1
|
Niu M, Rapan L, Froudist-Walsh S, Zhao L, Funck T, Amunts K, Palomero-Gallagher N. Multimodal mapping of macaque monkey somatosensory cortex. Prog Neurobiol 2024; 239:102633. [PMID: 38830482 DOI: 10.1016/j.pneurobio.2024.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
The somatosensory cortex is a brain region responsible for receiving and processing sensory information from across the body and is structurally and functionally heterogeneous. Since the chemoarchitectonic segregation of the cerebral cortex can be revealed by transmitter receptor distribution patterns, by using a quantitative multireceptor architectonical analysis, we determined the number and extent of distinct areas of the macaque somatosensory cortex. We identified three architectonically distinct cortical entities within the primary somatosensory cortex (i.e., 3bm, 3bli, 3ble), four within the anterior parietal cortex (i.e., 3am, 3al, 1 and 2) and six subdivisions (i.e., S2l, S2m, PVl, PVm, PRl and PRm) within the lateral fissure. We provide an ultra-high resolution 3D atlas of macaque somatosensory areas in stereotaxic space, which integrates cyto- and receptor architectonic features of identified areas. Multivariate analyses of the receptor fingerprints revealed four clusters of identified areas based on the degree of (dis)similarity of their receptor architecture. Each of these clusters can be associated with distinct levels of somatosensory processing, further demonstrating that the functional segregation of cortical areas is underpinned by differences in their molecular organization.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Lucija Rapan
- C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Seán Froudist-Walsh
- Bristol Computational Neuroscience Unit, Faculty of Engineering, University of Bristol, Bristol, UK
| | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Thomas Funck
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Wang Q, Stepniewska I, Liao CC, Kaas JH. Thalamocortical and corticothalamic connections of multiple functional domains in posterior parietal cortex of galagos. J Comp Neurol 2023; 531:25-47. [PMID: 36117273 PMCID: PMC9754705 DOI: 10.1002/cne.25410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/06/2022]
Abstract
In prosimian galagos, the posterior parietal cortex (PPC) is subdivided into a number of functional domains where long-train intracortical microstimulation evoked different types of complex movements. Here, we placed anatomical tracers in multiple locations of PPC to reveal the origins and targets of thalamic connections of four PPC domains for different types of hindlimb, forelimb, or face movements. Thalamic connections of all four domains included nuclei of the motor thalamus, ventral anterior and ventral lateral nuclei, as well as parts of the sensory thalamus, the anterior pulvinar, posterior and ventral posterior superior nuclei, consistent with the sensorimotor functions of PPC domains. PPC domains also projected to the thalamic reticular nucleus in a somatotopic pattern. Quantitative differences in the distributions of labeled neurons in thalamic nuclei suggested that connectional patterns of these domains differed from each other.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Wang Q, Liao C, Stepniewska I, Gabi M, Kaas JH. Cortical connections of the functional domain for climbing or running in posterior parietal cortex of galagos. J Comp Neurol 2021; 529:2789-2812. [PMID: 33550608 PMCID: PMC9885969 DOI: 10.1002/cne.25123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/01/2023]
Abstract
Previous studies in prosimian galagos (Otolemur garnetti) have demonstrated that posterior parietal cortex (PPC) is subdivided into several functionally distinct domains, each of which mediates a specific type of complex movements (e.g., reaching, grasping, hand-to-mouth) and has a different pattern of cortical connections. Here we identified a medially located domain in PPC where combined forelimb and hindlimb movements, as if climbing or running, were evoked by long-train intracortical microstimulation. We injected anatomical tracers in this climbing/running domain of PPC to reveal its cortical connections. Our results showed the PPC climbing domain had dense intrinsic connections within rostral PPC and reciprocal connections with forelimb and hindlimb region in primary motor cortex (M1) of the ipsilateral hemisphere. Fewer connections were with dorsal premotor cortex (PMd), supplementary motor (SMA), and cingulate motor (CMA) areas, as well as somatosensory cortex including areas 3a, 3b, and 1-2, secondary somatosensory (S2), parietal ventral (PV), and retroinsular (Ri) areas. The rostral portion of the climbing domain had more connections with primary somatosensory cortex than the caudal portion. Cortical projections were found in functionally matched domains in M1 and premotor cortex (PMC). Similar patterns of connections with fewer labeled neurons and terminals were seen in the contralateral hemisphere. These connection patterns are consistent with the proposed role of the climbing/running domain as part of a parietal-frontal network for combined use of the limbs in locomotion as in climbing and running. The cortical connections identify this action-specific domain in PPC as a more somatosensory driven domain.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Chia‐Chi Liao
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Iwona Stepniewska
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Mariana Gabi
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Jon H. Kaas
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| |
Collapse
|
4
|
Liao C, Qi H, Reed JL, Jeoung H, Kaas JH. Corticocuneate projections are altered after spinal cord dorsal column lesions in New World monkeys. J Comp Neurol 2021; 529:1669-1702. [PMID: 33029803 PMCID: PMC7987845 DOI: 10.1002/cne.25050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/31/2022]
Abstract
Recovery of responses to cutaneous stimuli in the area 3b hand cortex of monkeys after dorsal column lesions (DCLs) in the cervical spinal cord relies on neural rewiring in the cuneate nucleus (Cu) over time. To examine whether the corticocuneate projections are modified during recoveries after the DCL, we injected cholera toxin subunit B into the hand representation in Cu to label the cortical neurons after various recovery times, and related results to the recovery of neural responses in the affected area 3b hand cortex. In normal New World monkeys, labeled neurons were predominately distributed in the hand regions of contralateral areas 3b, 3a, 1 and 2, parietal ventral (PV), secondary somatosensory cortex (S2), and primary motor cortex (M1), with similar distributions in the ipsilateral cortex in significantly smaller numbers. In monkeys with short-term recoveries, the area 3b hand neurons were unresponsive or responded weakly to touch on the hand, while the cortical labeling pattern was largely unchanged. After longer recoveries, the area 3b hand neurons remained unresponsive, or responded to touch on the hand or somatotopically abnormal parts, depending on the lesion extent. The distributions of cortical labeled neurons were much more widespread than the normal pattern in both hemispheres, especially when lesions were incomplete. The proportion of labeled neurons in the contralateral area 3b hand cortex was not correlated with the functional reactivation in the area 3b hand cortex. Overall, our findings indicated that corticocuneate inputs increase during the functional recovery, but their functional role is uncertain.
Collapse
Affiliation(s)
- Chia‐Chi Liao
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Hui‐Xin Qi
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Jamie L. Reed
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Ha‐Seul Jeoung
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Jon H. Kaas
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| |
Collapse
|
5
|
Turner EC, Gabi M, Liao CC, Kaas JH. The postnatal development of MT, V1, LGN, pulvinar and SC in prosimian galagos (Otolemur garnettii). J Comp Neurol 2020; 528:3075-3094. [PMID: 32067231 PMCID: PMC11495416 DOI: 10.1002/cne.24885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/05/2022]
Abstract
Considerable evidence supports the premise that the visual system of primates develops hierarchically, with primary visual cortex developing structurally and functionally first, thereby influencing the subsequent development of higher cortical areas. An apparent exception is the higher order middle temporal visual area (MT), which appears to be histologically distinct near the time of birth in marmosets. Here we used a number of histological and immunohistological markers to evaluate the maturation of cortical and subcortical components of the visual system in galagos ranging from newborns to adults. Galagos are representative of the large strepsirrhine branch of primate evolution, and studies of these primates help identify brain features that are broadly similar across primate taxa. The histological results support the view that MT is functional at or near the time of birth, as is primary visual cortex. Likewise, the superior colliculus, dorsal lateral geniculate nucleus, and the posterior nucleus of the pulvinar are well-developed by birth. Thus, these subcortical structures likely provide visual information directly or indirectly to cortex in newborn galagos. We conclude that MT resembles a primary sensory area by developing early, and that the early development of MT may influence the subsequent development of dorsal stream visual areas.
Collapse
Affiliation(s)
- Emily C Turner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Mariana Gabi
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
6
|
Qi HX, Liao CC, Reed JL, Kaas JH. Reorganization of Higher-Order Somatosensory Cortex After Sensory Loss from Hand in Squirrel Monkeys. Cereb Cortex 2020; 29:4347-4365. [PMID: 30590401 DOI: 10.1093/cercor/bhy317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Unilateral dorsal column lesions (DCL) at the cervical spinal cord deprive the hand regions of somatosensory cortex of tactile activation. However, considerable cortical reactivation occurs over weeks to months of recovery. While most studies focused on the reactivation of primary somatosensory area 3b, here, for the first time, we address how the higher-order somatosensory cortex reactivates in the same monkeys after DCL that vary across cases in completeness, post-lesion recovery times, and types of treatments. We recorded neural responses to tactile stimulation in areas 3a, 3b, 1, secondary somatosensory cortex (S2), parietal ventral (PV), and occasionally areas 2/5. Our analysis emphasized comparisons of the responsiveness, somatotopy, and receptive field size between areas 3b, 1, and S2/PV across DCL conditions and recovery times. The results indicate that the extents of the reactivation in higher-order somatosensory areas 1 and S2/PV closely reflect the reactivation in primary somatosensory cortex. Responses in higher-order areas S2 and PV can be stronger than those in area 3b, thus suggesting converging or alternative sources of inputs. The results also provide evidence that both primary and higher-order fields are effectively activated after long recovery times as well as after behavioral and electrocutaneous stimulation interventions.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
7
|
Seoane LF. Fate of Duplicated Neural Structures. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E928. [PMID: 33286697 PMCID: PMC7597184 DOI: 10.3390/e22090928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/25/2023]
Abstract
Statistical physics determines the abundance of different arrangements of matter depending on cost-benefit balances. Its formalism and phenomenology percolate throughout biological processes and set limits to effective computation. Under specific conditions, self-replicating and computationally complex patterns become favored, yielding life, cognition, and Darwinian evolution. Neurons and neural circuits sit at a crossroads between statistical physics, computation, and (through their role in cognition) natural selection. Can we establish a statistical physics of neural circuits? Such theory would tell what kinds of brains to expect under set energetic, evolutionary, and computational conditions. With this big picture in mind, we focus on the fate of duplicated neural circuits. We look at examples from central nervous systems, with stress on computational thresholds that might prompt this redundancy. We also study a naive cost-benefit balance for duplicated circuits implementing complex phenotypes. From this, we derive phase diagrams and (phase-like) transitions between single and duplicated circuits, which constrain evolutionary paths to complex cognition. Back to the big picture, similar phase diagrams and transitions might constrain I/O and internal connectivity patterns of neural circuits at large. The formalism of statistical physics seems to be a natural framework for this worthy line of research.
