1
|
Sun Y, Hao M, Wu H, Zhang C, Wei D, Li S, Song Z, Tao Y. Unveiling the role of CaMKII in retinal degeneration: from biological mechanism to therapeutic strategies. Cell Biosci 2024; 14:59. [PMID: 38725013 PMCID: PMC11084033 DOI: 10.1186/s13578-024-01236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a family of broad substrate specificity serine (Ser)/threonine (Thr) protein kinases that play a crucial role in the Ca2+-dependent signaling pathways. Its significance as an intracellular Ca2+ sensor has garnered abundant research interest in the domain of neurodegeneration. Accumulating evidences suggest that CaMKII is implicated in the pathology of degenerative retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinitis pigmentosa (RP) and glaucoma optic neuropathy. CaMKII can induce the aberrant proliferation of retinal blood vessels, influence the synaptic signaling, and exert dual effects on the survival of retinal ganglion cells and pigment epithelial cells. Researchers have put forth multiple therapeutic agents, encompassing small molecules, peptides, and nucleotides that possess the capability to modulate CaMKII activity. Due to its broad range isoforms and splice variants therapeutic strategies seek to inhibit specifically the CaMKII are confronted with considerable challenges. Therefore, it becomes crucial to discern the detrimental and advantageous aspects of CaMKII, thereby facilitating the development of efficacious treatment. In this review, we summarize recent research findings on the cellular and molecular biology of CaMKII, with special emphasis on its metabolic and regulatory mechanisms. We delve into the involvement of CaMKII in the retinal signal transduction pathways and discuss the correlation between CaMKII and calcium overload. Furthermore, we elaborate the therapeutic trials targeting CaMKII, and introduce recent developments in the zone of CaMKII inhibitors. These findings would enrich our knowledge of CaMKII, and shed light on the development of a therapeutic target for degenerative retinopathy.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengyu Hao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Chengzhi Zhang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Pan F, Massey SC. Dye coupling of horizontal cells in the primate retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1173706. [PMID: 38983052 PMCID: PMC11182241 DOI: 10.3389/fopht.2023.1173706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/03/2023] [Indexed: 07/11/2024]
Abstract
In the monkey retina, there are two distinct types of axon-bearing horizontal cells, known as H1 and H2 horizontal cells (HCs). In this study, cell bodies were prelabled using 4',6-diamidino-2-phenylindole (DAPI), and both H1 and H2 horizontal cells were filled with Neurobiotin™ to reveal their coupling, cellular details, and photoreceptor contacts. The confocal analysis of H1 and H2 HCs was used to assess the colocalization of terminal dendrites with glutamate receptors at cone pedicles. After filling H1 somas, a large coupled mosaic of H1 cells was labeled. The dendritic terminals of H1 cells contacted red/green cone pedicles, with the occasional sparse contact with blue cone pedicles observed. The H2 cells were also dye-coupled. They had larger dendritic fields and lower densities. The dendritic terminals of H2 cells preferentially contacted blue cone pedicles, but additional contacts with nearly all cones within the dendritic field were still observed. The red/green cones constitute 99% of the input to H1 HCs, whereas H2 HCs receive a more balanced input, which is composed of 58% red/green cones and 42% blue cones. These observations confirm those made in earlier studies on primate horizontal cells by Dacey and Goodchild in 1996. Both H1 and H2 HCs were axon-bearing. H1 axon terminals (H1 ATs) were independently coupled and contacted rod spherules exclusively. In contrast, the H2 axon terminals contacted cones, with some preference for blue cone pedicles, as reported by Chan and Grünert in 1998. The primate retina contains three independently coupled HC networks in the outer plexiform layer (OPL), identified as H1 and H2 somatic dendrites, and H1 ATs. At each cone pedicle, the colocalization of both H1 and H2 dendritic tips with GluA4 subunits close to the cone synaptic ribbons indicates that glutamate signaling from the cones to H1 and H2 horizontal cells is mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors.
