes is generally similar to that in other ray-finned fishes, but cholinergic-positive neurons in the pallium and subpallium, and in the thalamus and cerebellum, of teleosts appear to have evolved following the separation of polypterids and other ray-finned fishes.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, University Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
9
|
Morona R, López JM, Northcutt RG, González A. Comparative Analysis of the Organization of the Cholinergic System in the Brains of Two Holostean Fishes, the Florida GarLepisosteus platyrhincusand the BowfinAmia calva. BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:109-42. [DOI: 10.1159/000347111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/12/2013] [Indexed: 11/19/2022]
|
10
|
Morona R, López JM, González A. Localization of Calbindin-D28k and Calretinin in the Brain of Dermophis Mexicanus (Amphibia: Gymnophiona) and Its Bearing on the Interpretation of Newly Recognized Neuroanatomical Regions. BRAIN, BEHAVIOR AND EVOLUTION 2011; 77:231-69. [DOI: 10.1159/000329521] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/12/2011] [Indexed: 12/13/2022]
|
11
|
López JM, Domínguez L, Morona R, Northcutt RG, González A. Organization of the cholinergic systems in the brain of two lungfishes, Protopterus dolloi and Neoceratodus forsteri. Brain Struct Funct 2011; 217:549-76. [DOI: 10.1007/s00429-011-0341-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/23/2011] [Indexed: 01/29/2023]
|
12
|
Maddin HC. Deciphering morphological variation in the braincase of caecilian amphibians (Gymnophiona). J Morphol 2011; 272:850-71. [PMID: 21538474 DOI: 10.1002/jmor.10953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/10/2011] [Accepted: 02/10/2011] [Indexed: 11/12/2022]
Abstract
High levels of morphological homoplasy have hindered progress in understanding morphological evolution within gymnophione lissamphibians. Stemming from the hypothesis that the braincase has the potential to yield phylogenetic information, the braincases of 27 species (23 genera) of gymnophione amphibians were examined using high-resolution micro-computed tomography and histologically prepared specimens. Morphology of the brain and its relationship to features of the braincase is described, and it is shown that eight different patterns exist in the distribution of foramina in the antotic region. The distribution of variants is congruent with molecule-based phylogeny. Additionally, all variants are shown to correspond directly to stages along developmental continua, suggesting that the evolutionary truncation of development in the antotic region at various stages has driven the evolution of morphology in this region. Attempts to correlate the observed morphology with proxies of putative heterochronic events (including those attributable to burrowing, life history, and size) fail to explain the distribution of morphology if each proxy is considered separately. Thus, it is concluded that either currently unrecognized causes of heterochrony or combinations thereof have influenced morphology in different lineages independently. These data identify clades whose morphology can now be reconsidered in light of previously unrecognized heterochronic events, thereby providing a foundation for future analyses of the evolution of morphology within Gymnophiona as a whole. Most significantly, these data confirm, for the first time in a lissamphibian group, that the braincase can preserve important phylogenetic information that is otherwise obscured in regions of the skull that experience strong influences from functional constraints.
Collapse
Affiliation(s)
- Hillary C Maddin
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
13
|
Wong KKY, Ng SYL, Lee LTO, Ng HKH, Chow BKC. Orexins and their receptors from fish to mammals: a comparative approach. Gen Comp Endocrinol 2011; 171:124-30. [PMID: 21216246 DOI: 10.1016/j.ygcen.2011.01.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/28/2010] [Accepted: 01/01/2011] [Indexed: 12/12/2022]
Abstract
Although recently discovered, orexins have been rapidly established as important neuropeptides in regulating physiological processes including food intake, sleep/wake cycles and reproduction through binding to two class B G protein-coupled receptors (OX1R and OX2R). To date, a handful of sequences for orexins and their receptors ranging from fish to mammalian species have been identified, allowing a glimpse into their evolution. Structurally, the genetic and molecular organization of the peptides and receptors amongst vertebrates are highly similar, underlining the strong evolutionary pressure that has been exerted to preserve structure and ultimately function. Furthermore, the absence of invertebrate orexin-like sequences suggests early vertebrates as the origin from which orexins evolved. With respect to the receptors, OX2R is probably evolutionary more ancient whilst OX1R is specific to mammalian species and evolved only during this later lineage. In common to all vertebrates studied, the hypothalamus remains to be the key brain region in which orexinergic neurons and fibers are localized in, establishing orexin to be an important player in regulating physiological processes especially those related to food intake and energy metabolism. To allow better understanding of the evolution of orexins and their receptors, this review will provide a comparative approach to their structures and functions in vertebrates.
