1
|
Lee MJ, Lee WT, Jeon CJ. Organization of Neuropeptide Y-Immunoreactive Cells in the Mongolian gerbil ( Meriones unguiculatus) Visual Cortex. Cells 2021; 10:cells10020311. [PMID: 33546356 PMCID: PMC7913502 DOI: 10.3390/cells10020311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/03/2023] Open
Abstract
Neuropeptide Y (NPY) is found throughout the central nervous system where it appears to be involved in the regulation of a wide range of physiological effects. The Mongolian gerbil, a member of the rodent family Muridae, is a diurnal animal and has been widely used in various aspects of biomedical research. This study was conducted to investigate the organization of NPY-immunoreactive (IR) neurons in the gerbil visual cortex using NPY immunocytochemistry. The highest density of NPY-IR neurons was located in layer V (50.58%). The major type of NPY-IR neuron was a multipolar round/oval cell type (44.57%). Double-color immunofluorescence revealed that 89.55% and 89.95% of NPY-IR neurons contained gamma-aminobutyric acid (GABA) or somatostatin, respectively. Several processes of the NPY-IR neurons surrounded GABAergic interneurons. Although 30.81% of the NPY-IR neurons contained calretinin, NPY and calbindin-D28K-IR neurons were co-expressed rarely (3.75%) and NPY did not co-express parvalbumin. Triple-color immunofluorescence with anti-GluR2 or CaMKII antibodies suggested that some non-GABAergic NPY-IR neurons may make excitatory synaptic contacts. This study indicates that NPY-IR neurons have a notable architecture and are unique subpopulations of the interneurons of the gerbil visual cortex, which could provide additional valuable data for elucidating the role of NPY in the visual process in diurnal animals.
Collapse
|
2
|
Jain V, Murphy-Baum BL, deRosenroll G, Sethuramanujam S, Delsey M, Delaney KR, Awatramani GB. The functional organization of excitation and inhibition in the dendrites of mouse direction-selective ganglion cells. eLife 2020; 9:52949. [PMID: 32096758 PMCID: PMC7069718 DOI: 10.7554/elife.52949] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies indicate that the precise timing and location of excitation and inhibition (E/I) within active dendritic trees can significantly impact neuronal function. How synaptic inputs are functionally organized at the subcellular level in intact circuits remains unclear. To address this issue, we took advantage of the retinal direction-selective ganglion cell circuit, where directionally tuned inhibition is known to shape non-directional excitatory signals. We combined two-photon calcium imaging with genetic, pharmacological, and single-cell ablation methods to examine the extent to which inhibition ‘vetoes’ excitation at the level of individual dendrites of direction-selective ganglion cells. We demonstrate that inhibition shapes direction selectivity independently within small dendritic segments (<10µm) with remarkable accuracy. The data suggest that the parallel processing schemes proposed for direction encoding could be more fine-grained than previously envisioned.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Biology, University of Victoria, Victoria, Canada
| | | | | | | | - Mike Delsey
- Department of Biology, University of Victoria, Victoria, Canada
| | - Kerry R Delaney
- Department of Biology, University of Victoria, Victoria, Canada
| | | |
Collapse
|
3
|
Abstract
Visual motion on the retina activates a cohort of retinal ganglion cells (RGCs). This population activity encodes multiple streams of information extracted by parallel retinal circuits. Motion processing in the retina is best studied in the direction-selective circuit. The main focus of this review is the neural basis of direction selectivity, which has been investigated in unprecedented detail using state-of-the-art functional, connectomic, and modeling methods. Mechanisms underlying the encoding of other motion features by broader RGC populations are also discussed. Recent discoveries at both single-cell and population levels highlight the dynamic and stimulus-dependent engagement of multiple mechanisms that collectively implement robust motion detection under diverse visual conditions.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
4
|
Retinal Circuitry Balances Contrast Tuning of Excitation and Inhibition to Enable Reliable Computation of Direction Selectivity. J Neurosci 2017; 36:5861-76. [PMID: 27225774 DOI: 10.1523/jneurosci.4013-15.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/23/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Feedforward (FF) inhibition is a common motif in many neural networks. Typically, excitatory inputs drive both principal neurons and interneurons; the interneurons then inhibit the principal neurons, thereby regulating the strength and timing of the FF signal. The interneurons introduce a likely nonlinear processing step that could distort the excitation/inhibition (E/I) ratio in the principal neuron, potentially degrading the reliability of computation in the circuit. In the retina, FF inhibition is an essential feature of the circuitry underlying direction selectivity (DS): glutamatergic bipolar cells (BCs) provide excitatory input to direction-selective ganglion cells (DSGCs) and GABAergic starburst amacrine cells (SACs), and the SACs then provide FF inhibition onto DSGCs. Robust DS computation requires a consistent synaptic E/I ratio in the DSGC in various visual conditions. Here, we show in mouse retina that the E/I ratio is maintained in DSGCs over a wide stimulus contrast range due to compensatory mechanisms in the diverse population of presynaptic BCs. BC inputs to SACs exhibit higher contrast sensitivity, so that the subsequent nonlinear transformation in SACs reduces the contrast sensitivity of FF inhibition to match the sensitivity of direct excitatory inputs onto DSGCs. Measurements of light-evoked responses from individual BC synaptic terminals suggest that the distinct sensitivity of BC inputs reflects different contrast sensitivity between BC subtypes. Numerical simulations suggest that this network arrangement is crucial for reliable DS computation. SIGNIFICANCE STATEMENT Properly balanced excitation and inhibition are essential for many neuronal computations across brain regions. Feedforward inhibition circuitry, in which a common excitatory source drives both the principal cell and an interneuron, is a typical mechanism by which neural networks maintain this balance. Feedforward circuits may become imbalanced at low stimulation levels, however, if the excitatory drive is too weak to overcome the activation threshold in the interneuron. Here we reveal how excitation and inhibition remain balanced in direction selective ganglion cells in the mouse retina over a wide visual stimulus range.
Collapse
|
5
|
Lee JS, Kim HG, Jeon CJ. Identification of synaptic pattern of NMDA receptor subunits upon direction-selective retinal ganglion cells in developing and adult mouse retina. Acta Histochem 2017; 119:495-507. [PMID: 28545760 DOI: 10.1016/j.acthis.2017.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 04/30/2017] [Accepted: 05/05/2017] [Indexed: 11/25/2022]
Abstract
Direction selectivity of the retina is a unique mechanism and critical function of eyes for surviving. Direction-selective retinal ganglion cells (DS RGCs) strongly respond to preferred directional stimuli, but rarely respond to the opposite or null directional stimuli. These DS RGCs are sensitive to glutamate, which is secreted from bipolar cells. Using immunocytochemistry, we studied with the distributions of N-methyl-d-aspartate (NMDA) receptor subunits on the dendrites of DS RGCs in the developing and adult mouse retina. DS RGCs were injected with Lucifer yellow for identification of dendritic morphology. The triple-labeled images of dendrites, kinesin II, and NMDA receptor subunits were visualized using confocal microscopy and were reconstructed from high-resolution confocal images. Although our results revealed that the synaptic pattern of NMDA receptor subunits on dendrites of DS RGCs was not asymmetric in developing and adult mouse retina, they showed the anatomical connectivity of NMDA glutamatergic synapses onto DS RGCs and the developmental formation of the direction selectivity in the mouse retina. Through the comprehensive interpretation of the direction-selective neural circuit, this study, therefore, implies that the direction selectivity may be generated by the asymmetry of the excitatory glutamatergic inputs and the inhibitory inputs onto DS RGCs.
Collapse
|
6
|
Lee JS, Kim HJ, Ahn CH, Jeon CJ. Expression of Nicotinic Acetylcholine Receptor α4 and β2 Subunits on Direction-Selective Retinal Ganglion Cells in the Rabbit. Acta Histochem Cytochem 2017; 50:29-37. [PMID: 28386148 PMCID: PMC5374101 DOI: 10.1267/ahc.16024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/26/2016] [Indexed: 11/22/2022] Open
Abstract
The direction selectivity of the retina is a distinct mechanism that is critical function of eyes for survival. The direction-selective retinal ganglion cells (DS RGCs) strongly respond to a preferred direction, but rarely respond to opposite direction or null directional visual stimuli. The DS RGCs are sensitive to acetylcholine, which is secreted from starburst amacrine cells (SACs) to the DS RGCs. Here, we investigated the existence and distribution of the nicotinic acetylcholine receptor (nAChR) α4 and β2 subunits on the dendritic arbors of the DS RGCs in adult rabbit retina using immunocytochemistry. The DS RGCs were injected with Lucifer yellow to identify their dendritic morphology. The double-labeled images of dendrites and nAChR subunits were visualized for reconstruction using high-resolution confocal microscopy. Although our results revealed that the distributional pattern of the nAChR subunits on the dendritic arbors of the DS RGCs was not asymmetric in the adult rabbit retina, the distribution of nAChR α4 and β2 subunits and molecular profiles of cholinergic inputs to DS RGCs in adult rabbit retina provide anatomical evidence for direction selectivity.