Collapse
Affiliation(s)
- Feng Pan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Stephen C. Massey
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, TX, United States
| |
Collapse
|
3
|
Stincic T, Gayet-Primo J, Taylor WR, Puthussery T. TARPγ2 Is Required for Normal AMPA Receptor Expression and Function in Direction-Selective Circuits of the Mammalian Retina. eNeuro 2023; 10:ENEURO.0158-23.2023. [PMID: 37491367 PMCID: PMC10431237 DOI: 10.1523/eneuro.0158-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
AMPA receptors (AMPARs) are the major mediators of fast excitatory neurotransmission in the retina as in other parts of the brain. In most neurons, the synaptic targeting, pharmacology, and function of AMPARs are influenced by auxiliary subunits including the transmembrane AMPA receptor regulatory proteins (TARPs). However, it is unclear which TARP subunits are present at retinal synapses and how they influence receptor localization and function. Here, we show that TARPɣ2 (stargazin) is associated with AMPARs in the synaptic layers of the mouse, rabbit, macaque, and human retina. In most species, TARPɣ2 expression was high where starburst amacrine cells (SACs) ramify and transcriptomic analyses suggest correspondingly high gene expression in mouse and human SACs. Synaptic expression of GluA2, GluA3, and GluA4 was significantly reduced in a mouse mutant lacking TARPɣ2 expression (stargazer mouse; stg), whereas GluA1 levels were unaffected. AMPAR-mediated light-evoked EPSCs in ON-SACs from stg mice were ∼30% smaller compared with heterozygous littermates. There was also loss of a transient ON pathway-driven GABAergic input to ON-SACs in stg mutants. Direction-selective ganglion cells in the stg mouse showed normal directional tuning, but their surround inhibition and thus spatial tuning was reduced. Our results indicate that TARPɣ2 is required for normal synaptic expression of GluA2, GluA3, and GluA4 in the inner retina. The presence of residual AMPAR expression in the stargazer mutant suggests that other TARP subunits may compensate in the absence of TARPɣ2.
Collapse
Affiliation(s)
- Todd Stincic
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - Jacqueline Gayet-Primo
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - W Rowland Taylor
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - Teresa Puthussery
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
4
|
Linn DM. Target identification and validation of the alpha7 nicotinic acetylcholine receptor as a potential therapeutic target in retinal disease. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1190439. [PMID: 38983049 PMCID: PMC11182235 DOI: 10.3389/fopht.2023.1190439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2024]
Abstract
The role of acetylcholine (ACh) in visual processing in the mammalian retina has been the focus of research for many decades. Pioneering work on the localization of ACh discovered that the neurotransmitter is synthesized and stored in a distinct subpopulation of amacrine (starburst) cells. It has been shown that ACh release is regulated to a low resting "tonic" level, much like what is observed at the neuromuscular junction (NMJ). If there were a dysfunction in the tonic release of ACh, might post-synaptic changes render the targets of ACh [i.e., retinal ganglion cells (RGCs)] vulnerable to disease? During my time at Pharmacia & Upjohn (PNU), selective nicotinic ACh receptor (nAChR) agonists (e.g., PNU-282987) were developed as a possible therapy for central nervous system (CNS) diseases. As RGCs are the main targets of neurodegeneration in glaucoma, could the activation of this target provide neuroprotection? In response to this question, experiments to identify alpha7 nAChRs in the retina (i.e., target ID studies) followed by "proof-of-concept" experiments were conducted. Target ID studies included binding studies with retinal homogenates, [125I]-alpha-bungarotoxin (α-BTX) autoradiography, and fluorescently tagged α-BTX binding in retinal slices. Imaging studies of intracellular calcium dynamics in the retinal slice were conducted. Reverse transcription-polymerase chain reaction (RT-PCR) analysis with alpha7 nAChR knockout mice using the "laser-capture microdissection" technique, in situ hybridization studies, and RT-PCR analysis of the human retina were conducted. Collectively, these experiments confirmed the presence of alpha7 nAChRs on specific cells in the retina. "Proof-of-concept" neuroprotection studies demonstrated that PNU-282987 provided significant protection for RGCs. This protection was dose dependent and was blocked with selective antagonists. More recently, evidence for the generation of new RGCs has been reported with PNU-282987 in rodents. Interestingly, the appearance of new RGCs is more pronounced with eye-drop application than with intravitreal injection. One could postulate that this reflects the neurogenic activation of alpha7 receptors on the retinal pigment epithelium (RPE) (eye drops) vs. a neuroprotective effect on RGCs (injections). In conclusion, there does appear to be a cholinergic retinal "tone" associated with RGCs that could be utilized as a neuroprotective therapy. However, a distinct cholinergic neurogenic mechanism also appears to exist in the outer retina that could possibly be exploited to generate new RGCs lost through various disease processes.