Collapse
Affiliation(s)
- Luís F. Seoane
- Departamento de Biología de Sistemas, Centro Nacional de Biotecnología (CNB), CSIC, C/Darwin 3, 28049 Madrid, Spain;
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, 07122 Palma de Mallorca, Spain
| |
Collapse
|
8
|
Cerkevich CM, Kaas JH. Corticocortical projections to area 1 in squirrel monkeys (Saimiri sciureus). Eur J Neurosci 2018; 49:1024-1040. [PMID: 29495078 DOI: 10.1111/ejn.13884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 11/29/2022]
Abstract
Cortical area 1 is a non-primary somatosensory area in the primate anterior parietal cortex that is critical to tactile discrimination. The corticocortical projections to area 1 in squirrel monkeys were determined by placing multiple injections of anatomical tracers into separate body part representations defined by multiunit microelectrode mapping in area 1. The pattern of labeled cells in the cortex indicated that area 1 has strong intrinsic connections within each body part representation and has inputs from somatotopically matched regions of areas 3b, 3a, 2 and 5. Somatosensory areas in the lateral sulcus, including the second somatosensory area (S2), the parietal ventral area (PV), and the presumptive parietal rostral (PR) and ventral somatosensory (VS) areas, also project to area 1. Topographically organized projections to area 1 also came from the primary motor cortex (M1), the dorsal and ventral premotor areas (PMd and PMv), and the supplementary motor area (SMA). Labeled cells were also found in cingulate motor and sensory areas on the medial wall of the hemisphere. Previous studies revealed a similar pattern of projections to area 1 in Old World macaque monkeys, suggesting a pattern of cortical inputs to area 1 that is common across anthropoid primates.
Collapse
Affiliation(s)
- Christina M Cerkevich
- Department of Psychology, Vanderbilt University, 301 David K. Wilson Hall, 111 21st Avenue South, Nashville, TN, 37203, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, 301 David K. Wilson Hall, 111 21st Avenue South, Nashville, TN, 37203, USA
| |
Collapse
|
9
|
Lotze M, Ladda AM, Roschka S, Platz T, Dinse HR. Priming Hand Motor Training with Repetitive Stimulation of the Fingertips; Performance Gain and Functional Imaging of Training Effects. Brain Stimul 2016; 10:139-146. [PMID: 28029594 DOI: 10.1016/j.brs.2016.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Application of repetitive electrical stimulation (rES) of the fingers has been shown to improve tactile perception and sensorimotor performance in healthy individuals. OBJECTIVE To increase motor performance by priming the effects of active motor training (arm ability training; AAT) using rES. METHODS We compared the performance gain for the training increase of the averaged AAT tasks of both hands in two groups of strongly right-handed healthy volunteers. Functional Magnetic Resonance Imaging (fMRI) before and after AAT was assessed using three tasks for each hand separately: finger sequence tapping, visually guided grip force modulation, and writing. Performance during fMRI was controlled for preciseness and frequency. A total of 30 participants underwent a two-week unilateral left hand AAT, 15 participants with 20 minutes of rES priming of all fingertips of the trained hand, and 15 participants without rES priming. RESULTS rES-primed AAT improved the trained left-hand performance across all training tasks on average by 32.9%, non-primed AAT improved by 29.5%. This gain in AAT performance with rES priming was predominantly driven by an increased finger tapping velocity. Functional imaging showed comparable changes for both training groups over time. Across all participants, improved AAT performance was associated with a higher contralateral primary somatosensory cortex (S1) fMRI activation magnitude during the grip force modulation task. CONCLUSIONS This study highlights the importance of S1 for hand motor training gain. In addition, it suggests the usage of rES of the fingertips for priming active hand motor training.
Collapse
Affiliation(s)
- Martin Lotze
- Functional Imaging Unit, Center for Diagnostic Radiology, University of Greifswald, Germany.
| | - Aija Marie Ladda
- Functional Imaging Unit, Center for Diagnostic Radiology, University of Greifswald, Germany
| | - Sybille Roschka
- BDH-Klinik Greifswald, Neurorehabilitation centre and Spinal Cord Injury Unit, University of Greifswald, Germany
| | - Thomas Platz
- BDH-Klinik Greifswald, Neurorehabilitation centre and Spinal Cord Injury Unit, University of Greifswald, Germany
| | - Hubert R Dinse
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University Bochum, Germany; Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
| |
Collapse
|
10
|
Qi HX, Reed JL, Franca JG, Jain N, Kajikawa Y, Kaas JH. Chronic recordings reveal tactile stimuli can suppress spontaneous activity of neurons in somatosensory cortex of awake and anesthetized primates. J Neurophysiol 2016; 115:2105-23. [PMID: 26912593 DOI: 10.1152/jn.00634.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/19/2016] [Indexed: 01/05/2023] Open
Abstract
In somatosensory cortex, tactile stimulation within the neuronal receptive field (RF) typically evokes a transient excitatory response with or without postexcitatory inhibition. Here, we describe neuronal responses in which stimulation on the hand is followed by suppression of the ongoing discharge. With the use of 16-channel microelectrode arrays implanted in the hand representation of primary somatosensory cortex of New World monkeys and prosimian galagos, we recorded neuronal responses from single units and neuron clusters. In 66% of our sample, neuron activity tended to display suppression of firing when regions of skin outside of the excitatory RF were stimulated. In a small proportion of neurons, single-site indentations suppressed firing without initial increases in response to any of the tested sites on the hand. Latencies of suppressive responses to skin indentation (usually 12-34 ms) were similar to excitatory response latencies. The duration of inhibition varied across neurons. Although most observations were from anesthetized animals, we also found similar neuron response properties in one awake galago. Notably, suppression of ongoing neuronal activity did not require conditioning stimuli or multi-site stimulation. The suppressive effects were generally seen following single-site skin indentations outside of the neuron's minimal RF and typically on different digits and palm pads, which have not often been studied in this context. Overall, the characteristics of widespread suppressive or inhibitory response properties with and without initial facilitative or excitatory responses add to the growing evidence that neurons in primary somatosensory cortex provide essential processing for integrating sensory stimulation from across the hand.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Joao G Franca
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Neeraj Jain
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Yoshinao Kajikawa
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| |
Collapse
|
11
|
Zlatkina V, Amiez C, Petrides M. The postcentral sulcal complex and the transverse postcentral sulcus and their relation to sensorimotor functional organization. Eur J Neurosci 2015; 43:1268-83. [PMID: 26296305 DOI: 10.1111/ejn.13049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 12/19/2022]
Abstract
It has been demonstrated that the postcentral sulcus, which forms the posterior boundary of the sensorimotor region, is a complex of distinct sulcal segments. Although the general somatotopic arrangement in the human sensorimotor cortex is relatively well known, we do not know whether the different segments of the postcentral sulcus relate in a systematic way to the sensorimotor functional representations. Participants were scanned with functional magnetic resonance imaging while they made movements of different body parts and the location of functional activity was examined on a subject-by-subject basis with respect to the morphological features of the postcentral sulcus. The findings demonstrate that the postcentral sulcus of each subject may be divided into five segments and there is a tight relationship between sensorimotor representations of different body parts and specific segments of the postcentral sulcus. The results also addressed the issue of the transverse postcentral sulcus, a short sulcus that is present within the ventral part of the postcentral gyrus in some brains. It was shown that, when present, this sulcus is functionally related to the oral (mouth and tongue) sensorimotor representation. When this sulcus is not present, the inferior postcentral sulcus which is also related to the oral representation is longer. Thus, the sulcal morphology provides an improved framework for functional assignments in individual subjects.
Collapse
Affiliation(s)
- Veronika Zlatkina
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Céline Amiez
- Stem Cell and Brain Research Institute, INSERM U846, Bron, France
| | - Michael Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
12
|
Stepniewska I, Cerkevich CM, Kaas JH. Cortical Connections of the Caudal Portion of Posterior Parietal Cortex in Prosimian Galagos. Cereb Cortex 2015; 26:2753-77. [PMID: 26088972 DOI: 10.1093/cercor/bhv132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posterior parietal cortex (PPC) of prosimian galagos includes a rostral portion (PPCr) where electrical stimulation evokes different classes of complex movements from different subregions, and a caudal portion (PPCc) where such stimulation fails to evoke movements in anesthetized preparations ( Stepniewska, Fang et al. 2009). We placed tracer injections into PPCc to reveal patterns of its cortical connections. There were widespread connections within PPCc as well as connections with PPCr and extrastriate visual areas, including V2 and V3. Weaker connections were with dorsal premotor cortex, and the frontal eye field. The connections of different parts of PPCc with visual areas were roughly retinotopic such that injections to dorsal PPCc labeled more neurons in the dorsal portions of visual areas, representing lower visual quadrant, and injections to ventral PPCc labeled more neurons in ventral portions of these visual areas, representing the upper visual quadrant. We conclude that much of the PPCc contains a crude representation of the contralateral visual hemifield, with inputs largely, but not exclusively, from higher-order visual areas that are considered part of the dorsal visuomotor processing stream. As in galagos, the caudal half of PPC was likely visual in early primates, with the rostral PPC half mediating sensorimotor functions.