Collapse
Affiliation(s)
- Jun-Seok Lee
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Hyun-Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology
| | - Chang-Hyun Ahn
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| |
Collapse
|
7
|
NMDA Receptors Multiplicatively Scale Visual Signals and Enhance Directional Motion Discrimination in Retinal Ganglion Cells. Neuron 2016; 89:1277-1290. [PMID: 26948896 DOI: 10.1016/j.neuron.2016.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/25/2015] [Accepted: 01/15/2016] [Indexed: 11/24/2022]
Abstract
Postsynaptic responses in many CNS neurons are typically small and variable, often making it difficult to distinguish physiologically relevant signals from background noise. To extract salient information, neurons are thought to integrate multiple synaptic inputs and/or selectively amplify specific synaptic activation patterns. Here, we present evidence for a third strategy: directionally selective ganglion cells (DSGCs) in the mouse retina multiplicatively scale visual signals via a mechanism that requires both nonlinear NMDA receptor (NMDAR) conductances in DSGC dendrites and directionally tuned inhibition provided by the upstream retinal circuitry. Postsynaptic multiplication enables DSGCs to discriminate visual motion more accurately in noisy visual conditions without compromising directional tuning. These findings demonstrate a novel role for NMDARs in synaptic processing and provide new insights into how synaptic and network features interact to accomplish physiologically relevant neural computations.
Collapse
|
8
|
Berry RH, Qu J, John SWM, Howell GR, Jakobs TC. Synapse Loss and Dendrite Remodeling in a Mouse Model of Glaucoma. PLoS One 2015; 10:e0144341. [PMID: 26637126 PMCID: PMC4670161 DOI: 10.1371/journal.pone.0144341] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 11/17/2015] [Indexed: 01/05/2023] Open
Abstract
It has been hypothesized that synaptic pruning precedes retinal ganglion cell degeneration in glaucoma, causing early dysfunction to retinal ganglion cells. To begin to assess this, we studied the excitatory synaptic inputs to individual ganglion cells in normal mouse retinas and in retinas with ganglion cell degeneration from glaucoma (DBA/2J), or following an optic nerve crush. Excitatory synapses were labeled by AAV2-mediated transfection of ganglion cells with PSD-95-GFP. After both insults the linear density of synaptic inputs to ganglion cells decreased. In parallel, the dendritic arbors lost complexity. We did not observe any cells that had lost dendritic synaptic input while preserving a normal or near-normal morphology. Within the temporal limits of these observations, dendritic remodeling and synapse pruning thus appear to occur near-simultaneously.
Collapse
Affiliation(s)
- Ryan H. Berry
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, United States of America
| | - Juan Qu
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, United States of America
| | - Simon W. M. John
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, United States of America
- The Howard Hughes Medical Institute, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, United States of America
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Gareth R. Howell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, United States of America
- * E-mail: (TJ); (GH)
| | - Tatjana C. Jakobs
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, United States of America
- * E-mail: (TJ); (GH)
| |
Collapse
|
9
|
Kwon OJ, Lee JS, Kim HG, Jeon CJ. Identification of Synaptic Patterns of NMDA Receptor Subtypes Upon Direction-Selective Rabbit Retinal Ganglion Cells. Curr Eye Res 2015; 41:832-43. [PMID: 26287656 DOI: 10.3109/02713683.2015.1056378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The objective of this study was to identify anisotropies that contribute to the directional preference of direction-selective retinal ganglion cells (DS RGCs) in the rabbit retina. We investigated the distributions of N-methyl-d-aspartate receptor 1 (NMDAR1), NMDAR2A and NMDAR2B receptor subunits in the dendritic arbors of rabbit DS RGCs. METHODS The distributions of the NMDAR subunits on the DS RGCs were determined using immunocytochemistry. DS RGCs were injected with Lucifer yellow, and the cells were identified by their characteristic morphology. The triple-labeled images of dendrites, kinesin II and NMDARs were visualized using confocal microscopy and were reconstructed from high-resolution confocal images. RESULTS We found no evidence of asymmetry in any of the NMDAR subunits examined on the dendritic arbors of both the ON and OFF layers of DS RGCs. CONCLUSIONS Our results indicate that direction selectivity appears to lie in the neuronal circuitry afferent to the DS RGCs.
Collapse
Affiliation(s)
- Oh-Ju Kwon
- a Department of Optometry , Busan Institute of Science and Technology , Busan , South Korea and.,b Department of Biology , School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University , Daegu , South Korea
| | - Jun-Seok Lee
- b Department of Biology , School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University , Daegu , South Korea
| | - Hang-Gu Kim
- b Department of Biology , School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University , Daegu , South Korea
| | - Chang-Jin Jeon
- b Department of Biology , School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University , Daegu , South Korea
| |
Collapse
|
10
|
Fiscella M, Franke F, Farrow K, Müller J, Roska B, da Silveira RA, Hierlemann A. Visual coding with a population of direction-selective neurons. J Neurophysiol 2015; 114:2485-99. [PMID: 26289471 DOI: 10.1152/jn.00919.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 08/13/2015] [Indexed: 11/22/2022] Open
Abstract
The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions.
Collapse
Affiliation(s)
| | - Felix Franke
- Bio Engineering Laboratory, ETH Zurich, Basel, Switzerland
| | - Karl Farrow
- Neuro-Electronics Research Flanders IMEC, Leuven, Belgium
| | - Jan Müller
- Bio Engineering Laboratory, ETH Zurich, Basel, Switzerland
| | - Botond Roska
- Neural Circuits Laboratory, Friedrich Miescher Institute, Basel, Switzerland
| | - Rava Azeredo da Silveira
- Department of Physics, Ecole Normale Supérieure, Paris, France; and Laboratoire de Physique Statistique, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Denis Diderot, Paris, France
| | | |
Collapse
|
11
|
Popova E. GABAergic neurotransmission and retinal ganglion cell function. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:261-83. [PMID: 25656810 DOI: 10.1007/s00359-015-0981-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/13/2023]
Abstract
Ganglion cells are the output retinal neurons that convey visual information to the brain. There are ~20 different types of ganglion cells, each encoding a specific aspect of the visual scene as spatial and temporal contrast, orientation, direction of movement, presence of looming stimuli; etc. Ganglion cell functioning depends on the intrinsic properties of ganglion cell's membrane as well as on the excitatory and inhibitory inputs that these cells receive from other retinal neurons. GABA is one of the most abundant inhibitory neurotransmitters in the retina. How it modulates the activity of different types of ganglion cells and what is its significance in extracting the basic features from visual scene are questions with fundamental importance in visual neuroscience. The present review summarizes current data concerning the types of membrane receptors that mediate GABA action in proximal retina; the effects of GABA and its antagonists on the ganglion cell light-evoked postsynaptic potentials and spike discharges; the action of GABAergic agents on centre-surround organization of the receptive fields and feature related ganglion cell activity. Special emphasis is put on the GABA action regarding the ON-OFF and sustained-transient ganglion cell dichotomy in both nonmammalian and mammalian retina.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
12
|
Kim HJ, Jeon CJ. Synaptic pattern of nicotinic acetylcholine receptor α7 and β2 subunits on the direction-selective retinal ganglion cells in the postnatal mouse retina. Exp Eye Res 2014; 122:54-64. [PMID: 24631336 DOI: 10.1016/j.exer.2014.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 11/26/2022]
Abstract
Direction-selective retinal ganglion cells (DS RGCs) respond strongly to a stimulus that moves in their preferred direction, but respond weakly or do not respond to a stimulus that moves in the opposite or null direction. DS RGCs are sensitive to acetylcholine, and starburst amacrine cells (SACs) make cholinergic synapses on DS RGCs. We studied the distributions of nicotinic acetylcholine receptor (nAChR) α7 and β2 subunits on the dendritic arbors of DS RGCs to search for anisotropies that contribute to the directional preferences of DS RGCs. The DS RGCs from the retinas of postnatal mice (postnatal day P5, P10, and P15) were injected with Lucifer yellow, and injected cells were identified by their dendritic morphology. The dendrites of the DS RGCs were labeled with antibodies for either the nAChR α7 or β2 subunit as well as postsynaptic density protein-95 (PSD-95), visualized by confocal microscopy, and reconstructed from high-resolution confocal images. The distribution of nAChR subunits on the dendritic arbors in both the ON and OFF layers of the RGCs revealed an asymmetrical pattern on early postnatal day P5. However, the distributions of nAChR subunits on the dendritic arbors were not asymmetric on P10 and P15. Our results therefore provide anatomical and developmental evidence suggesting that the nAChR α7 and β2 subunits may involve in the early direction-selectivity formation of DS RGCs in the mouse retina.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biology, School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungpook 790-784, South Korea
| | - Chang Jin Jeon
- Department of Biology, School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea.
| |
Collapse
|
13
|
Iwamoto K, Birkholz P, Schipper A, Mata D, Linn DM, Linn CL. A nicotinic acetylcholine receptor agonist prevents loss of retinal ganglion cells in a glaucoma model. Invest Ophthalmol Vis Sci 2014; 55:1078-87. [PMID: 24458148 DOI: 10.1167/iovs.13-12688] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to analyze the neuroprotective effect of an α7 nAChR agonist, PNU-282987, using an in vivo model of glaucoma in Long Evans rats. METHODS One eye in each animal was surgically manipulated to induce glaucoma in control untreated animals and in animals that were treated with intravitreal injections of PNU-282987. To induce glaucoma-like conditions, 0.05 mL of 2 M NaCl was injected into the episcleral veins of right eyes in each rat to create scar tissue and increase intraocular pressure. The left eye in each rat acted as an internal control. One month following NaCl injection, rats were euthanized, retinas were removed, flatmounted, fixed, and nuclei were stained with cresyl violet or RGCs were immunostained with an antibody against Thy 1.1 or against Brn3a. Stained nuclei in the RGC layer and labeled RGCs in NaCl-injected retinas were counted and compared with cell counts from untreated retinas in the same animal. RESULTS NaCl injections into the episcleral veins caused a significant loss of cells by an average of 27.35% (± 2.12 SEM) in the RGC layer within 1 month after NaCl injection, which corresponded to a significant loss of RGCs. This loss of RGCs was eliminated if 5 μL of 100 μM PNU-282987 was injected into the right eye an hour before NaCl injection. CONCLUSIONS The results from this study support the hypothesis that the α7 agonist, PNU-282987, has a neuroprotective effect in the rat retina. PNU-282987 may be a viable candidate for future therapeutic treatments of glaucoma.