Collapse
Affiliation(s)
- David M Linn
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, United States
| |
Collapse
|
5
|
Mills SL, Marshak DW. Stephen Massey: a career in visual neuroscience. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1194837. [PMID: 38983046 PMCID: PMC11182122 DOI: 10.3389/fopht.2023.1194837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 07/11/2024]
Abstract
This review is a memoir by Dr. Stephen C. Massey's longtime collaborator, Dr. Stephen L. Mills, and written, for the most part, in the first person. It also serves as an introduction to the virtual festschrift to celebrate Dr. Massey's retirement. and. The references cited here are only a few of the highlights of Dr. Massey's distinguished career. A complete list is found here: https://pubmed.ncbi.nlm.nih.gov/?term=massey+sc+%28retina+or+photoreceptors%29&sort=date.
Collapse
Affiliation(s)
- Stephen L. Mills
- Department of Ophthalmology and Visual Science, McGovern Medical School, Houston, TX, United States
| | - David W. Marshak
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, United States
| |
Collapse
|
6
|
Webster MK, Barnett BJ, Stanchfield ML, Paris JR, Webster SE, Cooley-Themm CA, Levine EM, Otteson DC, Linn CL. Stimulation of Retinal Pigment Epithelium With an α7 nAChR Agonist Leads to Müller Glia Dependent Neurogenesis in the Adult Mammalian Retina. Invest Ophthalmol Vis Sci 2019; 60:570-579. [PMID: 30721274 PMCID: PMC6363405 DOI: 10.1167/iovs.18-25722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose The adult mammalian retina is typically incapable of regeneration when damaged by disease or trauma. Restoration of function would require generation of new adult neurons, something that until recently, mammals were thought to be incapable of doing. However, previous studies from this laboratory have shown that the α7 nicotinic acetylcholine receptor (α7 nAChR) agonist, PNU-282987, induces cell cycle reentry of Müller glia and generation of mature retinal neurons in adult rats, in the absence of detectible injury. This study analyzes how PNU-282987 treatment in RPE leads to robust BrdU incorporation in Müller glia in adult mice and leads to generation of Müller-derived retinal progenitors and neuronal differentiation. Methods Retinal BrdU incorporation was examined after eye drop application of PNU-282987 in adult wild-type and transgenic mice that contain tamoxifen-inducible tdTomato Müller glia, or after intraocular injection of conditioned medium from PNU-282987–treated cultured RPE cells. Results PNU-282987 induced robust incorporation of BrdU in all layers of the adult mouse retina. The α7 nAChR agonist was found to stimulate cell cycle reentry of Müller glia and their generation of new retinal progenitors indirectly, via the RPE, in an α7 nAChR-dependent fashion. Conclusions The results from this study point to RPE as a contributor to Müller glial neurogenic responses. The manipulation of the RPE to stimulate retinal neurogenesis offers a new direction for developing novel and potentially transformative treatments to reverse the loss of neurons associated with neurodegenerative disease, traumatic injury, or aging.