Collapse
Affiliation(s)
- Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Christina M Cerkevich
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA Current address: System Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
13
|
Subcortical barrelette-like and barreloid-like structures in the prosimian galago (Otolemur garnetti). Proc Natl Acad Sci U S A 2015; 112:7079-84. [PMID: 26038561 DOI: 10.1073/pnas.1506646112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Galagos are prosimian primates that resemble ancestral primates more than most other extant primates. As in many other mammals, the facial vibrissae of galagos are distributed across the upper and lower jaws and above the eye. In rats and mice, the mystacial macrovibrissae are represented throughout the ascending trigeminal pathways as arrays of cytoarchitecturally distinct modules, with each module having a nearly one-to-one relationship with a specific facial whisker. The macrovibrissal representations are termed barrelettes in the trigeminal somatosensory brainstem, barreloids in the ventroposterior medial subnucleus of the thalamus, and barrels in primary somatosensory cortex. Despite the presence of facial whiskers in all nonhuman primates, barrel-like structures have not been reported in primates. By staining for cytochrome oxidase, Nissl, and vesicular glutamate transporter proteins, we show a distinct array of barrelette-like and barreloid-like modules in the principal sensory nucleus, the spinal trigeminal nucleus, and the ventroposterior medial subnucleus of the galago, Otolemur garnetti. Labeled terminals of primary sensory neurons in the brainstem and cell bodies of thalamocortically projecting neurons demonstrate that barrelette-like and barreloid-like modules are located in areas of these somatosensory nuclei that are topographically consistent with their role in facial touch. Serendipitously, the plane of section that best displays the barreloid-like modules reveals a remarkably distinct homunculus-like patterning which, we believe, is one of the clearest somatotopic maps of an entire body surface yet found.
Collapse
|
14
|
Seo NJ, Kosmopoulos ML, Enders LR, Hur P. Effect of remote sensory noise on hand function post stroke. Front Hum Neurosci 2014; 8:934. [PMID: 25477806 PMCID: PMC4235074 DOI: 10.3389/fnhum.2014.00934] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/02/2014] [Indexed: 11/13/2022] Open
Abstract
Hand motor impairment persists after stroke. Sensory inputs may facilitate recovery of motor function. This pilot study tested the effectiveness of tactile sensory noise in improving hand motor function in chronic stroke survivors with tactile sensory deficits, using a repeated measures design. Sensory noise in the form of subthreshold, white noise, mechanical vibration was applied to the wrist skin during motor tasks. Hand dexterity assessed by the Nine Hole Peg Test and the Box and Block Test and pinch strength significantly improved when the sensory noise was turned on compared with when it was turned off in chronic stroke survivors. The subthreshold sensory noise to the wrist appears to induce improvements in hand motor function possibly via neuronal connections in the sensoriomotor cortex. The approach of applying concomitant, unperceivable mechanical vibration to the wrist during hand motor tasks is easily adoptable for clinic use as well as unsupervised home use. This pilot study suggests a potential for a wristband-type assistive device to complement hand rehabilitation for stroke survivors with sensorimotor deficit.
Collapse
Affiliation(s)
- Na Jin Seo
- Department of Industrial and Manufacturing Engineering, University of Wisconsin-Milwaukee , Milwaukee, WI , USA ; Department of Occupational Science and Technology, University of Wisconsin-Milwaukee , Milwaukee, WI , USA ; Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee , Milwaukee, WI , USA ; Clinical & Translational Science Institute, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Marcella Lyn Kosmopoulos
- Department of Industrial and Manufacturing Engineering, University of Wisconsin-Milwaukee , Milwaukee, WI , USA ; Department of Kinesiology, University of Wisconsin-Milwaukee , Milwaukee, WI , USA
| | - Leah R Enders
- Department of Industrial and Manufacturing Engineering, University of Wisconsin-Milwaukee , Milwaukee, WI , USA
| | - Pilwon Hur
- Department of Industrial and Manufacturing Engineering, University of Wisconsin-Milwaukee , Milwaukee, WI , USA ; Department of Mechanical Engineering, Texas A&M University , College Station, TX , USA
| |
Collapse
|
15
|
Cerkevich CM, Qi HX, Kaas JH. Corticocortical projections to representations of the teeth, tongue, and face in somatosensory area 3b of macaques. J Comp Neurol 2014; 522:546-72. [PMID: 23853118 DOI: 10.1002/cne.23426] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/24/2013] [Accepted: 07/03/2013] [Indexed: 01/14/2023]
Abstract
We placed injections of anatomical tracers into representations of the tongue, teeth, and face in the primary somatosensory cortex (area 3b) of macaque monkeys. Our injections revealed strong projections to representations of the tongue and teeth from other parts of the oral cavity responsive region in 3b. The 3b face also provided input to the representations of the intraoral structures. The primary representation of the face showed a pattern of intrinsic connections similar to that of the mouth. The area 3b hand representation provided little to no input to either the mouth or the face representations. The mouth and face representations of area 3b received projections from the presumptive oral cavity and face regions of other somatosensory areas in the anterior parietal cortex and the lateral sulcus, including areas 3a, 1, 2, the second somatosensory area (S2), the parietal ventral area (PV), and cortex that may include the parietal rostral (PR) and ventral somatosensory (VS) areas. Additional inputs came from primary motor (M1) and ventral premotor (PMv) areas. This areal pattern of projections is similar to the well-studied pattern revealed by tracer injections in regions of 3b representing the hand. The tongue representation appeared to be unique in area 3b in that it also received inputs from areas in the anterior upper bank of the lateral sulcus and anterior insula that may include the primary gustatory area (area G) and other cortical taste-processing areas, as well as a region of lateral prefrontal cortex (LPFC) lining the principal sulcus.
Collapse
|
16
|
Gharib NMM, Aboumousa AM, Elowishy AA, Rezk-Allah SS, Yousef FS. Efficacy of electrical stimulation as an adjunct to repetitive task practice therapy on skilled hand performance in hemiparetic stroke patients: a randomized controlled trial. Clin Rehabil 2014; 29:355-64. [PMID: 25125441 DOI: 10.1177/0269215514544131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To assess the effects of additional electrical stimulation to hand muscles combined with repetitive task practice therapy on skilled hand performance in stroke patients. DESIGN A randomized controlled study. SETTING Neurological physical therapy outpatient clinic. SUBJECTS Forty stroke patients of both sexes (45-65 years - 16 females and 24 males). METHODS Participants were randomly assigned into two equal groups: experimental and control groups. All patients received repetitive task practice. Those in the experimental group received additional electrical stimulation for specific hand muscles and patients in the control group received sham electrical stimulation. Treatment was provided three times/week for two months. MAIN OUTCOME MEASURES Patients received baseline and post-treatment assessments using three-dimensional motion analysis (to evaluate range of motion of fingers abduction and extension), motor assessment scale (to assess hand motor function) and time to complete Jebsen Taylor Test (to assess hand skills). RESULTS Patients in the experimental group showed a significant improvement as compared with those in the control group. Motor assessment scale score was 4.25±0.63 for the experimental group and 3.35±0.74 for the control group (t=-3.50 and p= 0.0001). Time to complete Jebsen Taylor Test was 180.90±7.04 for the experimental group and 192.80±6.87 for the control group (t=4.50 and p= 0.0001). There was a significant improvement in fingers abduction and extension in both groups (in favor to the experimental group). CONCLUSION Repetitive task practice therapy combined with electrical stimulation can improve skilled hand performance in terms of hand motor function, skills and range of motion in stroke patients.
Collapse
Affiliation(s)
- Nevein M M Gharib
- Department of Physical Therapy for Neuromuscular Disorders and its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Ahmed M Aboumousa
- Department of Neurology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Abeer A Elowishy
- Department of Physical Therapy for Neuromuscular Disorders and its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Soheir S Rezk-Allah
- Department of Basic Science, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Fatma S Yousef
- Department of Physical Therapy for Neuromuscular Disorders and its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| |
Collapse
|
17
|
Liao CC, Gharbawie OA, Qi H, Kaas JH. Cortical connections to single digit representations in area 3b of somatosensory cortex in squirrel monkeys and prosimian galagos. J Comp Neurol 2014; 521:3768-90. [PMID: 23749740 DOI: 10.1002/cne.23377] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/30/2013] [Accepted: 05/23/2013] [Indexed: 11/06/2022]
Abstract
The ventral posterior nucleus of thalamus sends highly segregated inputs into each digit representation in area 3b of primary somatosensory cortex. However, the spatial organization of the connections that link digit representations of areas 3b with other somatosensory areas is less understood. Here we examined the cortical inputs to individual digit representations of area 3b in four squirrel monkeys and one prosimian galago. Retrograde tracers were injected into neurophysiologically defined representations of individual digits of area 3b. Cortical tissues were cut parallel to the surface in some cases and showed that feedback projections to individual digits overlapped extensively in the hand representations of areas 3b, 1, and parietal ventral (PV) and second somatosensory (S2) areas. Other regions with overlapping populations of labeled cells included area 3a and primary motor cortex (M1). The results were confirmed in other cases in which the cortical tissues were cut in the coronal plane. The same cases also showed that cells were primarily labeled in the infragranular and supragranular layers. Thus, feedback projections to individual digit representations in area 3b mainly originate from multiple digits and other portions of hand representations of areas 3b, 1, PV, and S2. This organization is in stark contrast to the segregated thalamocortical inputs, which originate in single digit representations and terminate in the matching digit representation in the cortex. The organization of feedback connections could provide a substrate for the integration of information across the representations of adjacent digits in area 3b.