Collapse
Affiliation(s)
- Kazuhiro Iwamoto
- Western Michigan University, Department of Biological Sciences, Kalamazoo, Michigan
| | | | | | | | | | | |
Collapse
|
14
|
Chen YP, Chiao CC. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina. PLoS One 2014; 9:e86159. [PMID: 24465934 PMCID: PMC3895034 DOI: 10.1371/journal.pone.0086159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022] Open
Abstract
Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1–2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.
Collapse
Affiliation(s)
- Yin-Peng Chen
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chuan-Chin Chiao
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Bleckert A, Parker ED, Kang Y, Pancaroglu R, Soto F, Lewis R, Craig AM, Wong ROL. Spatial relationships between GABAergic and glutamatergic synapses on the dendrites of distinct types of mouse retinal ganglion cells across development. PLoS One 2013; 8:e69612. [PMID: 23922756 PMCID: PMC3724919 DOI: 10.1371/journal.pone.0069612] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/11/2013] [Indexed: 12/02/2022] Open
Abstract
Neuronal output requires a concerted balance between excitatory and inhibitory (I/E) input. Like other circuits, inhibitory synaptogenesis in the retina precedes excitatory synaptogenesis. How then do neurons attain their mature balance of I/E ratios despite temporal offset in synaptogenesis? To directly compare the development of glutamatergic and GABAergic synapses onto the same cell, we biolistically transfected retinal ganglion cells (RGCs) with PSD95CFP, a marker of glutamatergic postsynaptic sites, in transgenic Thy1YFPγ2 mice in which GABAA receptors are fluorescently tagged. We mapped YFPγ2 and PSD95CFP puncta distributions on three RGC types at postnatal day P12, shortly before eye opening, and at P21 when robust light responses in RGCs are present. The mature IGABA/E ratios varied among ON-Sustained (S) A-type, OFF-S A-type, and bistratified direction selective (DS) RGCs. These ratios were attained at different rates, before eye-opening for ON-S and OFF-S A-type, and after eye-opening for DS RGCs. At both ages examined, the IGABA/E ratio was uniform across the arbors of the three RGC types. Furthermore, measurements of the distances between neighboring PSD95CFP and YFPγ2 puncta on RGC dendrites indicate that their local relationship is established early in development, and cannot be predicted by random organization. These close spatial associations between glutamatergic and GABAergic postsynaptic sites appear to represent local synaptic arrangements revealed by correlative light and EM reconstructions of a single RGC's dendrites. Thus, although RGC types have different IGABA/E ratios and establish these ratios at separate rates, the local relationship between excitatory and inhibitory inputs appear similarly constrained across the RGC types studied.
Collapse
Affiliation(s)
- Adam Bleckert
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington, United States of America
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Edward D. Parker
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States of America
| | - YunHee Kang
- Psychiatry, Brain Research Center, Vancouver, British Columbia, Canada
| | - Raika Pancaroglu
- Psychiatry, Brain Research Center, Vancouver, British Columbia, Canada
| | - Florentina Soto
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Renate Lewis
- Transgenic Vector Core, Washington University, St. Louis, Missouri, United States of America
| | - Ann Marie Craig
- Psychiatry, Brain Research Center, Vancouver, British Columbia, Canada
| | - Rachel O. L. Wong
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Starburst amacrine cells (SBACs) within the adult mammalian retina provide the critical inhibition that underlies the receptive field properties of direction-selective ganglion cells (DSGCs). The SBACs generate direction-selective output of GABA that differentially inhibits the DSGCs. We review the biophysical mechanisms that produce directional GABA release from SBACs and test a network model that predicts the effects of reciprocal inhibition between adjacent SBACs. The results of the model simulations suggest that reciprocal inhibitory connections between closely spaced SBACs should be spatially selective, while connections between more widely spaced cells could be indiscriminate. SBACs were initially identified as cholinergic neurons and were subsequently shown to contain release both acetylcholine and GABA. While the role of the GABAergic transmission is well established, the role of the cholinergic transmission remains unclear.
Collapse
|
17
|
Abstract
Retinal ganglion cells receive excitatory synapses from bipolar cells and inhibitory synapses from amacrine cells. Previous studies in primate suggest that the strength of inhibitory amacrine input is greater to cells in peripheral retina than to foveal (central) cells. A comprehensive study of a large number of ganglion cells at different eccentricities, however, is still lacking. Here, we compared the amacrine and bipolar input to midget and parasol ganglion cells in central and peripheral retina of marmosets (Callithrix jacchus). Ganglion cells were labeled by retrograde filling from the lateral geniculate nucleus or by intracellular injection. Presumed amacrine input was identified with antibodies against gephyrin; presumed bipolar input was identified with antibodies against the GluR4 subunit of the AMPA receptor. In vertical sections, about 40% of gephyrin immunoreactive (IR) puncta were colocalized with GABAA receptor subunits, whereas immunoreactivity for gephyrin and GluR4 was found at distinct sets of puncta. The density of gephyrin IR puncta associated with ganglion cell dendrites was comparable for midget and parasol cells at all eccentricities studied (up to 2 mm or about 16 degrees of visual angle for midget cells and up to 10 mm or >80 degrees of visual angle for parasol cells). In central retina, the densities of gephyrin IR and GluR4 IR puncta associated with the dendrites of midget and parasol cells are comparable, but the average density of GluR4 IR puncta decreased slightly in peripheral parasol cells. These anatomical results indicate that the ratio of amacrine to bipolar input does not account for the distinct functional properties of parasol and midget cells or for functional differences between cells of the same type in central and peripheral retina.
Collapse
|
18
|
Auferkorte ON, Baden T, Kaushalya SK, Zabouri N, Rudolph U, Haverkamp S, Euler T. GABA(A) receptors containing the α2 subunit are critical for direction-selective inhibition in the retina. PLoS One 2012; 7:e35109. [PMID: 22506070 PMCID: PMC3323634 DOI: 10.1371/journal.pone.0035109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/13/2012] [Indexed: 01/08/2023] Open
Abstract
Far from being a simple sensor, the retina actively participates in processing visual signals. One of the best understood aspects of this processing is the detection of motion direction. Direction-selective (DS) retinal circuits include several subtypes of ganglion cells (GCs) and inhibitory interneurons, such as starburst amacrine cells (SACs). Recent studies demonstrated a surprising complexity in the arrangement of synapses in the DS circuit, i.e. between SACs and DS ganglion cells. Thus, to fully understand retinal DS mechanisms, detailed knowledge of all synaptic elements involved, particularly the nature and localization of neurotransmitter receptors, is needed. Since inhibition from SACs onto DSGCs is crucial for generating retinal direction selectivity, we investigate here the nature of the GABA receptors mediating this interaction. We found that in the inner plexiform layer (IPL) of mouse and rabbit retina, GABA(A) receptor subunit α2 (GABA(A)R α2) aggregated in synaptic clusters along two bands overlapping the dendritic plexuses of both ON and OFF SACs. On distal dendrites of individually labeled SACs in rabbit, GABA(A)R α2 was aligned with the majority of varicosities, the cell's output structures, and found postsynaptically on DSGC dendrites, both in the ON and OFF portion of the IPL. In GABA(A)R α2 knock-out (KO) mice, light responses of retinal GCs recorded with two-photon calcium imaging revealed a significant impairment of DS responses compared to their wild-type littermates. We observed a dramatic drop in the proportion of cells exhibiting DS phenotype in both the ON and ON-OFF populations, which strongly supports our anatomical findings that α2-containing GABA(A)Rs are critical for mediating retinal DS inhibition. Our study reveals for the first time, to the best of our knowledge, the precise functional localization of a specific receptor subunit in the retinal DS circuit.