Collapse
Affiliation(s)
- Mark K Webster
- Western Michigan University, Department of Biological Sciences, Kalamazoo, Michigan, United States
| | - Betty J Barnett
- Western Michigan University, Department of Biological Sciences, Kalamazoo, Michigan, United States
| | - Megan L Stanchfield
- Western Michigan University, Department of Biological Sciences, Kalamazoo, Michigan, United States
| | - Joshua R Paris
- Western Michigan University, Department of Biological Sciences, Kalamazoo, Michigan, United States
| | - Sarah E Webster
- Western Michigan University, Department of Biological Sciences, Kalamazoo, Michigan, United States
| | - Cynthia A Cooley-Themm
- Western Michigan University, Department of Biological Sciences, Kalamazoo, Michigan, United States
| | - Edward M Levine
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, Tennessee, United States
| | - Deborah C Otteson
- University of Houston College of Optometry, Department of Physiological Optics and Vision Science, Houston, Texas, United States
| | - Cindy L Linn
- Western Michigan University, Department of Biological Sciences, Kalamazoo, Michigan, United States
| |
Collapse
|
7
|
Tetenborg S, Yadav SC, Hormuzdi SG, Monyer H, Janssen-Bienhold U, Dedek K. Differential Distribution of Retinal Ca 2+/Calmodulin-Dependent Kinase II (CaMKII) Isoforms Indicates CaMKII-β and -δ as Specific Elements of Electrical Synapses Made of Connexin36 (Cx36). Front Mol Neurosci 2017; 10:425. [PMID: 29311815 PMCID: PMC5742114 DOI: 10.3389/fnmol.2017.00425] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022] Open
Abstract
AII amacrine cells are essential interneurons of the primary rod pathway and transmit rod-driven signals to ON cone bipolar cells to enable scotopic vision. Gap junctions made of connexin36 (Cx36) mediate electrical coupling among AII cells and between AII cells and ON cone bipolar cells. These gap junctions underlie a remarkable degree of plasticity and are modulated by different signaling cascades. In particular, Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been characterized as an important regulator of Cx36, capable of potentiating electrical coupling in AII cells. However, it is unclear which CaMKII isoform mediates this effect. To obtain a more detailed understanding of the isoform composition of CaMKII at retinal gap junctions, we analyzed the retinal distribution of all four CaMKII isoforms using confocal microscopy. These experiments revealed a differential distribution of CaMKII isoforms: CaMKII-α was strongly expressed in starburst amacrine cells, which are known to lack electrical coupling. CaMKII-β was abundant in OFF bipolar cells, which form electrical synapses in the outer and the inner retina. CaMKII-γ was diffusely distributed across the entire retina and could not be assigned to a specific cell type. CaMKII-δ labeling was evident in bipolar and AII amacrine cells, which contain the majority of Cx36-immunoreactive puncta in the inner retina. We double-labeled retinas for Cx36 and the four CaMKII isoforms and revealed that the composition of the CaMKII enzyme differs between gap junctions in the outer and the inner retina: in the outer retina, only CaMKII-β colocalized with Cx36-containing gap junctions, whereas in the inner retina, CaMKII-β and -δ colocalized with Cx36. This finding suggests that gap junctions in the inner and the outer retina may be regulated differently although they both contain the same connexin. Taken together, our study identifies CaMKII-β and -δ as Cx36-specific regulators in the mouse retina with CaMKII-δ regulating the primary rod pathway.