Collapse
Affiliation(s)
- Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | | | | | | |
Collapse
|
18
|
Young NA, Collins CE, Kaas JH. Cell and neuron densities in the primary motor cortex of primates. Front Neural Circuits 2013; 7:30. [PMID: 23450743 PMCID: PMC3583034 DOI: 10.3389/fncir.2013.00030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/08/2013] [Indexed: 01/13/2023] Open
Abstract
Cell and neuron densities vary across the cortical sheet in a predictable manner across different primate species (Collins et al., 2010b). Primary motor cortex, M1, is characterized by lower neuron densities relative to other cortical areas. M1 contains a motor representation map of contralateral body parts from tail to tongue in a mediolateral sequence. Different functional movement representations within M1 likely require specialized microcircuitry for control of different body parts, and these differences in circuitry may be reflected by variation in cell and neuron densities. Here we determined cell and neuron densities for multiple sub-regions of M1 in six primate species, using the semi-automated flow fractionator method. The results verify previous reports of lower overall neuron densities in M1 compared to other parts of cortex in the six primate species examined. The most lateral regions of M1 that correspond to face and hand movement representations, are more neuron dense relative to medial locations in M1, which suggests differences in cortical circuitry within movement zones.
Collapse
Affiliation(s)
- Nicole A Young
- Department of Psychology, Vanderbilt University Nashville, TN, USA
| | | | | |
Collapse
|
19
|
Baldwin MKL, Kaas JH. Cortical projections to the superior colliculus in prosimian galagos (Otolemur garnetti). J Comp Neurol 2012; 520:2002-20. [PMID: 22173729 DOI: 10.1002/cne.23025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The superior colliculus (SC) is a key structure within the extrageniculate pathway of visual information to cortex and is highly involved in visuomotor functions. Previous studies in anthropoid primates have shown that superficial layers of the SC receive direct inputs from various visual cortical areas such as V1, V2, and middle temporal (MT), while deeper layers receive direct inputs from visuomotor cortical areas within the posterior parietal cortex and the frontal eye fields. Very little is known, however, about the corticotectal projections in prosimian primates. In the current study we investigated the sources of cortical inputs to the SC in prosimian galagos (Otolemur garnetti) using retrograde anatomical tracers placed into the SC. The superficial layers of the SC in galagos received the majority of their inputs from early visual areas and visual areas within the MT complex. Yet, surprisingly, MT itself had relatively few corticotectal projections. Deeper layers of the SC received direct projections from visuomotor areas including the posterior parietal cortex and premotor cortex. However, relatively few corticotectal projections originated within the frontal eye fields. While prosimian galagos resemble other primates in having early visual areas project to the superficial layers of the SC, with higher visuomotor regions projecting to deeper layers, the results suggest that MT and frontal eye field projections to the SC were sparse in early primates, remained sparse in present-day prosimian primates, and became more pronounced in anthropoid primates.
Collapse
Affiliation(s)
- Mary K L Baldwin
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240, USA
| | | |
Collapse
|
20
|
Kattenstroth JC, Kalisch T, Peters S, Tegenthoff M, Dinse HR. Long-term sensory stimulation therapy improves hand function and restores cortical responsiveness in patients with chronic cerebral lesions. Three single case studies. Front Hum Neurosci 2012; 6:244. [PMID: 22936907 PMCID: PMC3427543 DOI: 10.3389/fnhum.2012.00244] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 08/06/2012] [Indexed: 11/30/2022] Open
Abstract
Rehabilitation of sensorimotor impairment resulting from cerebral lesion (CL) utilizes task specific training and massed practice to drive reorganization and sensorimotor improvement due to induction of neuroplasticity mechanisms. Loss of sensory abilities often complicates recovery, and thus the individual's ability to use the affected body part for functional tasks. Therefore, the development of additional and alternative approaches that supplement, enhance, or even replace conventional training procedures would be advantageous. Repetitive sensory stimulation protocols (rSS) have been shown to evoke sensorimotor improvements of the affected limb in patients with chronic stroke. However, the possible impact of long-term rSS on sensorimotor performance of patients with CL, where the incident dated back many years remains unclear. The particular advantage of rSS is its passive nature, which does not require active participation of the subjects. Therefore, rSS can be applied in parallel to other occupations, making the intervention easier to implement and more acceptable to the individual. Here we report the effects of applying rSS for 8, 36, and 76 weeks to the paretic hand of three long-term patients with different types of CL. Different behavioral tests were used to assess sensory and/or sensorimotor performance of the upper extremities prior, after, and during the intervention. In one patient, the impact of long-term rSS on restoration of cortical activation was investigated by recording somatosensory evoked potentials (SEP). After long-term rSS all three patients showed considerable improvements of their sensory and motor abilities. In addition, almost normal evoked potentials could be recorded after rSS in one patient. Our data show that long-term rSS applied to patients with chronic CL can improve tactile and sensorimotor functions, which, however, developed in some cases only after many weeks of stimulation, and continued to further improve on a time scale of months.
Collapse
|
21
|
Liang M, Mouraux A, Iannetti GD. Bypassing primary sensory cortices--a direct thalamocortical pathway for transmitting salient sensory information. ACTA ACUST UNITED AC 2012; 23:1-11. [PMID: 22275480 DOI: 10.1093/cercor/bhr363] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Detection and appropriate reaction to sudden and intense events happening in the sensory environment is crucial for survival. By combining Bayesian model selection with dynamic causal modeling of functional magnetic resonance imaging data, a novel analysis approach that allows inferring the causality between neural activities in different brain areas, we demonstrate that salient sensory information reaches the multimodal cortical areas responsible for its detection directly from the thalamus, without being first processed in primary and secondary sensory-specific areas. This direct thalamocortical transmission of multimodal salient information is parallel to the processing of finer stimulus attributes, which are transmitted in a modality-specific fashion from the thalamus to the relevant primary sensory areas. Such direct thalamocortical connections bypassing primary sensory cortices provide a fast and efficient way for transmitting information from subcortical structures to multimodal cortical areas, to allow the early detection of salient events and, thereby, trigger immediate and appropriate behavior.
Collapse
Affiliation(s)
- M Liang
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | | | | |
Collapse
|
22
|
Improved acuity and dexterity but unchanged touch and pain thresholds following repetitive sensory stimulation of the fingers. Neural Plast 2012; 2012:974504. [PMID: 22315693 PMCID: PMC3270448 DOI: 10.1155/2012/974504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/19/2011] [Accepted: 10/14/2011] [Indexed: 01/30/2023] Open
Abstract
Neuroplasticity underlies the brain's ability to alter perception and behavior through training, practice, or simply exposure to sensory stimulation. Improvement of tactile discrimination has been repeatedly demonstrated after repetitive sensory stimulation (rSS) of the fingers; however, it remains unknown if such protocols also affect hand dexterity or pain thresholds. We therefore stimulated the thumb and index finger of young adults to investigate, besides testing tactile discrimination, the impact of rSS on dexterity, pain, and touch thresholds. We observed an improvement in the pegboard task where subjects used the thumb and index finger only. Accordingly, stimulating 2 fingers simultaneously potentiates the efficacy of rSS. In fact, we observed a higher gain of discrimination performance as compared to a single-finger rSS. In contrast, pain and touch thresholds remained unaffected. Our data suggest that selecting particular fingers modulates the efficacy of rSS, thereby affecting processes controlling sensorimotor integration.
Collapse
|
23
|
Synaptic properties of corticocortical connections between the primary and secondary visual cortical areas in the mouse. J Neurosci 2012; 31:16494-506. [PMID: 22090476 DOI: 10.1523/jneurosci.3664-11.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the importance of corticocortical connections, few published studies have investigated the functional, synaptic properties of such connections in any species, because most studies have been purely anatomical or aimed at functional features other than synaptic properties. We recently published a study of synaptic properties of connections between the primary and secondary cortical auditory areas in brain slices from the mouse, and, in the present study, we aimed to extend this by performing analogous studies of the primary and secondary visual areas (V1 and V2). We found effectively the same results. That is, connections between V1 and V2 in both directions were quite similar; in each case, the glutamatergic inputs could be classified as one of two types, Class 1B (formerly "driver") and Class 2 (formerly "modulator"). There is a clear laminar correlation for these different inputs, in terms of both the laminae of origin and those in which the recorded cells were located. Our data suggest a common pattern to the functional organization of corticocortical connectivity in the mouse cortex.
Collapse
|
24
|
Abstract
We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved.
Collapse
Affiliation(s)
- Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
25
|
Gallay DS, Gallay MN, Jeanmonod D, Rouiller EM, Morel A. The insula of Reil revisited: multiarchitectonic organization in macaque monkeys. Cereb Cortex 2012; 22:175-90. [PMID: 21613468 PMCID: PMC3236796 DOI: 10.1093/cercor/bhr104] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The insula of Reil represents a large cortical territory buried in the depth of the lateral sulcus and subdivided into 3 major cytoarchitectonic domains: agranular, dysgranular, and granular. The present study aimed at reinvestigating the architectonic organization of the monkey's insula using multiple immunohistochemical stainings (parvalbumin, PV; nonphosphorylated neurofilament protein, with SMI-32; acetylcholinesterase, AChE) in addition to Nissl and myelin. According to changes in density and laminar distributions of the neurochemical markers, several zones were defined and related to 8 cytoarchitectonic subdivisions (Ia1-Ia2/Id1-Id3/Ig1-Ig2/G). Comparison of the different patterns of staining on unfolded maps of the insula revealed: 1) parallel ventral to dorsal gradients of increasing myelin, PV- and AChE-containing fibers in middle layers, and of SMI-32 pyramidal neurons in supragranular layers, with merging of dorsal and ventral high-density bands in posterior insula, 2) definition of an insula "proper" restricted to two-thirds of the "morphological" insula (as bounded by the limiting sulcus) and characterized most notably by lower PV, and 3) the insula proper is bordered along its dorsal, posterodorsal, and posteroventral margin by a strip of cortex extending beyond the limits of the morphological insula and continuous architectonically with frontoparietal and temporal opercular areas related to gustatory, somatosensory, and auditory modalities.
