1
|
Wang L, Lam JSY, Zhao H, Wang J, Chan SO. Localization of protein kinase C isoforms in the optic pathway of mouse embryos and their role in axon routing at the optic chiasm. Brain Res 2014; 1575:22-32. [PMID: 24863469 DOI: 10.1016/j.brainres.2014.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/08/2014] [Accepted: 05/16/2014] [Indexed: 12/16/2022]
Abstract
Protein kinase C (PKC) plays a key role in many receptor-mediated signaling pathways that regulate cell growth and development. However, its roles in guiding axon growth and guidance in developing neural pathways are largely unknown. To investigate possible functions of PKC in the growth and guidance of axons in the optic chiasm, we first determined the localization of major PKC isoforms in the retinofugal pathway of mouse embryos, at the stage when axons navigate through the midline. Results showed that PKC was expressed in isoform specific patterns in the pathway. PKC-α immunoreactivity was detected in the chiasm and the optic tract. PKC-βΙΙ was strong in the optic stalk but was attenuated on axons in the diencephalon. Immunostaining for PKC-ε showed a colocalization in the chiasmatic neurons that express a surface antigen stage specific embryonic antigen-1 (SSEA-1). These chiasmatic neurons straddled the midline of the optic chiasm, and have been shown in earlier studies a role in regulation of axon growth and guidance. Expression levels of PKC-βΙ, -δ and -γ were barely detectable in the pathway. Blocking of PKC signaling with Ro-32-0432, an inhibitor specific for PKC-α and -β at nanomolar concentration, produced a dramatic reduction of ipsilateral axons from both nasal retina and temporal crescent. We conclude from these studies that PKC-α and -βΙΙ are the predominant forms in the developing optic pathway, whereas PKC-ε is the major form in the chiasmatic neurons. Furthermore, PKC-α and -βΙΙ are likely involved in signaling pathways triggered by inhibitory molecules at the midline that guide optic axons to the uncrossed pathway.
Collapse
Affiliation(s)
- Liqing Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Joyce Shi-Ying Lam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Jun Wang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
2
|
Yuan X. Axon guidance and neuronal migration research in China. SCIENCE CHINA-LIFE SCIENCES 2010; 53:304-314. [PMID: 20596924 DOI: 10.1007/s11427-010-0068-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 01/19/2010] [Indexed: 01/21/2023]
Abstract
Proper migration of neuronal somas and axonal growth cones to designated locations in the developing brain is essential for the assembly of functional neuronal circuits. Rapid progress in research of axon guidance and neuronal migration has been made in the last twenty years. Chinese researchers began their exploration in this field ten years ago and have made significant contributions in clarifying the signal transduction of axon guidance and neuronal migration. Several unique experimental approaches, including the migration assay of single isolated neurons in response to locally delivered guidance cues, have been developed by Chinese neuroscientists to investigate the molecular machinery underlying these guidance events.
Collapse
Affiliation(s)
- XiaoBing Yuan
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
3
|
Wang J, Chan CK, Taylor JSH, Chan SO. The growth-inhibitory protein Nogo is involved in midline routing of axons in the mouse optic chiasm. J Neurosci Res 2009; 86:2581-90. [PMID: 18478548 DOI: 10.1002/jnr.21717] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have investigated the role of Nogo, a protein that inhibits regenerating axons in the adult central nervous system, on axon guidance in the developing optic chiasm of mouse embryos. Nogo protein is expressed by radial glia in the midline within the optic chiasm where uncrossed axons turn, and the Nogo receptor (NgR) is expressed on retinal neurites and growth cones. In vitro neurite outgrowth from both dorsonasal and ventrotemporal retina was inhibited by Nogo protein, and this inhibition was abolished by blocking NgR activity. In slice cultures of the optic pathway, blocking NgR with a peptide antagonist produced significant reduction in the uncrossed projection but had no effect on the crossing axons. This result was confirmed by treating cultures with an anti-Nogo functional blocking antibody. In vitro coculture assays of retina and optic chiasm showed that NgR was selectively reduced on neurites and growth cones from dorsonasal retina when they contacted chiasm cells, but not on those from ventrotemporal retina. These findings provide evidence that Nogo signaling is involved in directing the growth of axons in the mouse optic chiasm and that this process relies on a differential regulation of NgR on axons from the dorsonasal and ventrotemporal retina.