Collapse
Affiliation(s)
- Stephan Tetenborg
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Shubhash C Yadav
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Sheriar G Hormuzdi
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | | | - Ulrike Janssen-Bienhold
- Visual Neuroscience, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Muscarinic acetylcholine receptor-mediated stimulation of retinal ganglion cell photoreceptors. Neuropharmacology 2016; 108:305-15. [PMID: 27055770 DOI: 10.1016/j.neuropharm.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 12/16/2022]
Abstract
Melanopsin-dependent phototransduction in intrinsically photosensitive retinal ganglion cells (ipRGCs) involves a Gq-coupled phospholipase C (PLC) signaling cascade. Acetylcholine, released in the mammalian retina by starburst amacrine cells, can also activate Gq-PLC pathways through certain muscarinic acetylcholine receptors (mAChRs). Using multielectrode array recordings of rat retinas, we demonstrate that robust spiking responses can be evoked in neonatal and adult ipRGCs after bath application of the muscarinic agonist carbachol. The stimulatory action of carbachol on ipRGCs was a direct effect, as confirmed through calcium imaging experiments on isolated ipRGCs in purified cultures. Using flickering (6 Hz) yellow light stimuli at irradiances below the threshold for melanopsin activation, spiking responses could be elicited in ipRGCs that were suppressed by mAChR antagonism. Therefore, this work identified a novel melanopsin-independent pathway for stimulating sustained spiking in ganglion cell photoreceptors. This mAChR-mediated pathway could enhance ipRGC spiking responses in conditions known to evoke retinal acetylcholine release, such as those involving flickering or moving visual stimuli. Furthermore, this work identifies a pharmacological approach for light-independent ipRGC stimulation that could be targeted by mAChR agonists.
Collapse
|
9
|
Koizumi A, Poznanski RR. Does heterogeneity of intracellular Ca[Formula: see text] dynamics underlie speed tuning of direction-selective responses in starburst amacrine cells? J Integr Neurosci 2016; 14:1-17. [PMID: 26762484 DOI: 10.1142/s0219635215500259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The starburst amacrine cell (SAC) plays a fundamental role in retinal motion perception. In the vertebrate retina, SAC dendrites have been shown to be directionally selective in terms of their Ca[Formula: see text] responses for stimuli that move centrifugally from the soma. The mechanism by which SACs show Ca[Formula: see text] bias for centrifugal motion is yet to be determined with precision. Recent morphological studies support a presynaptic delay in glutamate receptor activation induced Ca[Formula: see text] release from bipolar cells preferentially contacting SACs. However, bipolar cells are known to be electrotonically coupled so time delays between the bipolar cells that provide input to SACs seem unlikely. Using fluorescent microscopy and imunnostaining, we found that the endoplasmic reticulum (ER) is omnipresent in the soma extending to the distal processes of SACs. Consequently, a working hypothesis on heterogeneity of intracellular Ca[Formula: see text] dynamics from ER is proposed as a possible explanation for the cause of speed tuning of direction-selective Ca[Formula: see text] responses in dendrites of SACs.
Collapse
Affiliation(s)
- Amane Koizumi
- * National Institutes of Natural Sciences 105-0001, Tokyo, Japan
- † National Institute for Physiological Sciences Okazaki, Aichi 444-8585, Japan
| | - Roman R Poznanski
- ‡ Department of Clinical Sciences Faculty of Biosciences and Medical Engineering Universiti Teknologi Malaysia 81310 Johor Bahru, Malaysia
| |
Collapse
|
10
|
Strang CE, Long Y, Gavrikov KE, Amthor FR, Keyser KT. Nicotinic and muscarinic acetylcholine receptors shape ganglion cell response properties. J Neurophysiol 2014; 113:203-17. [PMID: 25298382 DOI: 10.1152/jn.00405.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The purpose of this study was to evaluate the expression patterns of nicotinic and muscarinic ACh receptors (nAChRs and mAChRs, respectively) in relation to one another and to understand their effects on rabbit retinal ganglion cell response properties. Double-label immunohistochemistry revealed labeled inner-retinal cell bodies and complex patterns of nAChR and mAChR expression in the inner plexiform layer. Specifically, the expression patterns of m1, m4, and m5 muscarinic receptors overlapped with those of non-α7 and α7 nicotinic receptors in presumptive amacrine and ganglion cells. There was no apparent overlap in the expression patterns of m2 muscarinic receptors with α7 nicotinic receptors or of m3 with non-α7 nicotinic receptors. Patch-clamp recordings demonstrated cell type-specific effects of nicotinic and muscarinic receptor blockade. Muscarinic receptor blockade enhanced the center responses of brisk-sustained/G4 On and G4 Off ganglion cells, whereas nicotinic receptor blockade suppressed the center responses of G4 On-cells near the visual streak but enhanced the center responses of nonstreak G4 On-cells. Blockade of muscarinic or nicotinic receptors suppressed the center responses of brisk-sustained Off-cells and the center light responses of subsets of brisk-transient/G11 On- and Off-cells. Only nicotinic blockade affected the center responses of G10 On-cells and G5 Off-cells. These data indicate that physiologically and morphologically identified ganglion cell types have specific patterns of AChR expression. The cholinergic receptor signatures of these cells may have implications for understanding visual defects in disease states that result from decreased ACh availability.