Collapse
Affiliation(s)
- D S Gallay
- Center for Clinical Research, Hospital Zürich, CH-8091 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Spatiotemporal properties of neuron response suppression in owl monkey primary somatosensory cortex when stimuli are presented to both hands. J Neurosci 2011; 31:3589-601. [PMID: 21389215 DOI: 10.1523/jneurosci.4310-10.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the lack of ipsilateral receptive fields (RFs) for neurons in the hand representation of area 3b of primary somatosensory cortex, interhemispheric interactions have been reported to varying degrees. We investigated spatiotemporal properties of these interactions to determine the following: response types, timing between stimuli to evoke the strongest bimanual interactions, topographical distribution of effects, and their dependence on similarity of stimulus locations on the two hands. We analyzed response magnitudes and latencies of single neurons and multineuron clusters recorded from 100-electrode arrays implanted in one hemisphere of each of two anesthetized owl monkeys. Skin indentations were delivered to the two hands simultaneously and asynchronously at mirror locations (matched sites on each hand) and nonmirror locations. Since multiple neurons were recorded simultaneously, stimuli on the contralateral hand could be within or outside of the classical RFs of any given neuron. For most neurons, stimulation on the ipsilateral hand suppressed responses to stimuli on the contralateral hand. Maximum suppression occurred when the ipsilateral stimulus was presented 100 ms before the contralateral stimulus onset (p < 0.0005). The longest stimulus onset delay tested (500 ms) allowed contralateral responses to recover to control levels (p = 0.428). Stimulation on mirror digits did not differ from stimulation on nonmirror locations (p = 1.000). These results indicate that interhemispheric interactions are common in area 3b, somewhat topographically diffuse, and maximal when the suppressing ipsilateral stimulus precedes the contralateral stimulus. Our findings point to a neurophysiological basis for "interference" effects found in human psychophysical studies of bimanual stimulation.
Collapse
|
27
|
Qi HX, Gharbawie OA, Wong P, Kaas JH. Cell-poor septa separate representations of digits in the ventroposterior nucleus of the thalamus in monkeys and prosimian galagos. J Comp Neurol 2011; 519:738-58. [PMID: 21246552 DOI: 10.1002/cne.22545] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The architectonic features of the ventroposterior nucleus (VP) were visualized in coronal brain sections from two macaque monkeys, two owl monkeys, two squirrel monkeys, and three galagos that were processed for cytochrome oxidase, Nissl bodies, or the vesicular glutamate transporter 2 (vGluT2). The traditional ventroposterior medial (VPM) and ventroposterior lateral (VPL) subnuclei were easily identified, as well as the forelimb and hindlimb compartments of VPL, as they were separated by poorly staining, cell-poor septa. Septa also separated other cell groups within VPM and VPL, specifically in the medial compartment of VPL representing the hand (hand VPL). In one squirrel monkey and one galago we demonstrated that these five groups of cells represent digits 1-5 in a mediolateral sequence by injecting tracers into the cortical representation of single digits, defined by microelectrode recordings, and relating concentrations of labeled neurons to specific cell groups in hand VPL. The results establish the existence of septa that isolate the representation of the five digits in VPL of primates and demonstrate that the isolated cell groups represent digits 1-5 in a mediolateral sequence. The present results show that the septa are especially prominent in brain sections processed for vGluT2, which is expressed in the synaptic terminals of excitatory neurons in most nuclei of the brainstem and thalamus. As vGluT2 is expressed in the synaptic terminations from dorsal columns and trigeminal brainstem nuclei, the effectiveness of vGluT2 preparations in revealing septa in VP likely reflects a lack of synapses using glutamate in the septa.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203, USA
| | | | | | | |
Collapse
|
28
|
Covic EN, Sherman SM. Synaptic properties of connections between the primary and secondary auditory cortices in mice. Cereb Cortex 2011; 21:2425-41. [PMID: 21385835 DOI: 10.1093/cercor/bhr029] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Little is known regarding the synaptic properties of corticocortical connections from one cortical area to another. To expand on this knowledge, we assessed the synaptic properties of excitatory projections from the primary to secondary auditory cortex and vice versa. We identified 2 types of postsynaptic responses. The first class of responses have larger initial excitatory postsynaptic potentials (EPSPs), exhibit paired-pulse depression, are limited to ionotropic glutamate receptor activation, and have larger synaptic terminals; the second has smaller initial EPSPs, paired-pulse facilitation, metabotropic glutamate receptor activation, and smaller synaptic terminals. These responses are similar to the driver and modulator properties previously identified for thalamic and thalamocortical circuitry, suggesting that the same classification may extend to corticocortical inputs and have an implication for the functional organization of corticocortical circuits.
Collapse
Affiliation(s)
- Elise N Covic
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
29
|
Wong P, Kaas JH. Architectonic subdivisions of neocortex in the Galago (Otolemur garnetti). Anat Rec (Hoboken) 2010; 293:1033-69. [PMID: 20201060 DOI: 10.1002/ar.21109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present study, galago brains were sectioned in the coronal, sagittal, or horizontal planes, and sections were processed with several different histochemical and immunohistochemical procedures to reveal the architectonic characteristics of the various cortical areas. The histochemical methods used included the traditional Nissl, cytochrome oxidase, and myelin stains, as well as a zinc stain, which reveals free ionic zinc in the axon terminals of neurons. Immunohistochemical methods include parvalbumin (PV) and calbindin (CB), both calcium-binding proteins, and the vesicle glutamate transporter 2 (VGluT2). These different procedures revealed similar boundaries between areas, which suggests that functionally relevant borders were being detected. These results allowed a more precise demarcation of previously identified areas. As thalamocortical terminations lack free ionic zinc, primary cortical areas were most clearly revealed by the zinc stain, because of the poor zinc staining of layer 4. Area 17 was especially prominent, as the broad layer 4 was nearly free of zinc stain. However, this feature was less pronounced in the primary auditory and somatosensory cortex. As VGluT2 is expressed in thalamocortical terminations, layer 4 of primary sensory areas was darkly stained for VGluT2. Primary motor cortex had reduced VGluT2 staining, and increased zinc-enriched terminations in the poorly developed granular layer 4 compared to the adjacent primary somatosensory area. The middle temporal visual (MT) showed increased PV and VGluT2 staining compared to the surrounding cortical areas. The resulting architectonic maps of cortical areas in galagos can usefully guide future studies of cortical organizations and functions.
Collapse
Affiliation(s)
- Peiyan Wong
- Department of Psychology, Vanderbilt University, Nashville, Tennesse, USA
| | | |
Collapse
|
30
|
Reed JL, Qi HX, Pouget P, Burish MJ, Bonds AB, Kaas JH. Modular processing in the hand representation of primate primary somatosensory cortex coexists with widespread activation. J Neurophysiol 2010; 104:3136-45. [PMID: 20926605 DOI: 10.1152/jn.00566.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons in the hand representation of primary somatosensory cortex (area 3b) are known to have discretely localized receptive fields; and these neurons form modules that can be visualized histologically as distinct digit and palm representations. Despite these indicators of the importance of local processing in area 3b, widespread interactions between stimuli presented to locations across the hand have been reported. We investigated the relationship of neuron firing rate with distance from the site of maximum activation in cortex by recording from a 100-electrode array with electrodes spaced 400 μm apart, implanted into the area 3b hand representation in anesthetized owl monkeys. For each stimulated location on the hand, the electrode site where neurons had the highest peak firing rate was defined as the peak activation site. The lesser firing rates of neurons at all other electrode sites in the grid were compared with the firing rates of neurons at the peak activation site. On average, peak firing rates of neurons decreased rapidly with distance away from the peak activation site. The effect of distance on the variance of firing rates was highly significant (P < 0.0001). However, individual neurons retained high firing rates for distances over 3 mm. The clear decline in firing rate with distance from the most activated location indicates that local processing is emphasized in area 3b, while the distance of neurons with reduced but maintained firing rates ≤3-4 mm from the site of best activation demonstrated widespread activation in primary somatosensory cortex.
Collapse
Affiliation(s)
- Jamie L Reed
- Dept. of Psychology, Vanderbilt University, 111 21 Ave. S., Nashville, TN 37240, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The numbers and proportion of neurons in areas and regions of cortex were determined for a single cortical hemisphere from two prosimian galagos, one New World owl monkey, one Old World macaque monkey, and one baboon. The results suggest that there is a common plan of cortical organization across the species examined here and also differences that suggest greater specializations in the Old World monkeys. In all primates examined, primary visual cortex (V1) was the most neuron-dense cortical area and the secondary visual areas had higher-than-average densities. Primary auditory and somatosensory areas tended to have high densities in the Old World macaque and baboon. Neuronal density varies less across cortical areas in prosimian galagos than in the Old World monkeys. Thus, cortical architecture varies greatly within and across primate species, but cell density is greater in cortex devoted to the early stages of sensory processing.
Collapse
|
32
|
Adult neurogenesis occurs in primate sensorimotor cortex following cervical dorsal rhizotomy. J Neurosci 2010; 30:8613-23. [PMID: 20573907 DOI: 10.1523/jneurosci.5272-09.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Adult neurogenesis remains controversial in the cerebral cortex. We have previously shown in monkeys and rats that reactive neurogenesis occurs in the spinal dorsal horn 6-8 weeks after a cervical dorsal rhizotomy. Here, in three monkeys with the same lesion, we asked whether it also occurs coincidentally in the corresponding primary somatosensory and motor cortex, where significant topographic and neuronal reorganization is known to occur. Monkeys (male Macaca fascicularis) were given 5-bromo-2-deoxyuridine (BrdU) injections 2-3 weeks after the rhizotomy, and were perfused 4-6 weeks later. Cells colabeled for BrdU and five different neuronal markers were observed within the primary somatosensory and motor cortex, and their distributions were compared bilaterally. Cells colabeled with BrdU and the astrocytic marker glial fibrillary acidic protein (GFAP) were also quantified for comparison. A significant number of BrdU/NeuN- and BrdU/calbindin-colabeled cells were observed in topographically reorganized cortex. Small numbers of BrdU/GFAP-colabeled cells were also consistently observed bilaterally, but these cells were never colabeled with any of the neuronal markers. Of the cells colabeled with BrdU and a neuronal marker, at least half had an inhibitory phenotype. However, excitatory pyramidal neurons were also identified with classic pyramidal morphology. Cortical neurogenesis was not observed in other cortical regions. It was also not observed in the primary sensorimotor, prefrontal, or posterior parietal cortex in an additional control monkey (male Macaca fascicularis) that had no surgical intervention. Our findings provide evidence for reactive endogenous cortical neurogenesis after a dorsal rhizotomy, which may play a role in functional recovery.