Collapse
Affiliation(s)
- Kari K Y Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
14
|
Moreno N, Morona R, López JM, González A. Subdivisions of the turtle Pseudemys scripta subpallium based on the expression of regulatory genes and neuronal markers. J Comp Neurol 2010; 518:4877-902. [DOI: 10.1002/cne.22493] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Immunoreactivity and Protein Levels of Olfactory Marker Protein and Tyrosine Hydroxylase are not changed in the Dog Main Olfactory Bulb during Normal Ageing. J Comp Pathol 2010; 142:147-56. [DOI: 10.1016/j.jcpa.2009.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/15/2009] [Accepted: 10/10/2009] [Indexed: 11/19/2022]
|
16
|
Wibowo E, Brockhausen J, Köppl C. Efferent innervation to the auditory basilar papilla of scincid lizards. J Comp Neurol 2009; 516:74-85. [PMID: 19565665 DOI: 10.1002/cne.22101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hair cells of the inner ear of vertebrates are innervated by afferent neurons that transmit sensory information to the brain as well as efferent neurons that receive feedback from the brainstem. The function of the efferent feedback system is poorly understood and may have changed during evolution when different tetrapod groups acquired sensitivity to airborne sound and extended their hearing ranges to higher frequencies. Lizards show a unique subdivision of their basilar papilla (homologous to the mammalian organ of Corti) into a low-frequency (<1 kHz) and a high-frequency (approximately 1-5 kHz) region. The high-frequency region was reported to have lost its efferent innervation, suggesting it was insignificant or even functionally detrimental at higher frequencies. We re-examined the innervation to the basilar papilla of five species of Australian scincid lizards, by using immunohistochemistry. Anti-choline acetyltransferase (ChAT) was used as an efferent marker. Co-localization with anti-synaptic vesicle protein 2 confirmed the synaptic identity of label. Cholinergic terminals were observed along the whole length of the basilar papilla, including the regions that had previously been described as devoid of efferent innervation. However, there was a clear decrease in terminal density from apical, low-frequency to basal, high-frequency locations. Our findings suggest that efferent innervation is a general feature of the hair cells in the basilar papilla of lizards, irrespective of tonotopic location. This re-enforces the notion that efferent feedback control of hair cells is a fundamental and important property of all vertebrate hearing organs.
