1
|
Yamada T, Zuo D, Yamamoto T, Olszewski RT, Bzdega T, Moffett JR, Neale JH. NAAG peptidase inhibition in the periaqueductal gray and rostral ventromedial medulla reduces flinching in the formalin model of inflammation. Mol Pain 2012; 8:67. [PMID: 22971334 PMCID: PMC3539905 DOI: 10.1186/1744-8069-8-67] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/21/2012] [Indexed: 11/28/2022] Open
Abstract
Background Metabotropic glutamate receptors (mGluRs) have been identified as significant analgesic targets. Systemic treatments with inhibitors of the enzymes that inactivate the peptide transmitter N-acetylaspartylglutamate (NAAG), an mGluR3 agonist, have an analgesia-like effect in rat models of inflammatory and neuropathic pain. The goal of this study was to begin defining locations within the central pain pathway at which NAAG activation of its receptor mediates this effect. Results NAAG immunoreactivity was found in neurons in two brain regions that mediate nociceptive processing, the periaqueductal gray (PAG) and the rostral ventromedial medulla (RVM). Microinjection of the NAAG peptidase inhibitor ZJ43 into the PAG contralateral, but not ipsilateral, to the formalin injected footpad reduced the rapid and slow phases of the nociceptive response in a dose-dependent manner. ZJ43 injected into the RVM also reduced the rapid and slow phase of the response. The group II mGluR antagonist LY341495 blocked these effects of ZJ43 on the PAG and RVM. NAAG peptidase inhibition in the PAG and RVM did not affect the thermal withdrawal response in the hot plate test. Footpad inflammation also induced a significant increase in glutamate release in the PAG. Systemic injection of ZJ43 increased NAAG levels in the PAG and RVM and blocked the inflammation-induced increase in glutamate release in the PAG. Conclusion These data demonstrate a behavioral and neurochemical role for NAAG in the PAG and RVM in regulating the spinal motor response to inflammation and that NAAG peptidase inhibition has potential as an approach to treating inflammatory pain via either the ascending (PAG) and/or the descending pain pathways (PAG and RVM) that warrants further study.
Collapse
Affiliation(s)
- Toshihiko Yamada
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Arun P, Madhavarao CN, Moffett JR, Namboodiri AMA. Antipsychotic drugs increase N-acetylaspartate and N-acetylaspartylglutamate in SH-SY5Y human neuroblastoma cells. J Neurochem 2008; 106:1669-80. [PMID: 18631215 DOI: 10.1111/j.1471-4159.2008.05524.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) are related neuronal metabolites associated with the diagnosis and treatment of schizophrenia. NAA is a valuable marker of neuronal viability in magnetic resonance spectroscopy, a technique which has consistently shown NAA levels to be modestly decreased in the brains of schizophrenia patients. However, there are conflicting reports on the changes in brain NAA levels after treatment with antipsychotic drugs, which exert their therapeutic effects in part by blocking dopamine D(2) receptors. NAAG is reported to be an agonist of the metabotropic glutamate 2/3 receptor, which is linked to neurotransmitter release modulation, including glutamate release. Alterations in NAAG metabolism have been implicated in the development of schizophrenia possibly via dysregulation of glutamate neurotransmission. In the present study we have used high performance liquid chromatography to determine the effects of the antipsychotic drugs haloperidol and clozapine on NAA and NAAG levels in SH-SY5Y human neuroblastoma cells, a model system used to test the responses of dopaminergic neurons in vitro. The results indicate that the antipsychotic drugs haloperidol and clozapine increase both NAA and NAAG levels in SH-SY5Y cells in a dose and time dependant manner, providing evidence that NAA and NAAG metabolism in neurons is responsive to antipsychotic drug treatment.