Collapse
|
19
|
Lee JG, Lee KP, Jeon CJ. Synaptic Pattern of KA1 and KA2 upon the Direction-Selective Ganglion Cells in Developing and Adult Mouse Retina. Acta Histochem Cytochem 2012; 45:35-45. [PMID: 22489103 PMCID: PMC3317494 DOI: 10.1267/ahc.11043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/01/2011] [Indexed: 11/22/2022] Open
Abstract
The detection of image motion is important to vision. Direction-selective retinal ganglion cells (DS-RGCs) respond strongly to stimuli moving in one direction of motion and are strongly inhibited by stimuli moving in the opposite direction. In this article, we investigated the distributions of kainate glutamate receptor subtypes KA1 and KA2 on the dendritic arbors of DS-RGCs in developing (5, 10) days postnatal (PN) and adult mouse retina to search for anisotropies. The distribution of kainate receptor subtypes on the DS-RGCs was determined using antibody immunocytochemistry. To identify their characteristic morphology, DS-RGCs were injected with Lucifer yellow. The triple-labeled images of dendrites, kinesin II, and receptors were visualized by confocal microscopy and were reconstructed from high-resolution confocal images. We found no evidence of asymmetry in any of the kainate receptor subunits examined on the dendritic arbors of both the On and Off layers of DS-RGCs in all periods of developing and adult stage that would predict direction selectivity.
Collapse
Affiliation(s)
- Jee-Geon Lee
- Department of Biology, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Kyoung-Pil Lee
- Department of Biology, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Chang-Jin Jeon
- Department of Biology, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| |
Collapse
|
20
|
Percival KA, Martin PR, Grünert U. Synaptic inputs to two types of koniocellular pathway ganglion cells in marmoset retina. J Comp Neurol 2011; 519:2135-53. [PMID: 21452222 DOI: 10.1002/cne.22586] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The retinal connectivity of the diverse group of cells contributing to koniocellular visual pathways (widefield ganglion cells) is largely unexplored. Here we examined the synaptic inputs onto two koniocellular-projecting ganglion cell types named large sparse and broad thorny cells. Ganglion cells were labeled by retrograde tracer injections targeted to koniocellular layer K3 in the lateral geniculate nucleus in marmosets (Callithrix jacchus) and subsequently photofilled. Retinal preparations were processed with antibodies against the C-terminal binding protein 2, the AMPA receptor subunit GluR4, and against CD15 to identify bipolar (excitatory) and/or antibodies against gephyrin to identify amacrine (inhibitory) input. Large sparse cells are narrowly stratified close to the ganglion cell layer. Broad thorny ganglion cells are broadly stratified in the center of the inner plexiform layer. Bipolar input to large sparse cells derives from DB6 and maybe other ON bipolar types, whereas that to broad thorny cells derives from ON and OFF bipolar cell types. The total number of putative synapses on broad thorny cells is higher than the number on large sparse cells but the density of inputs (between 2 and 5 synapses per 100 μm(2) dendritic area) is similar for the two cell types, indicating that the larger number of synapses on broad thorny cells is attributable to the larger membrane surface area of this cell type. Synaptic input density is comparable to previous values for midget-parvocellular and parasol-magnocellular pathway cells. This suggests functional differences between koniocellular, parvocellular, and magnocellular pathways do not arise from variation in synaptic input densities.
Collapse
Affiliation(s)
- Kumiko A Percival
- Department of Ophthalmology, Save Sight Institute, University of Sydney, Australia
| | | | | |
Collapse
|
21
|
Borst A, Euler T. Seeing Things in Motion: Models, Circuits, and Mechanisms. Neuron 2011; 71:974-94. [PMID: 21943597 DOI: 10.1016/j.neuron.2011.08.031] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 12/31/2022]
|
22
|
Soto F, Bleckert A, Lewis R, Kang Y, Kerschensteiner D, Craig AM, Wong ROL. Coordinated increase in inhibitory and excitatory synapses onto retinal ganglion cells during development. Neural Dev 2011; 6:31. [PMID: 21864334 PMCID: PMC3179698 DOI: 10.1186/1749-8104-6-31] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/24/2011] [Indexed: 01/29/2023] Open
Abstract
Background Neuronal output is shaped by a balance of excitation and inhibition. How this balance is attained in the central nervous system during development is not well understood, and is complicated by the fact that, in vivo, GABAergic and glycinergic synaptogenesis precedes that of glutamatergic synapses. Here, we determined the distributions of inhibitory postsynaptic sites on the dendritic arbors of individual neurons, and compared their developmental patterns with that of excitatory postsynaptic sites. We focused on retinal ganglion cells (RGCs), the output neurons of the retina, which receive excitatory input from bipolar cells and inhibitory input from amacrine cells. To visualize and map inhibitory postsynaptic sites, we generated transgenic mice in which RGCs express fluorescently tagged Neuroligin 2 (YFP-NL2) under the control of the Thy1 promoter. By labeling RGC dendrites biolistically in YFP-NL2-expressing retinas, we were able to map the spatial distribution and thus densities of inhibitory postsynaptic sites on the dendritic arbors of individual large-field RGCs across ages. Results We demonstrate that YFP-NL2 is present at inhibitory synapses in the inner plexiform layer by its co-localization with gephyrin, the γ2 subunit of the GABAA receptor and glycine receptors. YFP-NL2 puncta were apposed to the vesicular inhibitory transmitter transporter VGAT but not to CtBP2, a marker of presynaptic ribbons found at bipolar cell terminals. Similar patterns of co-localization with synaptic markers were observed for endogenous NL2. We also verified that expression of YFP-NL2 in the transgenic line did not significantly alter spontaneous inhibitory synaptic transmission onto RGCs. Using these mice, we found that, on average, the density of inhibitory synapses on individual arbors increased gradually until eye opening (postnatal day 15). A small centro-peripheral gradient in density found in mature arbors was apparent at the earliest age we examined (postnatal day 8). Unexpectedly, the adult ratio of inhibitory/excitatory postsynaptic sites was rapidly attained, shortly after glutamatergic synaptogenesis commenced (postnatal day 7). Conclusion Our observations suggest that bipolar and amacrine cell synaptogenesis onto RGCs appear coordinated to rapidly attain a balanced ratio of excitatory and inhibitory synapse densities prior to the onset of visual experience.
Collapse
Affiliation(s)
- Florentina Soto
- Department of Biological Structure, University of Washington, 1950 Pacific Ave, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ausdenmoore BD, Markwell ZA, Ladle DR. Localization of presynaptic inputs on dendrites of individually labeled neurons in three dimensional space using a center distance algorithm. J Neurosci Methods 2011; 200:129-43. [PMID: 21736898 DOI: 10.1016/j.jneumeth.2011.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 01/24/2023]
Abstract
The spatial distribution of synaptic inputs on the dendritic tree of a neuron can have significant influence on neuronal function. Consequently, accurate anatomical reconstructions of neuron morphology and synaptic localization are critical when modeling and predicting physiological responses of individual neurons. Historically, generation of three-dimensional (3D) neuronal reconstructions together with comprehensive mapping of synaptic inputs has been an extensive task requiring manual identification of putative synaptic contacts directly from tissue samples or digital images. Recent developments in neuronal tracing software applications have improved the speed and accuracy of 3D reconstructions, but localization of synaptic sites through the use of pre- and/or post-synaptic markers has remained largely a manual process. To address this problem, we have developed an algorithm, based on 3D distance measurements between putative pre-synaptic terminals and the post-synaptic dendrite, to automate synaptic contact detection on dendrites of individually labeled neurons from 3D immunofluorescence image sets. In this study, the algorithm is implemented with custom routines in Matlab, and its effectiveness is evaluated through analysis of primary sensory afferent terminals on motor neurons. Optimization of algorithm parameters enabled automated identification of synaptic contacts that matched those identified by manual inspection with low incidence of error. Substantial time savings and the elimination of variability in contact detection introduced by different users are significant advantages of this method.
Collapse
Affiliation(s)
- Benjamin D Ausdenmoore
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | | | | |
Collapse
|
24
|
Werblin FS. The retinal hypercircuit: a repeating synaptic interactive motif underlying visual function. J Physiol 2011; 589:3691-702. [PMID: 21669978 PMCID: PMC3171878 DOI: 10.1113/jphysiol.2011.210617] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract The vertebrate retina generates a stack of about a dozen different movies that represent the visual world as dynamic neural images or movies. The stack is embodied as separate strata that span the inner plexiform layer (IPL). At each stratum, ganglion cell dendrites reach up to read out inhibitory interactions between three different amacrine cell classes that shape bipolar-to-ganglion cell transmission. The nexus of these five cell classes represents a functional module, a retinal ‘hypercircuit’, that is repeated across the surface of each of the dozen strata that span the depth of the IPL. Individual differences in the characteristics of each cell class at each stratum lead to the unique processing characteristics of each neural image throughout the stack. This review shows how the interactions between the morphological and physiological characteristics of each cell class generate many of the known retinal visual functions including motion detection, directional selectivity, local edge detection, looming detection, object motion and looming detection.