Collapse
|
33
|
Reed JL, Qi HX, Zhou Z, Bernard MR, Burish MJ, Bonds AB, Kaas JH. Response properties of neurons in primary somatosensory cortex of owl monkeys reflect widespread spatiotemporal integration. J Neurophysiol 2010; 103:2139-57. [PMID: 20164400 PMCID: PMC2853283 DOI: 10.1152/jn.00709.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 02/11/2010] [Indexed: 11/22/2022] Open
Abstract
Receptive fields of neurons in somatosensory area 3b of monkeys are typically described as restricted to part of a single digit or palm pad. However, such neurons are likely involved in integrating stimulus information from across the hand. To evaluate this possibility, we recorded from area 3b neurons in anesthetized owl monkeys with 100-electrode arrays, stimulating two hand locations with electromechanical probes simultaneously or asynchronously. Response magnitudes and latencies of single- and multiunits varied with stimulus conditions, and multiunit responses were similar to single-unit responses. The mean peak firing rate for single neurons stimulated within the preferred location was estimated to be ∼26 spike/s. Simultaneous stimulation with a second probe outside the preferred location slightly decreased peak firing rates to ∼22 spike/s. When the nonpreferred stimulus preceded the preferred stimulus by 10-500 ms, peak firing rates were suppressed with greatest suppression when the nonpreferred stimulus preceded by 30 ms (∼7 spike/s). The mean latency for single neurons stimulated within the preferred location was ∼23 ms, and latency was little affected by simultaneous paired stimulation. However, when the nonpreferred stimulus preceded the preferred stimulus by 10 ms, latencies shortened to ∼16 ms. Response suppression occurred even when stimuli were separated by long distances (nonadjacent digits) or long times (500 ms onset asynchrony). Facilitation, though rare, occurred most often when the stimulus onsets were within 0-30 ms of each other. These findings quantify spatiotemporal interactions and support the hypothesis that area 3b is involved in widespread stimulus integration.
Collapse
Affiliation(s)
- Jamie L Reed
- Dept. of Psychology, Vanderbilt University, 111 21st Ave. S., Nashville, TN 37240, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Stepniewska I, Fang PCY, Kaas JH. Organization of the posterior parietal cortex in galagos: I. Functional zones identified by microstimulation. J Comp Neurol 2010; 517:765-82. [PMID: 19852065 DOI: 10.1002/cne.22181] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We used half-second trains of intracortical microstimulation to study the functional organization of the posterior parietal cortex (PPC) in prosimian galagos. These trains of current pulses evoked meaningful behaviors from the anterior, but not posterior, half of PPC. Stimulation of dorsal PPC caused contralateral forelimb movements, including defensive, hand-to-mouth, and reaching movements. Defensive and hand-to-mouth movement territories overlapped, although hand-to-mouth movements were usually evoked from more rostrolateral sites than defensive movements. Reaching movement sites were typically more caudal than defensive or hand-to-mouth movement sites. Stimulation of the most medial PPC sites evoked complex movements of forelimbs and hindlimbs. Ventral PPC commonly represented defensive face movements. Similar defensive movements, with the addition of widely opening the mouth to expose the teeth, were elicited from a small area in front of the PPC defensive face zone. Sometimes defensive face movements occurred with forelimb movements. Thus, subregions of PPC relate to different ethologically relevant categories of behavior. Most movements were initiated within 33-100 msec after stimulus onset. Face, eye blink, and ear movements were generally less delayed than forelimb movements. The present results in galagos, together with those obtained from macaque monkeys by Graziano and coworkers (Graziano et al. [2002a] Neuron 34:841-851; Cooke et al., [2003] Proc. Natl. Acad. Sci. U.S.A. 100:6163-6168), suggest that the functional involvement of the PPC in specific types of sensorimotor behavior evolved early in the course of primate evolution and that networks for complex movements involving motor and posterior parietal areas are characteristic of all primate brains.
Collapse
Affiliation(s)
- Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203, USA.
| | | | | |
Collapse
|
35
|
Stepniewska I, Cerkevich CM, Fang PCY, Kaas JH. Organization of the posterior parietal cortex in galagos: II. Ipsilateral cortical connections of physiologically identified zones within anterior sensorimotor region. J Comp Neurol 2010; 517:783-807. [PMID: 19844952 DOI: 10.1002/cne.22190] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We studied cortical connections of functionally distinct movement zones of the posterior parietal cortex (PPC) in galagos identified by intracortical microstimulation with long stimulus trains ( approximately 500 msec). All these zones were in the anterior half of PPC, and each of them had a different pattern of connections with premotor (PM) and motor (M1) areas of the frontal lobe and with other areas of parietal and occipital cortex. The most rostral PPC zone has major connections with motor and visuomotor areas of frontal cortex as well as with somatosensory areas 3a and 1-2 and higher order somatosensory areas in the lateral sulcus. The dorsal part of anterior PPC region representing hand-to-mouth movements is connected mostly to the forelimb representation in PM, M1, 3a, 1-2, and somatosensory areas in the lateral sulcus and on the medial wall. The more posterior defensive and reaching zones have additional connections with nonprimary visual areas (V2, V3, DL, DM, MST). Ventral aggressive and defensive face zones have reciprocal connections with each other as well as connections with mostly face, but also forelimb representations of premotor areas and M1 as well as prefrontal cortex, FEF, and somatosensory areas in the lateral sulcus and areas on the medial surface of the hemisphere. Whereas the defensive face zone is additionally connected to nonprimary visual cortical areas, the aggressive face zone is not. These differences in connections are consistent with our functional parcellation of PPC based on intracortical long-train microstimulation, and they identify parts of cortical networks that mediate different motor behaviors.
Collapse
Affiliation(s)
- Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203, USA.
| | | | | | | |
Collapse
|
36
|
|
37
|
Wong P, Kaas JH. Architectonic subdivisions of neocortex in the tree shrew (Tupaia belangeri). Anat Rec (Hoboken) 2009; 292:994-1027. [PMID: 19462403 DOI: 10.1002/ar.20916] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tree shrews are small mammals that bear some semblance to squirrels, but are actually close relatives of primates. Thus, they have been extensively studied as a model for the early stages of primate evolution. In this study, subdivisions of cortex were reconstructed from brain sections cut in the coronal, sagittal, or horizontal planes, and processed for parvalbumin, SMI-32-immunopositive neurofilament protein epitopes, vesicle glutamate transporter 2 (VGluT2), free ionic zinc, myelin, cytochrome oxidase, and Nissl substance. These different procedures revealed similar boundaries between areas, suggesting the detection of functionally relevant borders and allowed a more precise demarcation of cortical areal boundaries. Primary cortical areas were most clearly revealed by the zinc stain, because of the poor staining of layer 4, as thalamocortical terminations lack free ionic zinc. Area 17 (V1) was especially prominent, as the broad layer 4 was nearly free of zinc stain. However, this feature was less pronounced in primary auditory and somatosensory cortex. In primary sensory areas, thalamocortical terminations in layer 4 densely express VGluT2. Auditory cortex consists of two architectonically distinct subdivisions, a primary core region (Ac), surrounded by a belt region (Ab) that had a slightly less developed koniocellular appearance. Primary motor cortex (M1) was identified by the absence of VGluT2 staining in the poorly developed granular layer 4 and the presence of SMI-32-labeled pyramidal cells in layers 3 and 5. The presence of well-differentiated cortical areas in tree shrews indicates their usefulness in studies of cortical organization and function.
Collapse
Affiliation(s)
- Peiyan Wong
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203, USA
| | | |
Collapse
|
38
|
Burton H, Sinclair RJ, Wingert JR, Dierker DL. Multiple parietal operculum subdivisions in humans: tactile activation maps. Somatosens Mot Res 2008; 25:149-62. [PMID: 18821280 DOI: 10.1080/08990220802249275] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We focused the present analysis on blood-oxygen-level-dependent responses evoked in four architectonic subdivisions of human posterior parietal operculum (PO) during two groups of tasks involving either vibrotactile stimulation or rubbing different surfaces against the right index finger pad. Activity localized in previously defined parietal opercular subdivisions, OP 1-4, was co-registered to a standard cortical surface-based atlas. Four vibrotactile stimulation tasks involved attention to the parameters of paired vibrations: (1) detect rare target trials when vibration frequencies matched; (2) select the presentation order of the vibration with a higher frequency or (3) longer duration; and (4) divide attention between frequency and duration before selecting stimulus order. Surface stimulation tasks involved various discriminations of different surfaces: (1) smooth surfaces required no discrimination; (2) paired horizontal gratings required determination of the direction of roughness change; (3) paired shapes entailed identifying matched and unmatched shapes; (4) raised letters involved letter recognition. The results showed activity in multiple somatosensory subdivisions bilaterally in human PO that are plausibly homologues of somatosensory areas previously described in animals. All tasks activated OP 1, but in vibrotactile tasks foci were more restricted compared to moving surface tasks. Greater spatial extents of activity especially in OP 1 and 4 when surfaces rubbed the finger pad did not support previously reported somatotopy of the second finger representation in "S2". The varied activity distributions across OP subdivisions may reflect low-level perceptual and/or cognitive processing differences between tasks.