Collapse
Affiliation(s)
- Jun Wang
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | |
Collapse
|
4
|
Lam JSY, Wang L, Lin L, Chan SO. Role of protein kinase C in selective inhibition of mouse retinal neurites during contacts with chondroitin sulfates. Neurosci Lett 2008; 434:150-4. [PMID: 18313852 DOI: 10.1016/j.neulet.2008.01.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/12/2008] [Accepted: 01/22/2008] [Indexed: 11/29/2022]
Abstract
Chondroitin sulfate proteoglycans elicit a selective inhibition to neurite growth from ventrotemporal (VT) but not dorsonasal (DN) retina, potentiating the bilateral routing of axons in the mouse optic chiasm. We examined whether this selective response is mediated by a difference in protein kinase C (PKC) expression. Effects of suppressing PKC activity in explant preparations of embryonic day 14 retinae with inhibitor Gö6976 or Ro-32-0432 abolished the chondroitin sulfate inhibition to the VT neurites but had no effect to the DN neurites. Whether these responses rely on a difference in expression of PKC in the growth cones was examined using antibodies against six isozymes of PKC. Among these the alpha, betaI and epsilon isozymes were expressed prominently in the retinal growth cones; whilst the betaII, delta and gamma isozymes were barely detected. Moreover, while the alpha and epsilon isozymes were abundant in the filopodial and lamellipodial processes, the betaI isozyme was restricted largely in the core region of the growth cones. Despite these subtype specific localization, there was no significant difference in expression of any of these PKC isozymes between growth cones from VT and DN retina, indicating that the selective response to chondroitin sulfates is not likely generated by a regulation of PKC expression, but by expression of surface molecules that interact with chondroitin sulfate proteoglycans.
Collapse
Affiliation(s)
- Joyce Shi-Ying Lam
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | | | |
Collapse
|
5
|
Wang J, Chan CK, Taylor JS, Chan SO. Localization of Nogo and its receptor in the optic pathway of mouse embryos. J Neurosci Res 2008; 86:1721-33. [DOI: 10.1002/jnr.21626] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Lin L, Wang J, Chan CK, Chan SO. Effects of exogenous hyaluronan on midline crossing and axon divergence in the optic chiasm of mouse embryos. Eur J Neurosci 2007; 26:1-11. [PMID: 17581255 DOI: 10.1111/j.1460-9568.2007.05642.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perturbation of the transmembrane glycoprotein, CD44, has been shown to cause multiple errors in axon routing in the mouse optic chiasm. In a recent report we have shown that the major CD44 ligand, hyaluronan (HA), is colocalized with CD44 at the midline of the chiasm, suggesting a possible contribution to the control of axon routing in the chiasm. We examined this issue by investigating the effects of exogenous HA on routing of axons in the chiasm in slice preparations of the optic pathway. In preparations of the E13 optic pathway, administration of exogenous HA produced a dose-dependent failure in midline crossing of the first generated optic axons. In E15 slices, when the adult pattern of axon divergence develops in the chiasm, anterograde filling of the optic axons showed an obvious reduction in the uncrossed pathway after HA treatment. This reduction was confirmed by retrograde filling of the ganglion cells in E15 slices, and later in E16 pathways where the uncrossed projection is better developed. Furthermore, we have demonstrated in explant cultures of the retina that HA, when presented in soluble or substrate-bound form, does not affect outgrowth and extension of retinal neurites. These findings together indicate the crucial functions of this matrix molecule in regulating midline crossing and axon divergence, probably through interactions with guidance molecules including CD44, at the midline of the chiasm.