Collapse
Affiliation(s)
- Frank S Werblin
- Division of Neurobiology, Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
25
|
Koizumi A, Jakobs TC, Masland RH. Regular mosaic of synaptic contacts among three retinal neurons. J Comp Neurol 2011; 519:341-57. [PMID: 21165978 DOI: 10.1002/cne.22522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Retinal bipolar, amacrine, and ganglion cells contact each other within precisely defined synaptic laminae, but the spatial distribution of contacts between the cells is generally treated as random. Here we show that not to be the case. Excitatory inputs to inner retinal neurons were visualized by introduction of a plasmid coding for the postsynaptic protein PSD95-GFP. Our initial finding was that synapses on the dendrites of retinal ganglion cells are regularly spaced, at 2-3-μm intervals, along the dendrites. Thus, the presence of a PSD95 punctum creates a nearby zone from which other inputs appear to be excluded. Despite their great variation in size and different morphologies, the spacing is similar for the arbors of different retinal ganglion cell types. Regular spacing was also observed for the starburst amacrine cells. This regularity is mirrored in the spacing of axonal varicosities of the stratified bipolar cells, which have a regular, nonrandom interval consistent with that of the PSD95 puncta on ganglion cells. Thus, for each level of the inner plexiform layer all three cell types participate in a single 2D mosaic of synaptic contacts. These findings raise a new set of questions: How does the self-avoidance of synaptic sites along an individual dendrite arise and how is it physically maintained? Why is a regular spacing of inputs important for the computational function of the cells? Finally, which of the three players, if any, is developmentally responsible for the initial establishment of the pattern?
Collapse
Affiliation(s)
- Amane Koizumi
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
26
|
Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 2010; 469:402-6. [PMID: 21131947 DOI: 10.1038/nature09600] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 10/13/2010] [Indexed: 11/08/2022]
Abstract
Establishing precise synaptic connections is crucial to the development of functional neural circuits. The direction-selective circuit in the retina relies upon highly selective wiring of inhibitory inputs from starburst amacrine cells (SACs) onto four subtypes of ON-OFF direction-selective ganglion cells (DSGCs), each preferring motion in one of four cardinal directions. It has been reported in rabbit that the SACs on the 'null' sides of DSGCs form functional GABA (γ-aminobutyric acid)-mediated synapses, whereas those on the preferred sides do not. However, it is not known how the asymmetric wiring between SACs and DSGCs is established during development. Here we report that in transgenic mice with cell-type-specific labelling, the synaptic connections from SACs to DSGCs were of equal strength during the first postnatal week, regardless of whether the SAC was located on the preferred or null side of the DSGC. However, by the end of the second postnatal week, the strength of the synapses made from SACs on the null side of a DSGC significantly increased whereas those made from SACs located on the preferred side remained constant. Blocking retinal activity by intraocular injections of muscimol or gabazine during this period did not alter the development of direction selectivity. Hence, the asymmetric inhibition between the SACs and DSGCs is achieved by a developmental program that specifically strengthens the GABA-mediated inputs from SACs located on the null side, in a manner not dependent on neural activity.
Collapse
|
27
|
POZNANSKI RR. CELLULAR INHIBITORY BEHAVIOR UNDERLYING THE FORMATION OF RETINAL DIRECTION SELECTIVITY IN THE STARBURST NETWORK. J Integr Neurosci 2010; 9:299-335. [DOI: 10.1142/s0219635210002457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/26/2010] [Indexed: 11/18/2022] Open
|
28
|
Schachter MJ, Oesch N, Smith RG, Taylor WR. Dendritic spikes amplify the synaptic signal to enhance detection of motion in a simulation of the direction-selective ganglion cell. PLoS Comput Biol 2010; 6. [PMID: 20808894 PMCID: PMC2924322 DOI: 10.1371/journal.pcbi.1000899] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/21/2010] [Indexed: 11/18/2022] Open
Abstract
The On-Off direction-selective ganglion cell (DSGC) in mammalian retinas responds most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree, which are thought to propagate to the soma with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas somatic PSPs (postsynaptic potentials) are only weakly directional, indicating that spike generation includes marked enhancement of the directional signal. We used a realistic computational model based on anatomical and physiological measurements to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate electrotonic regions, each summing its local excitatory and inhibitory synaptic inputs to initiate spikes. Within each local region the local spike threshold nonlinearly amplifies the preferred response over the null response on the basis of PSP amplitude. Using inhibitory conductances previously measured in DSGCs, the simulation results showed that inhibition is only sufficient to prevent spike initiation and cannot affect spike propagation. Therefore, inhibition will only act locally within the dendritic arbor. We identified the role of three mechanisms that generate directional selectivity (DS) in the local dendritic regions. First, a mechanism for DS intrinsic to the dendritic structure of the DSGC enhances DS on the null side of the cell's dendritic tree and weakens it on the preferred side. Second, spatially offset postsynaptic inhibition generates robust DS in the isolated dendritic tips but weak DS near the soma. Third, presynaptic DS is apparently necessary because it is more robust across the dendritic tree. The pre- and postsynaptic mechanisms together can overcome the local intrinsic DS. These local dendritic mechanisms can perform independent nonlinear computations to make a decision, and there could be analogous mechanisms within cortical circuitry. The On-Off direction-selective ganglion cell (DSGC) found in mammalian retinas generates a directional signal, responding most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree which are thought to propagate to the soma and brain with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas postsynaptic potentials (PSPs) recorded in the soma are only weakly directional, indicating that postsynaptic spike generation markedly enhances the directional signal. We constructed a realistic computational model to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate computational regions. Within each region, the local spike threshold produces nonlinear amplification of the preferred response over the null response on the basis of PSP amplitude. The simulation results showed that inhibition acts locally within the dendritic arbor and will not stop dendritic spikes from propagating. We identified the role of three mechanisms that generate direction selectivity in the local dendritic regions, which suggests the origin of the previously described “non-direction-selective region,” and also suggests that the known DS in the synaptic inputs is apparently necessary for robust DS across the dendritic tree.
Collapse
Affiliation(s)
- Michael J. Schachter
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicholas Oesch
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Robert G. Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - W. Rowland Taylor
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
29
|
Contini M, Lin B, Kobayashi K, Okano H, Masland RH, Raviola E. Synaptic input of ON-bipolar cells onto the dopaminergic neurons of the mouse retina. J Comp Neurol 2010; 518:2035-50. [PMID: 20394057 DOI: 10.1002/cne.22320] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the retina, dopamine fulfills a crucial role in neural adaptation to photopic illumination, but the pathway that carries cone signals to the dopaminergic amacrine (DA) cells was controversial. We identified the site of ON-cone bipolar input onto DA cells in transgenic mice in which both types of catecholaminergic amacrine (CA) cells were labeled with green fluorescent protein or human placental alkaline phosphatase (PLAP). In confocal Z series of retinal whole mounts stained with antibodies to tyrosine hydroxylase (TH), DA cells gave rise to varicose processes that descended obliquely through the scleral half of the inner plexiform layer (IPL) and formed a loose, tangential plexus in the middle of this layer. Comparison with the distribution of the dendrites of type 2 CA cells and examination of neurobiotin-injected DA cells proved that their vitreal processes were situated in stratum S3 of the IPL. Electron microscope demonstration of PLAP activity showed that bipolar cell endings in S3 established ribbon synapses onto a postsynaptic dyad in which one or both processes were labeled by a precipitate of lead phosphate and therefore belonged to DA cells. In places, the postsynaptic DA cell processes returned a reciprocal synapse onto the bipolar endings. Confocal images of sections stained with antibodies to TH, kinesin Kif3a, which labels synaptic ribbons, and glutamate or GABA(A) receptors, confirmed that ribbon-containing endings made glutamatergic synapses onto DA cells processes in S3 and received from them GABAergic synapses. The presynaptic ON-bipolar cells most likely belonged to the CB3 (type 5) variety.
Collapse
Affiliation(s)
- Massimo Contini
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
30
|
Percival KA, Jusuf PR, Martin PR, Grünert U. Synaptic inputs onto small bistratified (blue-ON/yellow-OFF) ganglion cells in marmoset retina. J Comp Neurol 2010; 517:655-69. [PMID: 19830807 DOI: 10.1002/cne.22183] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The inner plexiform layer of the retina contains functional subdivisions, which segregate ON and OFF type light responses. Here, we studied quantitatively the ON and OFF synaptic input to small bistratified (blue-ON/yellow-OFF) ganglion cells in marmosets (Callithrix jacchus). Small bistratified cells display an extensive inner dendritic tier that receives blue-ON input from short-wavelength-sensitive (S) cones via blue cone bipolar cells. The outer dendritic tier is sparse and is thought to receive yellow-OFF input from medium (M)- and long (L)-wavelength-sensitive cones via OFF diffuse bipolar cells. In total, 14 small bistratified cells from different eccentricities were analyzed. The cells were retrogradely labeled from the koniocellular layers of the lateral geniculate nucleus and subsequently photofilled. Retinal preparations were processed with antibodies against the C-terminal binding protein 2, the AMPA receptor subunit GluR4, and/or gephyrin to identify bipolar and/or amacrine input. The results show that the synaptic input is evenly distributed across the dendritic tree, with a density similar to that reported previously for other ganglion cell types. The population of cells showed a consistent pattern, where bipolar input to the inner tier is about fourfold greater than bipolar input to the outer tier. This structural asymmetry of bipolar input may help to balance the weight of cone signals from the sparse S cone array against inputs from the much denser M/L cone array.