Collapse
Affiliation(s)
- Christianne E Strang
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Ye Long
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Konstantin E Gavrikov
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Franklin R Amthor
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kent T Keyser
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
11
|
Chen YP, Chiao CC. Functional expression of ionotropic glutamate receptors in the rabbit retinal ganglion cells. Brain Res 2011; 1427:10-22. [PMID: 22071563 DOI: 10.1016/j.brainres.2011.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 09/15/2011] [Accepted: 10/09/2011] [Indexed: 11/24/2022]
Abstract
It has been known that retinal ganglion cells (RGCs) with distinct morphologies have different physiological properties. It was hypothesized that different functions of RGCs may in part result from various expressions of N-methyl-d-aspartate (NMDA), α-amino-3-hydroxyl-5-methyl-isoxazole-4-propinoic acid (AMPA), and kainic acid (KA) receptors on their dendrites. In the present study, we aimed to characterize the functional expression of AMPA and NMDA receptors of morphologically identified RGCs in the wholemount rabbit retina. The agmatine (AGB) activation assay was used to reveal functional expression of ionotropic glutamate receptors after the RGCs were targeted by injecting Neurobiotin. To examine the excitability of these glutamate receptors in an agonist specific manner, the lower concentrations of AMPA (2 μM) and NMDA (100 μM) were chosen to examine G7 (ON-OFF direction selective ganglion cells) and G11 (alpha ganglion cells) types of RGCs. We found that less than 40% of G7 type RGCs had salient AGB activation when incubated with 2 μM AMPA or 100 μM NMDA. The G11 type RGCs also showed similar activation frequencies, except that all of the OFF subtype examined had no AGB permeation under the same AMPA concentration. These results suggest that RGCs with large somata (G7 and G11 types) may express various heterogeneous functional ionotropic glutamate receptors, thus in part rendering their functional diversity.
Collapse
Affiliation(s)
- Yin-Peng Chen
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | |
Collapse
|
12
|
POZNANSKI RR. CELLULAR INHIBITORY BEHAVIOR UNDERLYING THE FORMATION OF RETINAL DIRECTION SELECTIVITY IN THE STARBURST NETWORK. J Integr Neurosci 2010; 9:299-335. [DOI: 10.1142/s0219635210002457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/26/2010] [Indexed: 11/18/2022] Open
|
13
|
Strang CE, Renna JM, Amthor FR, Keyser KT. Muscarinic acetylcholine receptor localization and activation effects on ganglion response properties. Invest Ophthalmol Vis Sci 2009; 51:2778-89. [PMID: 20042645 DOI: 10.1167/iovs.09-4771] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PURPOSE The activation and blockade of muscarinic acetylcholine receptors (mAChRs) affects retinal ganglion cell light responses and firing rates. This study was undertaken to identify the full complement of mAChRs expressed in the rabbit retina and to assess mAChR distribution and the functional effects of mAChR activation and blockade on retinal response properties. METHODS RT-PCR, Western blot analysis, and immunohistochemistry were used to identify the complement and distribution of mAChRs in the rabbit retina. Extracellular electrophysiology was used to determine the effects of the activation or blockade of mAChRs on ganglion cell response properties. RESULTS RT-PCR of whole neural retina resulted in the amplification of mRNA transcripts for the m1 to m5 mAChR subtypes. Western blot and immunohistochemical analyses confirmed that all five mAChR subtypes were expressed by subpopulations of bipolar, amacrine, and ganglion cells in the rabbit retina, including subsets of cells in cholinergic and glycinergic circuits. Nonspecific muscarinic activation and blockade resulted in the class-specific modulation of maintained ganglion cell firing rates and light responses. CONCLUSIONS The expression of mAChR subtypes on subsets of bipolar, amacrine, and ganglion cells provides a substrate for both enhancement and suppression of retinal responses via activation by cholinergic agents. Thus, the muscarinic cholinergic system in the retina may contribute to the modulation of complex stimuli. Understanding the distribution and function of mAChRs in the retina has the potential to provide important insights into the visual changes that are caused by decreased ACh in the retinas of Alzheimer's patients and the potential visual effects of anticholinergic treatments for ocular diseases.