Collapse
Affiliation(s)
- Harold Burton
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
39
|
Nakata H, Tamura Y, Sakamoto K, Akatsuka K, Hirai M, Inui K, Hoshiyama M, Saitoh Y, Yamamoto T, Katayama Y, Kakigi R. Evoked magnetic fields following noxious laser stimulation of the thigh in humans. Neuroimage 2008; 42:858-68. [DOI: 10.1016/j.neuroimage.2008.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/23/2008] [Accepted: 05/09/2008] [Indexed: 01/29/2023] Open
|
40
|
Eickhoff SB, Grefkes C, Fink GR, Zilles K. Functional lateralization of face, hand, and trunk representation in anatomically defined human somatosensory areas. Cereb Cortex 2008; 18:2820-30. [PMID: 18372289 DOI: 10.1093/cercor/bhn039] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We used functional magnetic resonance imaging (fMRI) and cytoarchitectonic probability maps to investigate the responsiveness of individual areas in the human primary and secondary somatosensory cortices to hand, face, or trunk stimulation of either body-side. A Bayesian modeling approach to quantify the probability of ipsilateral activations revealed that areas OP 1, OP 4, and OP 3 of the SII cortex as well as the trunk and face representations within all SI subareas (areas 3b, 1, and 2) show robust bilateral responses to unilateral stimulation. Such bilateral response properties are in good agreement with the transcallosal projections demonstrated for these areas in nonhuman primates and other mammals. In contrast, the SI hand region showed a different pattern. Whereas ipsilateral areas 3b and 1 were deactivated by tactile hand stimulation, particularly on the left, there was strong evidence for ipsilateral processing of information from the right hand in area 2. These results demonstrate not only the behavioral importance of the hand representation, but also suggest that area 2 may have particularly evolved to form the cortical substrate of these specialized demands, in line with recent studies on cortical evolution hypothesizing that area 2 has developed with increasing manual abilities in anthropoid primates featuring opposable thumbs.
Collapse
Affiliation(s)
- S B Eickhoff
- Institut für Neurowissenschaften und Biophysik - Medizin (INB 3), Forschungszentrum Jülich, Germany.
| | | | | | | |
Collapse
|
41
|
Iyengar S, Qi HX, Jain N, Kaas JH. Cortical and thalamic connections of the representations of the teeth and tongue in somatosensory cortex of new world monkeys. J Comp Neurol 2007; 501:95-120. [PMID: 17206603 DOI: 10.1002/cne.21232] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Connections of representations of the teeth and tongue in primary somatosensory cortex (area 3b) and adjoining cortex were revealed in owl, squirrel, and marmoset monkeys with injections of fluorescent tracers. Injection sites were identified by microelectrode recordings from neurons responsive to touch on the teeth or tongue. Patterns of cortical label were related to myeloarchitecture in sections cut parallel to the surface of flattened cortex, and to coronal sections of the thalamus processed for cytochrome oxidase (CO). Cortical sections revealed a caudorostral series of myelin dense ovals (O1-O4) in area 3b that represent the periodontal receptors of the contralateral teeth, the contralateral tongue, the ipsilateral teeth, and the ipsilateral tongue. The ventroposterior medial subnucleus, VPM, and the ventroposterior medial parvicellular nucleus for taste, VPMpc, were identified in the thalamic sections. Injections placed in the O1 oval representing teeth labeled neurons in VPM, while injections in O2 representing the tongue labeled neurons in both VPMpc and VPM. These injections also labeled adjacent part of areas 3a and 1, and locations in the lateral sulcus and frontal lobe. Callosally, connections of the ovals were most dense with corresponding ovals. Injections in the area 1 representation of the tongue labeled neurons in VPMpc and VPM, and ipsilateral area 3b ovals, area 3a, opercular cortex, and cortex in the lateral sulcus. Contralaterally, labeled neurons were mostly in area 1. The results implicate portions of areas 3b, 3a, and 1 in the processing of tactile information from the teeth and tongue, and possibly taste information from the tongue.
Collapse
Affiliation(s)
- Soumya Iyengar
- National Brain Research Centre, Deemed University, 122050, Haryana, India
| | | | | | | |
Collapse
|
42
|
Remple MS, Reed JL, Stepniewska I, Lyon DC, Kaas JH. The organization of frontoparietal cortex in the tree shrew (Tupaia belangeri): II. Connectional evidence for a frontal-posterior parietal network. J Comp Neurol 2007; 501:121-49. [PMID: 17206607 DOI: 10.1002/cne.21226] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tree shrews are small squirrel-like mammals that are the closest living relative to primates available for detailed neurobiological study. In a recent study (Remple et al. [2006] J. Comp. Neurol. 497:133-154), we provided anatomical and electrophysiological evidence that the frontoparietal cortex of tree shrews has two motor fields (M1 and M2) and five somatosensory fields (3a, 3b, S2, somatosensory caudal area [SC], and parietal ventral area [PV]). In the present study, we injected anatomical tracers into M1, M2, 3a, 3b, SC, and posterior parietal cortex to establish the ipsilateral cortical connections of these areas. The results provide evidence for a number of new cortical areas including medial motor and somatosensory areas (MMA and MSA), three posterior parietal areas (PPd, PPv, and PPc), and an area ventral to temporal inferior cortex (TIV). Ml receives topographic projections from M2, MMA, 3a, and PPv, and nontopographic connections from the temporal anterior and dorsal areas (TA and TD), PPc, TIV, and MSA. The connections of M2 are similar to those of M1, except that M2 receives denser projections from TIV, PPc, and dorsal frontal cortex and sparser input from M1. Areas 3a, 3b, and SC receive dense topographic projections from each other, S2, and PV and sparser connections from PPd and PPv. Area 3a receives additional input from posterior parietal and temporal regions and from M1 and MMA. Overall, the frontoparietal connections of tree shrew cortex are most similar to those of prosimian primates and quite different from those of more distant relatives such as rats.
Collapse
Affiliation(s)
- Michael S Remple
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| | | | | | | | | |
Collapse
|
43
|
Valeriani M, Le Pera D, Restuccia D, de Armas L, Miliucci R, Betti V, Vigevano F, Tonali P. Parallel spinal pathways generate the middle-latency N1 and the late P2 components of the laser evoked potentials. Clin Neurophysiol 2007; 118:1097-104. [PMID: 17368092 DOI: 10.1016/j.clinph.2007.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 01/17/2007] [Accepted: 01/28/2007] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the possible presence of multiple spino-thalamic pathways with different conduction velocities (CVs) in the human spinal cord. METHODS Laser evoked potentials (LEPs) were recorded in 10 healthy subjects after stimulation of the dorsal midline at four vertebral level: C5, T2, T6, and T10. This method allowed us to minimize the influence of the conduction in the peripheral fibers and to calculate the spinal CV in two different ways: (1) the reciprocal of the slope of the regression line was obtained from the latencies of the different LEP components, and (2) the distance between C5 and T10 was divided by the latency difference of the responses at the two sites. In particular, we considered the middle-latency N1 potential (latencies of around 135, 150, 157, and 171 ms after stimulation at C5, T2, T6, and T10 levels, respectively), which is generated in the second somatosensory (SII) area, and the late P2 response (latencies of around 336, 344, 346, and 362 ms after stimulation at C5, T2, T6, and T10 levels, respectively), which is generated in the anterior cingulate cortex (ACC). RESULTS The calculated CV of the spinal fibers generating the N1 potential (around 9 m/s) was significantly different (P<0.05) from the one of the pathway producing the P2 response (around 13 m/s). CONCLUSIONS Our results suggest that the N1 and the P2 LEP components are generated by two parallel spinal pathways. SIGNIFICANCE Both the N1 and P2 potentials should be recorded in the clinical routine since a dissociated abnormality of either response may be found in lesions of the nociceptive system not only in the brain, but also at spinal cord level.
Collapse
|
44
|
Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K, Amunts K. Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 2007; 36:511-21. [PMID: 17499520 DOI: 10.1016/j.neuroimage.2007.03.060] [Citation(s) in RCA: 786] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/19/2007] [Accepted: 03/19/2007] [Indexed: 11/20/2022] Open
Abstract
Probabilistic cytoarchitectonic maps in standard reference space provide a powerful tool for the analysis of structure-function relationships in the human brain. While these microstructurally defined maps have already been successfully used in the analysis of somatosensory, motor or language functions, several conceptual issues in the analysis of structure-function relationships still demand further clarification. In this paper, we demonstrate the principle approaches for anatomical localisation of functional activations based on probabilistic cytoarchitectonic maps by exemplary analysis of an anterior parietal activation evoked by visual presentation of hand gestures. After consideration of the conceptual basis and implementation of volume or local maxima labelling, we comment on some potential interpretational difficulties, limitations and caveats that could be encountered. Extending and supplementing these methods, we then propose a supplementary approach for quantification of structure-function correspondences based on distribution analysis. This approach relates the cytoarchitectonic probabilities observed at a particular functionally defined location to the areal specific null distribution of probabilities across the whole brain (i.e., the full probability map). Importantly, this method avoids the need for a unique classification of voxels to a single cortical area and may increase the comparability between results obtained for different areas. Moreover, as distribution-based labelling quantifies the "central tendency" of an activation with respect to anatomical areas, it will, in combination with the established methods, allow an advanced characterisation of the anatomical substrates of functional activations. Finally, the advantages and disadvantages of the various methods are discussed, focussing on the question of which approach is most appropriate for a particular situation.
Collapse
Affiliation(s)
- Simon B Eickhoff
- Institut für Medizin, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Huang RS, Sereno MI. Dodecapus: An MR-compatible system for somatosensory stimulation. Neuroimage 2006; 34:1060-73. [PMID: 17182259 DOI: 10.1016/j.neuroimage.2006.10.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 10/03/2006] [Accepted: 10/11/2006] [Indexed: 11/18/2022] Open
Abstract
Somatotopic mapping of human body surface using fMRI is challenging. First, it is difficult to deliver tactile stimuli in the scanner. Second, multiple stimulators are often required to cover enough area of the complex-shaped body surface, such as the face. In this study, a computer-controlled pneumatic system was constructed to automatically deliver air puffs to 12 locations on the body surface through an MR-compatible manifold (Dodecapus) mounted on a head coil inside the scanner bore. The timing of each air-puff channel is completely programmable and this allows systematic and precise stimulation on multiple locations on the body surface during functional scans. Three two-condition block-design "Localizer" paradigms were employed to localize the cortical representations of the face, lips, and fingers, respectively. Three "Phase-encoded" paradigms were employed to map the detailed somatotopic organizations of the face, lips, and fingers following each "Localizer" paradigm. Multiple somatotopic representations of the face, lips, and fingers were localized and mapped in primary motor cortex (MI), ventral premotor cortex (PMv), polysensory zone (PZ), primary (SI) and secondary (SII) somatosensory cortex, parietal ventral area (PV) and 7b, as well as anterior and ventral intraparietal areas (AIP and VIP). The Dodecapus system is portable, easy to setup, generates no radio frequency interference, and can also be used for EEG and MEG experiments. This system could be useful for non-invasive somatotopic mapping in both basic and clinical studies.