Collapse
Affiliation(s)
- Kumiko A Percival
- National Vision Research Institute of Australia, Carlton, Victoria 3053, Australia
| | | | | | | |
Collapse
|
31
|
Jakobs TC, Koizumi A, Masland RH. The spatial distribution of glutamatergic inputs to dendrites of retinal ganglion cells. J Comp Neurol 2008; 510:221-36. [PMID: 18623177 DOI: 10.1002/cne.21795] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The spatial pattern of excitatory glutamatergic input was visualized in a large series of ganglion cells of the rabbit retina, by using particle-mediated gene transfer of an expression plasmid for postsynaptic density 95-green fluorescent protein (PSD95-GFP). PSD95-GFP was confirmed as a marker of excitatory input by co-localization with synaptic ribbons (RIBEYE and kinesin II) and glutamate receptor subunits. Despite wide variation in the size, morphology, and functional complexity of the cells, the distribution of excitatory synaptic inputs followed a single set of rules: 1) the linear density of synaptic inputs (PSD95 sites/linear mum) varied surprisingly little and showed little specialization within the arbor; 2) the total density of excitatory inputs across individual arbors peaked in a ring-shaped region surrounding the soma, which is in accord with high-resolution maps of receptive field sensitivity in the rabbit; and 3) the areal density scaled inversely with the total area of the dendritic arbor, so that narrow dendritic arbors receive more synapses per unit area than large ones. To achieve sensitivity comparable to that of large cells, those that report upon a small region of visual space may need to receive a denser synaptic input from within that space.
Collapse
Affiliation(s)
- Tatjana C Jakobs
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
32
|
Elstrott J, Anishchenko A, Greschner M, Sher A, Litke AM, Chichilnisky EJ, Feller MB. Direction selectivity in the retina is established independent of visual experience and cholinergic retinal waves. Neuron 2008; 58:499-506. [PMID: 18498732 DOI: 10.1016/j.neuron.2008.03.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 01/28/2008] [Accepted: 03/18/2008] [Indexed: 11/25/2022]
Abstract
Direction selectivity in the retina requires the asymmetric wiring of inhibitory inputs onto four subtypes of On-Off direction-selective ganglion cells (DSGCs), each preferring motion in one of four cardinal directions. The primary model for the development of direction selectivity is that patterned activity plays an instructive role. Here, we use a unique, large-scale multielectrode array to demonstrate that DSGCs are present at eye opening, in mice that have been reared in darkness and in mice that lack cholinergic retinal waves. These data suggest that direction selectivity in the retina is established largely independent of patterned activity and is therefore likely to emerge as a result of complex molecular interactions.
Collapse
Affiliation(s)
- Justin Elstrott
- Neuroscience Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Chen YC, Chiao CC. Symmetric synaptic patterns between starburst amacrine cells and direction selective ganglion cells in the rabbit retina. J Comp Neurol 2008; 508:175-83. [PMID: 18306383 DOI: 10.1002/cne.21677] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inputs from starburst amacrine cells (SACs) to ON-OFF direction selective ganglion cells (DSGCs) in the rabbit retina are themselves directional. However, the synaptic asymmetry between SACs and DSGCs required for generating direction selectivity has been controversial. We investigated dendritic contacts and distribution of inhibitory synapses between SACs and their overlapped DSGCs. Double injection of SAC/DSGC pairs and quantitative analysis revealed no obvious asymmetry of dendritic contacts between SACs and DSGCs. Furthermore, examination of the inhibitory input pattern on the dendrites of DSGCs using antibodies against GABA(A) receptors also suggested an isotropic arrangement with the overlapping SACs in both the preferred and the null directions. Therefore, the presynaptic mechanism of direction selectivity upon DSGCs may not result from a simple asymmetric arrangement with overlapping SACs. Multiple layer interactions and sophisticated synaptic connections between SACs and DSGCs are necessary.
Collapse
Affiliation(s)
- Yung-Cheng Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | | |
Collapse
|
34
|
Xu Y, Vasudeva V, Vardi N, Sterling P, Freed MA. Different types of ganglion cell share a synaptic pattern. J Comp Neurol 2008; 507:1871-8. [PMID: 18271025 DOI: 10.1002/cne.21644] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retinal ganglion cells comprise about 10 morphological types that also differ functionally. To determine whether functional differences might arise partially from differences in excitatory input, we quantified the distributions of ribbon contacts to four mammalian ganglion cell types [brisk-transient (BT), brisk-sustained (BS), local edge (LE), directionally selective (DS)], comparing small vs. large and "sluggish" vs. "brisk." Cells in guinea pig retina were filled with fluorescent dye, immunostained for synaptic ribbons, and reconstructed with their ribbon contacts by confocal microscopy. False-positive contacts were corrected by performing the same analysis on processes that lack synapses: glial stalks and rod bipolar axons. All types shared a domed distribution of membrane that was well fit by a Gaussian function (R(2) = 0.96 +/- 0.01); they also shared a constant density of contacts on the dendritic membrane, both across each arbor and across cell types (19 +/- 1 contacts/100 microm(2) membrane). However, the distributions of membrane across the retina differed markedly in width (BT > DS approximately BS > LE) and peak density (BS > DS > LE > BT). Correspondingly, types differed in peak density of contacts (BS > DS approximately LE > BT) and total number (BS approximately BT > DS > LE). These differences between cell types in spatial extent and local concentration of membrane and synapses help to explain certain functional differences.
Collapse
Affiliation(s)
- Ying Xu
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058, USA
| | | | | | | | | |
Collapse
|
35
|
Morgan JL, Schubert T, Wong ROL. Developmental patterning of glutamatergic synapses onto retinal ganglion cells. Neural Dev 2008; 3:8. [PMID: 18366789 PMCID: PMC2311295 DOI: 10.1186/1749-8104-3-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 03/26/2008] [Indexed: 11/17/2022] Open
Abstract
Background Neurons receive excitatory synaptic inputs that are distributed across their dendritic arbors at densities and with spatial patterns that influence their output. How specific synaptic distributions are attained during development is not well understood. The distribution of glutamatergic inputs across the dendritic arbors of mammalian retinal ganglion cells (RGCs) has long been correlated to the spatial receptive field profiles of these neurons. Thus, determining how glutamatergic inputs are patterned onto RGC dendritic arbors during development could provide insight into the cellular mechanisms that shape their functional receptive fields. Results We transfected developing and mature mouse RGCs with plasmids encoding fluorescent proteins that label their dendrites and glutamatergic postsynaptic sites. We found that as dendritic density (dendritic length per unit area of dendritic field) decreases with maturation, the density of synapses along the dendrites increases. These changes appear coordinated such that RGCs attain the mature average density of postsynaptic sites per unit area (areal density) by the time synaptic function emerges. Furthermore, stereotypic centro-peripheral gradients in the areal density of synapses across the arbor of RGCs are established at an early developmental stage. Conclusion The spatial pattern of glutamatergic inputs onto RGCs arises early in synaptogenesis despite ensuing reorganization of dendritic structure. We raise the possibility that these early patterns of synaptic distributions may arise from constraints placed on the number of contacts presynaptic neurons are able to make with the RGCs.
Collapse
Affiliation(s)
- Josh L Morgan
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
36
|
Abstract
Direction selectivity represents a fundamental computation found across multiple sensory systems. In the mammalian visual system, direction selectivity appears first in the retina, where excitatory and inhibitory interneurons release neurotransmitter most rapidly during movement in a preferred direction. Two parallel sets of interneuron signals are integrated by a direction-selective ganglion cell, which creates a direction preference for both bright and dark moving objects. Direction selectivity of synaptic input becomes amplified by action potentials in the ganglion cell dendrites. Recent work has elucidated direction-selective mechanisms in inhibitory circuitry, but mechanisms in excitatory circuitry remain unexplained.
Collapse
Affiliation(s)
- Jonathan B Demb
- Department of Ophthalmology & Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI 48105, USA.
| |
Collapse
|
37
|
Kwon OJ, Kim MS, Kim TJ, Jeon CJ. Identification of synaptic pattern of kainate glutamate receptor subtypes on direction-selective retinal ganglion cells. Neurosci Res 2007; 58:255-64. [PMID: 17466402 DOI: 10.1016/j.neures.2007.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 11/24/2022]
Abstract
In this article we investigate the distributions of kainate glutamate receptor subtypes GluR5-7 and KA1, 2 on the dendritic arbors of direction-selective (DS) retinal ganglion cells (RGCs) of the rabbit retina to search for anisotropies, which might contribute to a directional preference of DS RGCs. The distribution of the kainate receptor subunits on the DS RGCs was determined using antibody immunocytochemistry. DS RGCs were injected with Lucifer yellow and the cells were identified by their characteristic morphology. The double-labeled images of dendrites and receptors were visualized using confocal microscopy and were reconstructed from high-resolution confocal images. We found no evidence of asymmetry in any of the kainate receptor subunits examined on the dendritic arbors of both On and Off layers of DS RGCs. Our results indicate that direction selectivity appears to lie in the neuronal circuitry afferent to the ganglion cell.