Collapse
Affiliation(s)
- Peethambaran Arun
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
3
|
Pacheco Otalora LF, Moffett JR, Garrido-Sanabria ER. Selective vulnerability of hippocampal NAAGergic neurons in experimental temporal lobe epilepsy. Brain Res 2007; 1144:219-30. [PMID: 17346683 DOI: 10.1016/j.brainres.2007.01.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 01/24/2007] [Accepted: 01/24/2007] [Indexed: 11/22/2022]
Abstract
The dipeptide N-acetylaspartylglutamate (NAAG) has been recently implicated in numerous neurological disorders. NAAG binds and stimulates group II metabotropic glutamate receptors producing a down-modulation of synaptic glutamate release. In the present immunohistochemical study, we compare the distribution of NAAG-containing (NAAGergic) neurons between the hippocampus of control and chronic epileptic rats obtained with the pilocarpine model of temporal lobe epilepsy. In the hippocampal formation, NAAGergic neurons comprise a subpopulation of GABAergic neurons. Examination by light microscopy revealed a significant reduction of NAAG-immunoreactive neurons in CA3 stratum oriens (35.8%) and CA1 stratum oriens (78.87%), stratum pyramidale (40%), and stratum radiatum (56.6%). Similar loss of NAAGergic neurons was observed in the subiculum characterized by 71.82% and 77.53% reduction in the stratum oriens and radiatum, respectively, when compared with controls. NAAGergic neurons in CA2 and dentate gyrus were apparently resistant to seizure-related cell loss but appeared more complex and exhibited numerous NAAG-positive puncta. Our findings indicate a selective vulnerability of NAAGergic neurons in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Luis F Pacheco Otalora
- Department of Biological Sciences at the University of Texas at Brownsville/Texas Southmost College, 80 Fort Brown, Brownsville, TX 78520, USA
| | | | | |
Collapse
|
4
|
Arun P, Madhavarao CN, Moffett JR, Namboodiri MAA. Regulation of N-acetylaspartate and N-acetylaspartylglutamate biosynthesis by protein kinase activators. J Neurochem 2006; 98:2034-42. [PMID: 16945114 DOI: 10.1111/j.1471-4159.2006.04068.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The neuronal dipeptide N-acetylaspartylglutamate (NAAG) is thought to be synthesized enzymatically from N-acetylaspartate (NAA) and glutamate. We used radiolabeled precursors to examine NAA and NAAG biosynthesis in SH-SY5Y human neuroblastoma cells stimulated with activators of protein kinase A (dbcAMP; N6,2'-O-dibutyryl cAMP) and protein kinase C (PMA; phorbol-12-myristate-13-acetate). Differentiation over the course of several days with dbcAMP resulted in increased endogenous NAA levels and NAAG synthesis from l-[(3)H]glutamine, whereas PMA-induced differentiation reduced both. Exogenously applied NAA caused dose dependent increases in intracellular NAA levels, and NAAG biosynthesis from l-[(3)H]glutamine, suggesting precursor-product and mass-action relationships between NAA and NAAG. Incorporation of l-[(3)H]aspartate into NAA and NAAG occurred sequentially, appearing in NAA by 1 h, but not in NAAG until between 6 and 24 h. Synthesis of NAAG from l-[(3)H]aspartate was increased by dbcAMP and decreased by PMA at 24 h. The effects of PMA on l-[(3)H]aspartate incorporation into NAA were temporally biphasic. Using short incubation times (1 and 6 h), PMA increased l-[(3)H]aspartate incorporation into NAA, but with longer incubation (24 h), incorporation was significantly reduced. These results suggest that, while the neuronal production of NAA and NAAG are biochemically related, significant differences exist in the regulatory mechanisms controlling their biosynthesis.
Collapse
Affiliation(s)
- Peethambaran Arun
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
5
|
Tieman SB. Cellular Localization of NAAG. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 576:289-301; discussion 361-3. [PMID: 16802721 DOI: 10.1007/0-387-30172-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Suzannah Bliss Tieman
- Center for Neuroscience Research and Department of Biological Sciences, The University at Albany, State University of New York, Albany, New York, 12222 USA.
| |
Collapse
|
6
|
Moffett JR, Namboodiri AMA. Expression of N-Acetylaspartate and N-Acetylaspartylglutamate in the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 576:7-26; discussion 361-3. [PMID: 16802702 DOI: 10.1007/0-387-30172-0_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- John R Moffett
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda MD, 20814, USA.
| | | |
Collapse
|
7
|
Neale SA, Salt TE. Modulation of GABAergic inhibition in the rat superior colliculus by a presynaptic group II metabotropic glutamate receptor. J Physiol 2006; 577:659-69. [PMID: 16973709 PMCID: PMC1890443 DOI: 10.1113/jphysiol.2006.119073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Previous work has indicated that metabotropic glutamate receptors (mGluRs) modulate visual responses of superior colliculus (SC) neurones in vivo in a variety of ways, in a manner that can be dependent upon visual stimulus properties. How this occurs remains unclear. In this study we aimed to determine how activation of mGluR2 and mGluR3 receptors (Group II) might modulate visual responses, by using field potential and whole-cell patch clamp recording techniques in rat SC slice. Stimulation within the superficial layers of the SC, in the presence of ionotropic glutamate receptor antagonists, evoked IPSCs that were blocked by bicuculline indicating that they are mediated via GABAA receptors. It is likely that these IPSCs were of heterogeneous origin as they showed substantial variation in paired-pulse behaviour. Nevertheless, activation of Group II mGluRs with the group-selective agonist LY354740 (300 nM, bath application) resulted in a reduction of these IPSCs (to 56% of control amplitude), and this was associated with a decrease in paired-pulse depression. At the same concentration, LY354740 did not reduce the EPSC or field-EPSP evoked by stimulation of the retinal input to the SC. The effects of LY354740 on IPSCs were not mimicked by the mGluR3-selective agonist N-acetyl-aspartyl-glutamate (NAAG, 200-500 microM). Stimulation of IPSCs with trains of impulses (10 at 20 Hz) in order to mimic natural activation patterns resulted in sequences of IPSCs that were reduced in amplitude towards the end of the stimulus train. Application of the Group II antagonist LY341495 (100 nM) under these conditions resulted in an increase in later IPSCs in a third of neurones tested. These findings indicate that mGluR2 (but not mGluR3) can selectively modulate GABAergic inhibition in SC, probably via a presynaptic mechanism. Furthermore, these receptors may be activated by synaptically released transmitter during patterns of activation similar to those seen during visual processing. Thus mGluR2 receptors could have a function in activity-dependent modulation of inhibitory processing during visual responses.