Collapse
Affiliation(s)
- Ling Lin
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | | | | | | |
Collapse
|
7
|
Abstract
CD44 has been shown to be involved in midline crossing and the generation of ipsilateral projections in the mouse optic chiasm. To determine whether these functions involve hyaluronan, the major ligand of CD44, we examined localization of hyaluronan in the mouse optic pathway. Hyaluronan was deposited mainly in vitreal regions of the retina and the optic disk. In ventral diencephalon, it was localized largely on the chiasmatic neurons that project processes to the chiasmatic midline and the optic tract. Colocalization of hyaluronan and CD44 was observed only in the midline but not lateral domains of the chiasmatic neurons, suggesting a hyaluronan/CD44-mediated mechanism that controls axon routing at the midline but not at the optic tract and the retina.
Collapse
Affiliation(s)
- Ling Lin
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | |
Collapse
|
8
|
Leung KM, Margolis RU, Chan SO. Expression of phosphacan and neurocan during early development of mouse retinofugal pathway. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 152:1-10. [PMID: 15283989 DOI: 10.1016/j.devbrainres.2004.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2004] [Indexed: 10/26/2022]
Abstract
We have investigated whether the two major brain chondroitin sulfate (CS) proteoglycans (PGs), phosphacan and neurocan, are expressed in patterns that correlate to the axon order changes in the mouse retinofugal pathway. Expression of these proteoglycans was examined by polyclonal antibodies against phosphacan and N- and C-terminal fragments of neurocan. In E13-E15 mouse embryos, when most optic axons grow in the chiasm and the optic tract, phosphacan and neurocan were observed in the inner regions of the retina. In the chiasm and the tract, phosphacan but not neurocan was expressed prominently at the midline and in the deep parts of the tract. Both proteoglycans were observed on the chiasmatic neurons, which have been shown to regulate axon divergence at the chiasmatic midline and the chronotopic fiber ordering in the tract, but phosphacan appeared to be the predominant form that persists to later developmental stages. Intense staining of both proteoglycans was also observed in a strip of glial-like elements in lateral regions of the chiasm, partitioning axons in the stalk from those in the tract. We conclude that phosphacan but not neurocan is likely the major carrier of the CS glycosaminoglycans that play crucial functions in axon divergence and age-related axon ordering in the mouse optic pathway. Furthermore, localization of these carrier proteins in the optic pathway raises a possibility that these two proteoglycans regulate axon growth and patterning not only through the sulfated sugars but also by interactions of the protein parts with guidance molecules on the optic axons.
Collapse
Affiliation(s)
- K M Leung
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | | | | |
Collapse
|
9
|
Chung KY, Leung KM, Lin CC, Tam KC, Hao YL, Taylor JSH, Chan SO. Regionally specific expression of L1 and sialylated NCAM in the retinofugal pathway of mouse embryos. J Comp Neurol 2004; 471:482-98. [PMID: 15022265 DOI: 10.1002/cne.20047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have examined expression of L1 and the polysialic acid-associated form of the neural cell adhesion molecule (PSA-NCAM) in mouse embryos during the major period of axon growth in the retinofugal pathway to determine whether they are expressed in patterns that relate to the changes in axon organization in the pathway. Immunostaining for L1 and PSA-NCAM was found on all axons in the retina and the optic stalk. In the chiasm, while L1 immunoreactivity remained high on the axons, PSA-NCAM staining was obviously reduced. At the threshold of the optic tract, L1 immunoreactivity was maintained only in a subpopulation of axons, whereas PSA-NCAM staining was dramatically elevated in axons at the caudal part of the tract. Further investigations of the tract showed that both L1 and PSA-NCAM were preferentially expressed on the dorsal but not ventral optic axons, indicating a regionally specific change of both adhesion molecules on the axons at the chiasm-tract junction. Moreover, intense PSA-NCAM expression was also observed in the tract of postoptic commissure (TPOC), which lies immediately caudal to the optic tract. Immunohistochemical and retrograde tracing studies showed that these PSA-NCAM-positive axons arose from a population of cells rostral to the CD44-positive chiasmatic neurons. These findings indicate that, in addition to the chiasmatic neurons, these PSA-NCAM-positive diencephalic cells also contribute axons to the TPOC. These early generated commissural axons together with the regionally specific pattern of cell adhesion molecule expression on the optic axons may control formation of the partial retinotopic axon order in the optic tract through homophilic or heterophilic interactions that involve PSA-NCAM.