Collapse
Affiliation(s)
- Erik Wibowo
- School of Medical Sciences (Physiology), University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
17
|
Morona R, González A. Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. J Comp Neurol 2009; 515:503-37. [DOI: 10.1002/cne.22060] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
López JM, Domínguez L, Moreno N, González A. Comparative immunohistochemical analysis of the distribution of orexins (hypocretins) in the brain of amphibians. Peptides 2009; 30:873-87. [PMID: 19428764 DOI: 10.1016/j.peptides.2009.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
The orexins (hypocretins) are peptides found primarily in neurons of the hypothalamus of all vertebrates. Many differences were reported about the precise location of orexin containing cells and their projections throughout the brain in different species. However, there are few direct cross-species comparisons. Previous studies in anuran amphibians have also reported notable species differences. We examined and directly compared the distribution of orexinergic neurons and fibers within the brains of representatives of the three amphibian orders, anurans, urodeles and gymnophionans. Simultaneous detection of orexins and tyrosine hydroxylase was used to assess the precise location of the orexins in the brain and to evaluate the possible influence of the orexin system on the catecholaminergic cell groups. Although some differences were noted, a common pattern for the distribution of orexins in amphibians was observed. In all species, most immunoreactive neurons were observed in the suprachiasmatic nucleus, whereas the cells in the preoptic area and the tuberal region were more variable. Orexin immunoreactive fibers in the brain of all species included abundant fibers throughout the preoptic area and hypothalamus, whereas moderate amounts of fibers were present in the pallium, striatum, septum, thalamus, optic tectum, torus semicircularis, rhombencephalon and spinal cord. The use of double immunohistochemistry in amphibians revealed orexinergic innervation in dopaminergic and noradrenergic cell groups, such as the midbrain tegmentum, locus coeruleus and nucleus of the solitary tract, as was previously reported in mammals.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
19
|
López JM, Moreno N, Morona R, Muñoz M, Domínguez L, González A. Distribution of somatostatin-like immunoreactivity in the brain of the caecilian Dermophis mexicanus (Amphibia: Gymnophiona): comparative aspects in amphibians. J Comp Neurol 2007; 501:413-30. [PMID: 17245705 DOI: 10.1002/cne.21244] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The organization of the somatostatin-like-immunoreactive (SOM-ir) structures in the brain of anuran and urodele amphibians has been well documented, and significant differences were noted between the two amphibian orders. However, comparable data are not available for the third order of amphibians, the gymnophionans (caecilians). In the present study, we analyzed the anatomical distribution of SOM-ir cells and fibers in the brain of the gymnophionan Dermophis mexicanus. In addition, because of its known relationship with catecholamines in other vertebrates, double immunostaining for SOM and tyrosine hydroxylase was used to investigate this situation in the gymnophionan. Abundant SOM-ir cell bodies and fibers were widely distributed throughout the brain. In the telencephalon, pallial and subpallial cells were labeled, being most numerous in the medial pallium and amygdaloid region. Most of the SOM-ir neurons were found in the preoptic area and hypothalamus and showed a clear projection to the median eminence. Less conspicuously, SOM-ir structures were found in the thalamus, tectum, tegmentum, and reticular formation. Both SOM-ir cells and fibers were demonstrated in the spinal cord. The double-immunohistofluorescence technique revealed that catecholaminergic neurons and SOM-ir cells are largely intermingled in many brain regions but form totally separated populations. Many differences were found between the distribution of SOM-ir structures in Dermophis and that in anurans or urodeles. Some features were shared only with anurans, such as the abundant pallial SOM-ir cells, whereas others were common only to urodeles, such as the organization of the hypothalamohypophysial SOM-ir system. In addition, some characteristics were found only in Dermophis, such as the localization of the SOM-ir spinal cells and the lack of colocalization of catecholamines and SOM throughout the brain. Therefore, any conclusions concerning the SOM system in amphibians are incomplete without considering evidence for gymnophionans.
Collapse
Affiliation(s)
- Jesús M López
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
20
|
de Arriba MDC, Pombal MA. Afferent Connections of the Optic Tectum in Lampreys: An Experimental Study. BRAIN, BEHAVIOR AND EVOLUTION 2007; 69:37-68. [PMID: 16926536 DOI: 10.1159/000095272] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 03/27/2006] [Indexed: 11/19/2022]
Abstract
Tectal afferents were studied in adult lampreys of three species (Ichthyomyzon unicuspis, Lampetra fluviatilis, and Petromyzon marinus) following unilateral BDA injections into the optic tectum (OT). In the secondary prosencephalon, neurons projecting to the OT were observed in the pallium, the subhipoccampal lobe, the striatum, the preoptic area and the hypothalamus. Following tectal injections, backfilled diencephalic cells were found bilaterally in: prethalamic eminence, ventral geniculate nucleus, periventricular prethalamic nucleus, periventricular pretectal nucleus, precommissural nucleus, magnocellular and parvocellular nuclei of the posterior commissure and pretectal nucleus; and ipsilaterally in: nucleus of Bellonci, periventricular thalamic nucleus, nucleus of the tuberculum posterior, and the subpretectal tegmentum, as well as in the pineal organ. At midbrain levels, retrogradely labeled cells were seen in the ipsilateral torus semicircularis, the contralateral OT, and bilaterally in the mesencephalic reticular formation and inside the limits of the retinopetal nuclei. In the hindbrain, tectal projecting cells were also bilaterally labeled in the dorsal and lateral isthmic nuclei, the octavolateral area, the sensory nucleus of the descending trigeminal tract, the dorsal column nucleus and the reticular formation. The rostral spinal cord also exhibited a few labeled cells. These results demonstrate a complex pattern of connections in the lamprey OT, most of which have been reported in other vertebrates. Hence, the lamprey OT receives a large number of nonvisual afferents from all major brain areas, and so is involved in information processing from different somatic sensory modalities.