Collapse
Affiliation(s)
- S A Neale
- Department of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|
8
|
Zhao L, Wang N, Jiang L, Long C, Li J. Unilateral optic nerve transection up-regulate Hsp70 protein expression in lateral geniculate nucleus of rats. Neurosci Lett 2006; 404:44-9. [PMID: 16781812 DOI: 10.1016/j.neulet.2006.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/06/2006] [Accepted: 05/09/2006] [Indexed: 11/21/2022]
Abstract
Studies have demonstrated that optic nerve transection results in apoptotic cell death of retinal ganglion cells (RGCs) and neurons within lateral geniculate nucleus (LGN). Heat shock protein (Hsp) 70 was reported to be involved in protecting cells from injury under various pathological conditions in vivo and in vitro. To determine the involvement of Hsp70 in protecting neurons within LGN against damage or loss induced by optic nerve injuries, we observed the changes in protein expression and distribution of Hsp70 in LGN at days 1, 3, 7, 14 and 28 after unilateral optic nerve transection in the left eye of Sprague-Dawley rats by using Western blot analysis and immunohistochemical staining. We found that the levels of Hsp70 protein expression increased significantly (p < 0.05, n = 6 for each group) in both right and left LGN of rats following left optic nerve transection 1-7 days. The maximum of Hsp70 expression reached at day 3. However, Hsp70 protein expression levels in both right and left LGN returned to control levels at 14 and 28 days after left optic nerve lesion. In addition, the increased Hsp70 expression, which mainly localized in the intergeniculate leaflet of LGN, was also observed by immunostaining in right LGN at the end of day 3 after the lesion. These results suggest that increased expression of Hsp70 may be involved in protecting neurons within LGN against damage or loss induced by left optic nerve transection at early stage.
Collapse
Affiliation(s)
- Li Zhao
- Beijing TongRen Eye Center, Beijing Tongren Hospital, Capital University of Medical Sciences, China
| | | | | | | | | |
Collapse
|
9
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
10
|
Thompson H, Neale SA, Salt TE. Activation of Group II and Group III metabotropic glutamate receptors by endogenous ligand(s) and the modulation of synaptic transmission in the superficial superior colliculus. Neuropharmacology 2004; 47:822-32. [PMID: 15527816 DOI: 10.1016/j.neuropharm.2004.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 05/25/2004] [Accepted: 06/18/2004] [Indexed: 10/26/2022]
Abstract
Previous work from this laboratory indicates that Group II/III metabotropic glutamate (mGlu) receptors modulate responses of SC neurones to visual stimuli in vivo. It is thought that tonic levels of glutamate may be sufficient to activate some mGlu receptors. We wished to investigate if these receptors are activated under ambient conditions in SC. Field excitatory postsynaptic potentials (fEPSPs) evoked by optic tract stimulation were recorded from 300 microm slices of the adult pigmented rat superior colliculus at 34 degrees C. The Group II receptor selective agonist LY354740 (100-300 nM) had no significant effect on the peak amplitude of the fEPSP, although it did enhance the late phase of the fEPSP. In order to test for activation of Group II receptors by endogenous ligand, the selective antagonists LY341495 (50 nM) or EGLU (200 microM) were applied: these either enhanced or reduced the fEPSP amplitude. In similar experiments carried out at 22 degrees C, no effect was seen. The fEPSP enhancements, but not the fEPSP reductions, could be occluded by GABA antagonists. Application of higher concentrations of LY341495 (300, 600 nM-known to also affect Group III receptors, particularly mGlu8), or co-application of 50 nM LY341495 and the Group III-selective antagonist CPPG (100 microM) produced enhancements of responses, or counteracted response reductions over those seen with 50 nM LY341495 alone. The predominant Group II receptor in SC is mGlu3. It is known that this can be located presynaptically on GABAergic and glutamatergic terminals, postsynaptically, and on glia. Our results indicate that such receptors are tonically activated by endogenous transmitter, have distinct effects, and influence retino-collicular transmission. Furthermore, there is a segregation of effects where receptors exert some of their effects via modulation of GABAergic circuitry.
Collapse
Affiliation(s)
- H Thompson
- Division of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | |
Collapse
|