Collapse
Affiliation(s)
- Kit-Ying Chung
- Department of Human Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
10
|
Lin L, Chan SO. Perturbation of CD44 function affects chiasmatic routing of retinal axons in brain slice preparations of the mouse retinofugal pathway. Eur J Neurosci 2003; 17:2299-312. [PMID: 12814363 DOI: 10.1046/j.1460-9568.2003.02686.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurons generated early in development of the ventral diencephalon have been shown to play a key role in defining the midline and the caudal boundary of the optic chiasm in the mouse retinofugal pathway. These functions have been attributed to a surface bound adhesion molecule, CD44 that is expressed in these chiasmatic neurons. In this study, we investigated the effects of perturbing normal CD44 functions on axon routing in brain slice preparations of the mouse retinofugal pathway. Two CD44 antibodies (Hermes-1 and IM7) were used that bind to distinct epitopes on the extracellular domain of the molecule. We found that both antibodies produced dramatic defects in routing of the retinal axons that arrive early in the chiasm. In preparations of embryonic day 13 (E13) and E14 pathways, the crossed component in the chiasm was significantly reduced after antibody treatment. However, such reduction in axon crossing was not observed in E15 chiasm, indicating that the lately generated crossed axons lost their responses to CD44. Furthermore, the anti-CD44 treatment produced a reduction in the uncrossed component in the E15 but not in younger pathways, suggesting a selective response of the lately generated axons, mostly from ventral temporal retina, but not those generated earlier, to the CD44 at the chiasmatic midline in order to make their turn for the uncrossed pathway. These findings provide evidence that a normal function of CD44 molecules in the chiasmatic neurons is essential for axon crossing and axon divergence at the mouse optic chiasm.
Collapse
Affiliation(s)
- Ling Lin
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| | | |
Collapse
|
11
|
Leung KM, Taylor JSH, Chan SO. Enzymatic removal of chondroitin sulphates abolishes the age-related axon order in the optic tract of mouse embryos. Eur J Neurosci 2003; 17:1755-67. [PMID: 12752774 DOI: 10.1046/j.1460-9568.2003.02605.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinal axons undergo an age-related reorganization at the junction of the chiasm and the optic tract. We have investigated the effects of removal of chondroitin sulphate on this order change in mouse embryos aged embryonic day 14, when most axons are growing in the optic tract. Enzymatic removal of chondroitin sulphate but not keratan sulphate in brain slice preparations of the retinofugal pathway abolished the accumulation of phalloidin-positive growth cones in the subpial region of the optic tract. The loss of chronotopicity was further demonstrated by anterograde filling of single retinal axons, which showed a dispersion of growth cones from subpial to the whole depth of the tract. The enzyme treatment neither produced detectable changes in growth cone morphology and growth dynamic of retinal neurites nor affected the radial glial processes in the tract, indicating a specific effect of removal of chondroitin sulphate from the pathway to the axon order in the tract. Although chondroitin sulphate was also found at the midline of the chiasm, growth cone distribution across the depth of fibre layer at the midline was not affected by the enzyme treatment. These results suggest a mechanism in which retinal axons undergo changes in response to chondroitin sulphate at the chiasm-tract junction, but not at the midline, that produce a chronotopic fibre rearrangement in the mouse retinofugal pathway.
Collapse
Affiliation(s)
- Kim-Mei Leung
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | |
Collapse
|