Collapse
Affiliation(s)
- María del Carmen de Arriba
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain
| | | |
Collapse
|
21
|
López JM, Moreno N, Morona R, González A. Distribution of Neuropeptide FF-Like Immunoreactivity in the Brain of Dermophis mexicanus (Amphibia; Gymnophiona): Comparison with FMRFamide Immunoreactivity. BRAIN, BEHAVIOR AND EVOLUTION 2006; 67:150-64. [PMID: 16415570 DOI: 10.1159/000090979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 09/29/2005] [Indexed: 11/19/2022]
Abstract
Neuropeptide FF (NPFF) is an FMRFamide-related peptide widely distributed in the mammalian brain. NPFF immunohistochemistry labeled cell bodies in a few locations and dense fiber networks throughout the brain. Recently, the distribution of NPFF immunoreactive (NPFF-ir) cells and fibers in the brain of anuran and urodele amphibians was studied and, as in mammals, significant species differences were noted. To further assess general and derived features of the NPFF-containing neuron system in amphibians, we have investigated the distribution of NPFF-ir cell bodies and fibers in the brain of the gymnophionan Dermophis mexicanus by means of an antiserum against bovine NPFF. This distribution was compared to that of FMRFamide immunoreactivity. Major traits shared with anurans and urodeles were the abundant fiber labeling in the ventral telencephalon, hypothalamus, isthmus, ventrolateral medulla and dorsal spinal cord. In addition, in the three amphibian orders the majority of the NPFF-ir cells were located in the preoptic-hypothalamic region. However, distinct particular features were present in the gymnophionan such as the lack of NPFF-ir cells in the telencephalon, brainstem and spinal cord and the absence of NPFF-ir fibers in the hypophysis and the olfactory bulbs. This pattern was distinct from that observed for FMRFamide distribution. Striking differences were noted in the pallium, caudal hypothalamus and midbrain tegmentum where FMRFamide-containing cells were localized. The present results in Dermophis support the idea that data from gymnophionans must be included when stating the amphibian condition of a given system because important variations are obvious when gymnophionans are compared with anurans and urodeles.
Collapse
Affiliation(s)
- Jesús M López
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Arenzana FJ, Clemente D, Sánchez-González R, Porteros A, Aijón J, Arévalo R. Development of the cholinergic system in the brain and retina of the zebrafish. Brain Res Bull 2005; 66:421-5. [PMID: 16144624 DOI: 10.1016/j.brainresbull.2005.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Indexed: 10/25/2022]
Abstract
We have analyzed the distribution pattern of choline acetyltransferase (ChAT) in the zebrafish brain and retina during ontogeny. ChAT-immunoreactive (ChAT-ir) neurons are observed in the prosencephalon from 60 h postfertilization (hpf) onwards, exclusively in the preoptic area (basal plate of p6) derived from the secondary prosencephalon. In the mesencephalon, ChAT-ir cells are observed in both the optic tectum and the tegmentum. Stained cells in the tegmentum are observed from 60 hpf onwards, while in the optic tectum they appear after hatching. In the rhombencephalon, ChAT-ir cells are first observed in the isthmic region (rh1) and in the medulla oblongata (rh5-rh7) at the end of embryonic life. The rhombencephalic cholinergic cell groups develop in a gradual caudorostral sequence. Motoneurons of the spinal cord are ChAT-ir from 48 hpf onwards. The retina displays ChAT-ir neuropil in both the inner and outer plexiform layers from embryonic life, whereas stained amacrine cells are only observed after hatching. The staining in the outer plexiform layer gradually decreases during juvenile development. The optic nerve axons show a transient expression of ChAT at the end of embryonic development. The early presence of ChAT immunolabeling suggests an important neuromodulator role for acetylcholine in the first developmental stages.