Collapse
Affiliation(s)
- Oh-Ju Kwon
- Neuroscience Lab, Department of Biology, College of Natural Sciences, Kyungpook National University, 1370 Sankyuk-dong, Daegu 702-701, South Korea
| | | | | | | |
Collapse
|
38
|
Mehta V, Sernagor E. Receptive field structure-function correlates in developing turtle retinal ganglion cells. Eur J Neurosci 2006; 24:787-94. [PMID: 16930408 DOI: 10.1111/j.1460-9568.2006.04971.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mature retinal ganglion cells (RGCs) have distinct morphologies that often reflect specialized functional properties such as On and Off responses. But the structural correlates of many complex receptive field (RF) properties (e.g. responses to motion) remain to be deciphered. In this study, we have investigated whether motion anisotropies (non-homogeneities) characteristic of embryonic turtle RGCs arise from immature dendritic arborization in these cells. To test this hypothesis, we have looked at structure-function correlates of developing turtle RGCs from Stage 23 (S23) when light responses emerge, until 15 weeks post-hatching (PH). Using whole cell patch clamp recordings, RGCs were labelled with Lucifer Yellow (LY) while recording their responses to moving edges of light. Comparison of RF and dendritic arbor layouts revealed a weak correlation. To obtain a larger structural sample of developing RGCs, we have looked at dendritic morphology in RGCs retrogradely filled with the tracer horseradish peroxidase (HRP) from S22 (when RGCs become spontaneously active, shortly before they become sensitive to light) until two weeks PH. We found that there was intense dendritic growth from S22 onwards, reaching peak proliferation at S25 (a week before hatching), while RGCs are still exhibiting significant motion anisotropies. Based on these observations, we suggest that immature anisotropic RGC RFs must originate from sparse synaptic inputs onto RGCs rather than from the immaturity of their growing dendritic trees.
Collapse
Affiliation(s)
- Vandana Mehta
- School of Neurology, Neurobiology and Psychiatry, Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
39
|
Jeong SA, Kwon OJ, Lee JY, Kim TJ, Jeon CJ. Synaptic pattern of AMPA receptor subtypes upon direction-selective retinal ganglion cells. Neurosci Res 2006; 56:427-34. [PMID: 17007948 DOI: 10.1016/j.neures.2006.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 11/29/2022]
Abstract
In the search for anisotropies that might contribute to a directional preference of direction-selective (DS) retinal ganglion cells (RGCs), we studied the distributions of AMPA receptor subtypes GluR1, GluR2/3, and GluR4 upon the dendritic arbors of DS RGCs of the rabbit with antibody immunocytochemistry. DS RGCs were injected with Lucifer yellow and the cells were identified by their characteristic morphology. The double-labeled images of dendrites and receptors were visualized by confocal microscopy and were reconstructed from high-resolution confocal images. We found no evidence of asymmetry in any of the AMPA receptor subunits examined upon the dendritic arbors of both On and Off layers of DS RGCs. The present results indicate that direction selectivity appears to lie in presynaptic pattern.
Collapse
Affiliation(s)
- Seong-Ah Jeong
- Neuroscience Lab, Department of Biology, College of Natural Sciences, Kyungpook National University, 1370 Sankyuk-Dong, Daegu, South Korea
| | | | | | | | | |
Collapse
|
40
|
Deng Q, Wang L, Dong W, He S. Lateral components in the cone terminals of the rabbit retina: horizontal cell origin and glutamate receptor expression. J Comp Neurol 2006; 496:698-705. [PMID: 16615127 DOI: 10.1002/cne.20959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We examined the identities of horizontal cell (HC) lateral components in cone terminals and the expression of glutamate receptors on the tips of HC dendrites. We injected A-type horizontal cells (AHCs) with neurobiotin and demonstrated that neurobiotin labeled completely all AHCs within a patch of retina. We converted neurobiotin by using diaminobenzidine and considered labeled processes to be from AHCs and unlabeled processes to be from B-type horizontal cells (BHCs). Three possible combinations of HC dendrites could exist in cone pedicles: both lateral components originating from AHCs, both from BHCs, or one from an AHC and the other from a BHC. EM observations revealed that a majority of cone terminals contained about equal numbers of lateral components originating from each of the two types of HCs and that each of the three possible combinations was present in equal numbers. Localization of different types of glutamate receptors on HC dendritic tips showed that 55% of AHC dendritic tips expressed AMPA receptors and 30% expressed kainate receptors, whereas, in the case of BHCs, 22% of dendritic tips expressed AMPA receptors and 33% expressed kainate receptors. This study suggests that cone photoreceptors feed the light signal equally into networks of AHCs and BHCs and that differential expression of AMPA/kainate receptors by different HCs could account for different functions.
Collapse
Affiliation(s)
- Qiudong Deng
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Republic of China
| | | | | | | |
Collapse
|
41
|
Roska B, Molnar A, Werblin FS. Parallel processing in retinal ganglion cells: how integration of space-time patterns of excitation and inhibition form the spiking output. J Neurophysiol 2006; 95:3810-22. [PMID: 16510780 DOI: 10.1152/jn.00113.2006] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our goal was to understand how patterns of excitation and inhibition, interacting across arrays of ganglion cells in space and time, generate the spiking output pattern for each ganglion cell type. We presented the retina with a 1-s flashed square, 600 microm on a side, and measured patterns of excitation and inhibition over an 1,800-microm-wide region encompassing many ganglion cells. Excitatory patterns of on ganglion cells resembled rectified versions of the voltage patterns of on bipolar cells. Inhibitory patterns in on ganglion cells resembled the rectified versions of voltage patterns of off bipolar cells. off ganglion cells received off excitation and on inhibition. Many ganglion cells also received an additional wide field transient inhibition derived from the activity of both on and off bipolar cells. Ganglion cell spiking was suppressed in those space-time regions dominated by inhibition. We classified each ganglion cell type by correlating its space-time patterns with its dendritic morphology. These studies suggest the bipolar and amacrine cell circuitry underlying the interplay between on and off signals that generate spiking patterns in ganglion cells. They reveal a surprising synergistic interaction between excitation and inhibition in most ganglion cells.
Collapse
Affiliation(s)
- Botond Roska
- Department of Molecular and Cell Biology, University of California at Berkeley, 94720, USA
| | | | | |
Collapse
|
42
|
Oesch N, Euler T, Taylor WR. Direction-selective dendritic action potentials in rabbit retina. Neuron 2005; 47:739-50. [PMID: 16129402 DOI: 10.1016/j.neuron.2005.06.036] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 05/31/2005] [Accepted: 06/28/2005] [Indexed: 11/16/2022]
Abstract
Dendritic spikes that propagate toward the soma are well documented, but their physiological role remains uncertain. Our in vitro patch-clamp recordings and two-photon calcium imaging show that direction-selective retinal ganglion cells (DSGCs) utilize orthograde dendritic spikes during physiological activity. DSGCs signal the direction of image motion. Excitatory subthreshold postsynaptic potentials are observed in DSGCs for motion in all directions and provide a weakly tuned directional signal. However, spikes are generated over only a narrow range of motion angles, indicating that spike generation greatly enhances directional tuning. Our results indicate that spikes are initiated at multiple sites within the dendritic arbors of DSGCs and that each dendritic spike initiates a somatic spike. We propose that dendritic spike failure, produced by local inhibitory inputs, might be a critical factor that enhances directional tuning of somatic spikes.
Collapse
Affiliation(s)
- Nicholas Oesch
- Neurological Sciences Institute, Oregon Health and Sciences University, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
43
|
Poznanski RR. BIOPHYSICAL MECHANISMS AND ESSENTIAL TOPOGRAPHY OF DIRECTIONALLY SELECTIVE SUBUNITS IN RABBIT'S RETINA. J Integr Neurosci 2005; 4:341-61. [PMID: 16178062 DOI: 10.1142/s0219635205000860] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 06/16/2005] [Indexed: 11/18/2022] Open
Abstract
We commemorate the 40th anniversary of the classical study undertaken by Barlow-Levick with a new challenge: to show how direction selectivity in the dendritic plexus of starburst amacrine cells is being computed. In the rabbit retina, although the cellular locus of direction selectivity is known to occur predominantly in the dendrites of starburst amacrine cells, the biophysical mechanism by which this takes place and its essential topography are yet to be specified with precision. A cotransmission model, involving a conjoint release of excitation/inhibition (i.e., a bisynaptic relay of endogenous ACh and GABA) from the distal varicosities of individual starburst amacrines, will be non-diphasic when the vesicular release of Ach and the non-vesicular, carrier-mediated release of GABA by transporters in the anterograde direction are preferentially suppressed by a negative feedback mechanism involving autoreceptors. Such biophysical mechanisms, including the asymmetric distribution of chloride cotransporters, explain somatofugal motion bias in starburst amacrine cells leading to autonomous functioning "subunits" that underlie the formation of directional selectivity. However, the functional independence of starburst amacrine cell "subunits" is partly a question of their network organization. The topography of directionally selective "subunits" resides in the plexus of crisscrossing dendrites of juxtaposed starburst amacrines, consisting of (i) serial synapses of three or more starburst amacrines and a ON-OFF directionally selective ganglion cell; (ii) a synaptic couplet between two starburst amacrines; and (iii) a conventional synapse between a starburst amacrine and a ON-OFF directionally selective ganglion cell. Cholinergic and GABAergic monosynaptic interactions between starburst amacrine cells, including glutamatergic interactions with cone bipolar cells, are involved in the primary circuit underlying directional selectivity. Furthermore, the secondary circuit underlying directional selectivity, consists of starburst amacrine cells and cone bipolar cells arranged in a "push-pull" configuration, interacting synaptically onto ON-OFF directionally selective ganglion cells.