Collapse
Affiliation(s)
- Ruey-Song Huang
- Department of Cognitive Science 0515, University of California San Diego, La Jolla, CA 92093-0515, USA
| | | |
Collapse
|
46
|
Hinkley LB, Krubitzer LA, Nagarajan SS, Disbrow EA. Sensorimotor integration in S2, PV, and parietal rostroventral areas of the human sylvian fissure. J Neurophysiol 2006; 97:1288-97. [PMID: 17122318 PMCID: PMC4060608 DOI: 10.1152/jn.00733.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We explored cortical fields on the upper bank of the Sylvian fissure using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) to measure responses to two stimulus conditions: a tactile stimulus applied to the right hand and a tactile stimulus with an additional movement component. fMRI data revealed bilateral activation in S2/PV in response to tactile stimulation alone and source localization of MEG data identified a peak latency of 122 ms in a similar location. During the tactile and movement condition, fMRI revealed bilateral activation of S2/PV and an anterior field, while MEG data contained one source at a location identical to the tactile-only condition with a latency of 96 ms and a second rostral source with a longer latency (136 ms). Furthermore, Region-of-interest analysis of fMRI data identified increased bilateral activation in S2/PV and the rostral area in the tactile and movement condition compared with the tactile only condition. An area of cortex immediately rostral to S2/PV in monkeys has been called the parietal rostroventral area (PR). Based on location, latency, and conditions under which this field was active, we have termed the rostral area of human cortex PR as well. These findings indicate that humans, like non-human primates, have a cortical field rostral to PV that processes proprioceptive inputs, both S2/PV and PR play a role in somatomotor integration necessary for manual exploration and object discrimination, and there is a temporal hierarchy of processing with S2/PV active prior to PR.
Collapse
Affiliation(s)
- Leighton B Hinkley
- Center for Neuroscience, University of California-Davis, 1544 Newton Court, Davis, CA 95618, USA
| | | | | | | |
Collapse
|
47
|
Eickhoff SB, Grefkes C, Zilles K, Fink GR. The Somatotopic Organization of Cytoarchitectonic Areas on the Human Parietal Operculum. Cereb Cortex 2006; 17:1800-11. [PMID: 17032710 DOI: 10.1093/cercor/bhl090] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The secondary somatosensory cortex (SII) of nonhuman primates is located on the parietal operculum. In the monkey, electrophysiological and connectivity tracing studies as well as histological investigations provide converging evidence for 3 distinct cortical areas (SII, PV, and VS) within this region, each of which contains a complete somatotopic map. Although the equivalency of the parietal operculum as the location of SII between humans and nonhuman primates is undisputed, the internal organization of the human SII region is still largely unknown. Based on their topography, we have previously argued that the cytoarchitectonic areas OP 1, OP 4, and OP 3 may constitute the human homologues of areas SII, PV, and VS, respectively. To test this hypothesis, we here examined (using functional magnetic resonance imaging) the somatotopic organization of the human parietal operculum by applying tactile stimulation to the skin at 4 different locations on either side of the body (face, hands, trunk, and legs). The locations of the resulting activation foci were then compared with the cytoarchitectonic maps of this region. Data analysis revealed 2 somatotopic body representations on the lateral operculum in areas OP 1 and OP 4. The functional border between these 2 body maps was defined by a mirror reversal in the somatotopic arrangement and coincided with the cytoarchitectonically defined border between these 2 areas. This somatotopic arrangement closely matches that described for SII and PV in nonhuman primates. The data also suggested a third somatotopic map located deeper inside the Sylvian fissure in area OP 3. Based on the observed topographic arrangement and their functional response characteristics, we conclude that cytoarchitectonic areas OP1, OP 4, and OP 3 on the human parietal operculum constitute the human homologues of primate areas SII, PV, and VS, respectively.
Collapse
Affiliation(s)
- Simon B Eickhoff
- Institut für Medizin, Forschungszentrum Jülich, Jülich, Germany.
| | | | | | | |
Collapse
|
48
|
Remple MS, Reed JL, Stepniewska I, Kaas JH. Organization of frontoparietal cortex in the tree shrew (Tupaia belangeri). I. Architecture, microelectrode maps, and corticospinal connections. J Comp Neurol 2006; 497:133-54. [PMID: 16680767 DOI: 10.1002/cne.20975] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite extensive investigation of the motor cortex of primates, little is known about the organization of motor cortex in tree shrews, one of their closest living relatives. We investigated the organization of frontoparietal cortex in Belanger's tree shrews (Tupaia belangeri) by using intracortical microstimulation (ICMS), corticospinal tracing, and detailed histological analysis. The results provide evidence for the subdivision of tree shrew frontoparietal cortex into seven distinct areas (five are newly identified), including two motor fields (M1 and M2) and five somatosensory fields (3a, 3b, S2, PV, and SC). The types of movements evoked in M1 and M2 were similar, but M2 required higher currents to elicit movements and had few connections to the cervical spinal cord and distinctive cyto- and immunoarchitecture. The borders between M1 and the anterior somatosensory regions (3a and 3b) were identified primarily from histological analysis, because thresholds were similar between these regions, and differences in corticospinal neuron distribution were subtle. The caudal (SC) and lateral (S2 and PV) somatosensory fields were identified based on differences in architecture and distribution of corticospinal neurons. Myelin-dense modules were identified in lateral cortex, in the expected location of the oral, forelimb, and hindlimb representations of S2, and possibly PV. Evidence for a complex primate-like array of motor fields is lacking in tree shrews, but their motor cortex shares a number of basic features with that of primates, which are not found in more distantly related species, such as rats.
Collapse
Affiliation(s)
- Michael S Remple
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| | | | | | | |
Collapse
|
49
|
Stepniewska I, Preuss TM, Kaas JH. Ipsilateral cortical connections of dorsal and ventral premotor areas in New World owl monkeys. J Comp Neurol 2006; 495:691-708. [PMID: 16506197 PMCID: PMC6503658 DOI: 10.1002/cne.20906] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In order to compare connections of premotor cortical areas of New World monkeys with those of Old World macaque monkeys and prosimian galagos, we placed injections of fluorescent tracers and wheat germ agglutinin-horseradish peroxidase (WGA-HRP) in dorsal (PMD) and ventral (PMV) premotor areas of owl monkeys. Motor areas and injection sites were defined by patterns of movements electrically evoked from the cortex with microelectrodes. Labeled neurons and axon terminals were located in brain sections cut either in the coronal plane or parallel to the surface of flattened cortex, and they related to architectonically and electrophysiologically defined cortical areas. Both the PMV and PMD had connections with the primary motor cortex (M1), the supplementary motor area (SMA), cingulate motor areas, somatosensory areas S2 and PV, and the posterior parietal cortex. Only the PMV had connections with somatosensory areas 3a, 1, 2, PR, and PV. The PMD received inputs from more caudal portions of the cortex of the lateral sulcus and more medial portions of the posterior parietal cortex than the PMV. The PMD and PMV were only weakly interconnected. New World owl monkeys, Old World macaque monkeys, and galagos share a number of PMV and PMD connections, suggesting preservation of a common sensorimotor network from early primates. Comparisons of PMD and PMV connectivity with the cortex of the lateral sulcus and posterior parietal cortex of owl monkeys, galagos, and macaques help identify areas that could be homologous.
Collapse
Affiliation(s)
- Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, TN 37203
| | - Todd M. Preuss
- Division of Neuroscience and Center for Behavioral Neuroscience, Emory University, Atlanta, GA 30329, and Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37203
| |
Collapse
|
50
|
Dancause N, Barbay S, Frost SB, Plautz EJ, Stowe AM, Friel KM, Nudo RJ. Ipsilateral connections of the ventral premotor cortex in a new world primate. J Comp Neurol 2006; 495:374-90. [PMID: 16485282 PMCID: PMC2583355 DOI: 10.1002/cne.20875] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The present study describes the pattern of connections of the ventral premotor cortex (PMv) with various cortical regions of the ipsilateral hemisphere in adult squirrel monkeys. Particularly, we 1) quantified the proportion of inputs and outputs that the PMv distal forelimb representation shares with other areas in the ipsilateral cortex and 2) defined the pattern of PMv connections with respect to the location of the distal forelimb representation in primary motor cortex (M1), primary somatosensory cortex (S1), and supplementary motor area (SMA). Intracortical microstimulation techniques (ICMS) were used in four experimentally naïve monkeys to identify M1, PMv, and SMA forelimb movement representations. Multiunit recording techniques and myelin staining were used to identify the S1 hand representation. Then, biotinylated dextran amine (BDA; 10,000 MW) was injected in the center of the PMv distal forelimb representation. After tangential sectioning, the distribution of BDA-labeled cell bodies and terminal boutons was documented. In M1, labeling followed a rostrolateral pattern, largely leaving the caudomedial M1 unlabeled. Quantification of somata and terminals showed that two areas share major connections with PMv: M1 and frontal areas immediately rostral to PMv, designated as frontal rostral area (FR). Connections with this latter region have not been described previously. Moderate connections were found with PMd, SMA, anterior operculum, and posterior operculum/inferior parietal area. Minor connections were found with diverse areas of the precentral and parietal cortex, including S1. No statistical difference between the proportions of inputs and outputs for any location was observed, supporting the reciprocity of PMv intracortical connections.
Collapse
Affiliation(s)
- Numa Dancause
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | | | |
Collapse
|