Collapse
Affiliation(s)
- Francisco Javier Arenzana
- Departamento de Biología Celular y Patología, Universidad de Salamanca, Facultad de Medicina, Campus Miguel de Unamuno, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Sánchez-Camacho C, López JM, González A. Basal forebrain cholinergic system of the anuran amphibianRana perezi: Evidence for a shared organization pattern with amniotes. J Comp Neurol 2005; 494:961-75. [PMID: 16385484 DOI: 10.1002/cne.20833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The organization of the basal forebrain cholinergic system (BFCS) in the frog was studied by means of choline acetyltransferase (ChAT) immunohistochemistry. The BFCS was observed as a conspicuous cholinergic cell population extending through the diagonal band, medial septal nucleus, bed nucleus of the stria terminalis, and pallidal regions. Abundant fiber labeling was also found around the labeled cell bodies. The combination of retrograde tract tracing with dextran amines and ChAT immunohistochemistry revealed intraseptal and intra-BFCS cholinergic connections. In addition, an extratelencephalic cholinergic input from the laterodorsal tegemental nucleus was demonstrated. The possible influence of monoaminergic inputs on the BFCS neurons was examined by means of tyrosine hydroxylase and serotonin immunohistochemistry combined with ChAT immunolabeling. Our results showed that catecholaminergic fibers overlapped the BFCS, with the exception of the medial septal nucleus. Serotoninergic innervation was widespread, but less abundant in the caudal extent of the BFCS. Taken together, our results on the localization of the cholinergic neurons in the basal forebrain and their relationship with cholinergic, catecholaminergic, and serotoninergic afferents have shown numerous common features with amniotes. In particular, anurans and mammals (for which most data is available) share a strikingly comparable organization pattern of the BFCS.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | |
Collapse
|
24
|
Goodson JL, Evans AK, Lindberg L. Chemoarchitectonic subdivisions of the songbird septum and a comparative overview of septum chemical anatomy in jawed vertebrates. J Comp Neurol 2004; 473:293-314. [PMID: 15116393 PMCID: PMC2576523 DOI: 10.1002/cne.20061] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Available data demonstrate that the avian septal region shares a number of social behavior functions and neurochemical features in common with mammals. However, the structural and functional subdivisions of the avian septum remain largely unexplored. In order to delineate chemoarchitectural zones of the avian septum, we prepared a large dataset of double-, triple-, and quadruple-labeled material in a variety of songbird species (finches and waxbills of the family Estrildidae and a limited number of emberizid sparrows) using antibodies against 10 neuropeptides and enzymes. Ten septal zones were identified that were placed into lateral, medial, caudocentral, and septohippocampal divisions, with the lateral and medial divisions each containing multiple zones. The distributions of numerous immunoreactive substances in the lateral septum closely match those of mammals (i.e., distributions of met-enkephalin, vasotocin, galanin, calcitonin gene-related peptide, tyrosine hydroxylase, vasoactive intestinal polypeptide, substance P, corticotropin-releasing factor, and neuropeptide Y), enabling detailed comparisons with numerous chemoarchitectonic zones of the mammalian lateral septum. Our septohippocampal and caudocentral divisions are topographically comparable to the mammalian septohippocampal and septofimbrial nuclei, respectively, although additional data will be required to establish homology. The present data also demonstrate the presence of a medial septal nucleus that is histochemically comparable to the medial septum of mammals. The avian medial septum is clearly defined by peptidergic markers and choline acetyltransferase immunoreactivity. These findings should provide a useful framework for functional and comparative studies, as they suggest that many features of the septum are highly conserved across vertebrate taxa.
Collapse
Affiliation(s)
- James L Goodson
- Psychology Department, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|