Collapse
Affiliation(s)
- Roman R Poznanski
- Claremont Research Institute of Applied Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711-3988, USA.
| |
Collapse
|
44
|
Famiglietti EV. Synaptic organization of complex ganglion cells in rabbit retina: type and arrangement of inputs to directionally selective and local-edge-detector cells. J Comp Neurol 2005; 484:357-91. [PMID: 15770656 DOI: 10.1002/cne.20433] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The type and topographic distribution of synaptic inputs to a directionally selective (DS) rabbit retinal ganglion cell (GC) were examined and were compared with those received by two other complex GC types. The percentage of cone bipolar cell (BC) input, presumably an index of sustained responses and simple receptive field properties, is much higher than expected for complex GCs in reference to previous reports in other species: approximately 20% for the type 1 bistratified ON-OFF DS GC and for a multistratified GC, and approximately 40% for the small-tufted local-edge-detector GC. Consistent with a previous study (Famiglietti [1991] J. Comp. Neurol. 309:40-70), no ultrastructural evidence is found for inhibitory synapses from starburst amacrine cells to the ON-OFF DS GC. The density of inputs to the ON-OFF DS GC is high and rather evenly distributed over the dendritic tree. Clustering of inputs brings excitatory and inhibitory inputs into proximity, but the strict on-path condition of more proximal inhibitory inputs, favoring shunting inhibition, is not satisfied. Prominent BC input and its regional variation suggest that BCs play key roles in DS neural circuitry, both pre- and postsynaptic to the ON-OFF DS GC, according to a bilayer model (Famiglietti [1993] Invest. Ophthalmol. Vis. Sci. 34:S985). Asymmetry of inhibitory amacrine cell input may signify a region on the preferred side of the receptive field, the inhibition-free zone (Barlow and Levick [1965] J. Physiol. (Lond.) 178:477-504), supporting a role for postsynaptic integration in the DS mechanism. Prominent BC input to the local-edge-detector, often without accompanying amacrine cell input, indicates presynaptic integration in forming its trigger feature.
Collapse
Affiliation(s)
- Edward V Famiglietti
- Department of Ophthalmology, Rhode Island Hospital, Providence, Rhode Island 02903, USA.
| |
Collapse
|
45
|
Lin B, Masland RH. Synaptic contacts between an identified type of ON cone bipolar cell and ganglion cells in the mouse retina. Eur J Neurosci 2005; 21:1257-70. [PMID: 15813935 DOI: 10.1111/j.1460-9568.2005.03967.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We surveyed the potential contacts between an identified type of bipolar cell and retinal ganglion cells in the mouse. By crossing two existing mouse strains (line 357 and line GFP-M), we created a double transgenic strain in which GFP is expressed by all members of a single type of ON cone bipolar cell and a sparse, mixed population of retinal ganglion cells. The GFP-expressing bipolar cells appear to be those termed CB4a of Pignatelli & Strettoi [(2004) J. Comp. Neurol., 476, 254-266] and type 7 of Ghosh et al. [(2004) J. Comp. Neurol., 469, 70-82 and J. Comp. Neurol., 476, 202-203]. The labelled ganglion cells include examples of most or all types of ganglion cells present in the mouse. By studying the juxtaposition of their processes in three dimensions, we could learn which ganglion cell types are potential synaptic targets of the line 357 bipolar cell. Of 12 ganglion cell types observed, 10 types could be definitively ruled out as major synaptic targets of the line 357 bipolar cells. One type of monostratified ganglion cell and one bistratified cell tightly cofasciculate with axon terminals of the line 357 bipolar cells. Double labelling for kinesin II demonstrates colocalization of bipolar cell ribbons at the sites of contact between these two types of ganglion cell and the line 357 bipolar cells.
Collapse
Affiliation(s)
- Bin Lin
- Howard Hughes Medical Institute, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Wellman 429, Boston, MA 02114, USA.
| | | |
Collapse
|
46
|
Abstract
Direction-selective retinal ganglion cells (DSGCs) respond to image motion in a "preferred" direction but not the opposite "null" direction. Extracellular spike recordings from rabbit DSGCs suggested that the key mechanism underlying the directional responses is spatially offset inhibition projecting in the null direction. Recent patch-clamp recordings have shown that this inhibition, which acts directly on the DSGC, is already direction selective. Dual recordings established that the inhibition arises from starburst amacrine cells (SBACs) located on the null side of the DSGC but not from those on the preferred side. Thus, for each radially symmetric SBAC, processes pointing in different directions would provide the null-direction inhibition to subtypes of DSGCs with different preferred directions. Ca2+ imaging revealed that the SBAC terminal processes respond more strongly to image motion away from the soma than towards the soma, therefore accounting for the direction selectivity of the inhibitory input to the DSGCs.
Collapse
Affiliation(s)
- W Rowland Taylor
- Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
47
|
Dacheux RF, Chimento MF, Amthor FR. Synaptic input to the on-off directionally selective ganglion cell in the rabbit retina. J Comp Neurol 2003; 456:267-78. [PMID: 12528191 DOI: 10.1002/cne.10521] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A physiologically identified on-off directionally selective (DS) ganglion cell with its preferred-null axis defined was stained with horseradish peroxidase (HRP) and prepared for electron microscopy. A continuous series of thin sections were used to examine the cell's synaptology. Although the DS cell dendrite received the majority of its synaptic input from a heterogeneous population of amacrine cell processes, a frequently observed synaptic profile consisted of a DS cell dendrite receiving synapses from a cluster of several amacrine cell processes. These clusters of processes were assumed to be from a fascicle of amacrine cells, most of which probably belonged to several different cholinergic starburst amacrine cells. The most frequently observed presynaptic profile within the clusters consisted of a synaptic couplet in which two processes synapsed with each other before one of them finally synapsed with the DS ganglion cell dendrite; occasionally, a chain of three serial synapses was seen. In addition, a specific microcircuit that has the potential to exert lateral feedforward inhibition was also observed. This microcircuit consisted of two cone bipolar cell terminal dyad synapses where one dyad contained an amacrine cell process making a reciprocal synapse and a DS ganglion cell dendrite receiving direct excitation; the other dyad synapse, found lateral to the first dyad, contained two amacrine cell processes that both made reciprocal synapses, but one fed forward to make a putative inhibitory synapse with the DS cell dendrite.
Collapse
Affiliation(s)
- Ramon F Dacheux
- Department of Ophthalmology, University of Alabama at Birmingham, Callahan Eye Foundation Hospital, 35294-0009, USA.
| | | | | |
Collapse
|
48
|
Starburst cells nondirectionally facilitate the responses of direction-selective retinal ganglion cells. J Neurosci 2003. [PMID: 12486140 DOI: 10.1523/jneurosci.22-24-10509.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism of direction selectivity in retinal ganglion cells remains controversial. An important issue is how the starburst amacrine cells, which are known to provide a major synaptic input to the direction-selective ganglion cells, participate in the directional discrimination. Here, we present evidence that the cholinergic outputs of the starburst cells affect the responses of the ganglion cells symmetrically; they provide a feedforward excitation that facilitates the response of the ganglion cells to movement in both the preferred and null directions. This seems to place a constraint on models of the directional discrimination in which the starburst cells participate, namely, that their cholinergic synapses be nondirectional in their effects on the ganglion cells.
Collapse
|
49
|
Stasheff SF, Masland RH. Functional inhibition in direction-selective retinal ganglion cells: spatiotemporal extent and intralaminar interactions. J Neurophysiol 2002; 88:1026-39. [PMID: 12163551 DOI: 10.1152/jn.2002.88.2.1026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded from ON-OFF direction-selective ganglion cells (DS cells) in the rabbit retina to investigate in detail the inhibition that contributes to direction selectivity in these cells. Using paired stimuli moving sequentially across the cells' receptive fields in the preferred direction, we directly confirmed the prediction of that a wave of inhibition accompanies any moving excitatory stimulus on its null side, at a fixed spatial offset. Varying the interstimulus distance, stimulus size, luminance, and speed yielded a spatiotemporal map of the strength of inhibition within this region. This "null" inhibition was maximal at an intermediate distance behind a moving stimulus: 1/2 to 11/2 times the width of the receptive field. The strength of inhibition depended more on the distance behind the stimulus than on stimulus speed, and the inhibition often lasted 1-2 s. These spatial and temporal parameters appear to account for the known spatial frequency and velocity tuning of ON-OFF DS cells to drifting contrast gratings. Stimuli that elicit distinct ON and OFF responses to leading and trailing edges revealed that an excitatory response of either polarity could inhibit a subsequent response of either polarity. For example, an OFF response inhibited either an ON or OFF response of a subsequent stimulus. This inhibition apparently is conferred by a neural element or network spanning the ON and OFF sublayers of the inner plexiform layer, such as a multistratified amacrine cell. Trials using a stationary flashing spot as a probe demonstrated that the total amount of inhibition conferred on the DS cell was equivalent for stimuli moving in either the null or preferred direction. Apparently the cell does not act as a classic "integrate and fire" neuron, summing all inputs at the soma. Rather, computation of stimulus direction likely involves interactions between excitatory and inhibitory inputs in local regions of the dendrites.
Collapse
Affiliation(s)
- Steven F Stasheff
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston 02115, USA.
| | | |
Collapse
|