Collapse
Affiliation(s)
- Christianne E Strang
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
14
|
Petit-Jacques J, Bloomfield SA. Synaptic regulation of the light-dependent oscillatory currents in starburst amacrine cells of the mouse retina. J Neurophysiol 2008; 100:993-1006. [PMID: 18497354 DOI: 10.1152/jn.01399.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Responses of on-center starburst amacrine cells to steady light stimuli were recorded in the dark-adapted mouse retina. The response to spots of dim white light appear to show two components, an initial peak that correspond to the onset of the light stimulus and a series of oscillations that ride on top of the initial peak relaxation. The frequency of oscillations during light stimulation was three time higher than the frequency of spontaneous oscillations recorded in the dark. The light-evoked responses in starburst cells were exclusively dependent on the release of glutamate likely from presynaptic bipolar axon terminals and the binding of glutamate to AMPA/kainate receptors because they were blocked by 6-cyano-7-nitroquinoxalene-2,3-dione. The synaptic pathway responsible for the light responses was blocked by AP4, an agonist of metabotropic glutamate receptors that hyperpolarize on-center bipolar cells on activation. Light responses were inhibited by the calcium channel blockers cadmium ions and nifedipine, suggesting that the release of glutamate was calcium dependent. The oscillatory component of the response was specifically inhibited by blocking the glutamate transporter with d-threo-beta-benzyloxyaspartic acid, suggesting that glutamate reuptake is necessary for the oscillatory release. GABAergic antagonists bicuculline, SR 95531, and picrotoxin increased the amplitude of the initial peak while they inhibit the frequency of oscillations. TTX had a similar effect. Strychnine, the blocker of glycine receptors did not affect the initial peak but strongly decreased the oscillations frequency. These inhibitory inputs onto the bipolar axon terminals shape and synchronize the oscillatory component.
Collapse
Affiliation(s)
- Jerome Petit-Jacques
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA.
| | | |
Collapse
|
15
|
Hausselt SE, Euler T, Detwiler PB, Denk W. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLoS Biol 2007; 5:e185. [PMID: 17622194 PMCID: PMC1906843 DOI: 10.1371/journal.pbio.0050185] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 05/15/2007] [Indexed: 11/18/2022] Open
Abstract
Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs) playing a major role. SACs generate larger dendritic Ca(2+) signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS) in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+)] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+) channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.
Collapse
Affiliation(s)
- Susanne E Hausselt
- Department of Biomedical Optics, Max-Planck Institute for Medical Research, Heidelberg, Germany
| | - Thomas Euler
- Department of Biomedical Optics, Max-Planck Institute for Medical Research, Heidelberg, Germany
- * To whom correspondence should be addressed. E-mail:
| | - Peter B Detwiler
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Winfried Denk
- Department of Biomedical Optics, Max-Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
16
|
Abstract
In the rabbit retina, there are two types of horizontal cell (HC). The A-type HC is axonless and extensively coupled. The B-type HC is axon bearing; the somatic dendrites are radially symmetric and form a second coupled network, while the axon branches expansively to form a complex terminal structure. The B-type axon terminals (ATs) are independently coupled to form a third network in the outer plexiform layer. We have modified our dye-injection methods to obtain detailed fills of the three different horizontal cell networks for analysis via confocal microscopy. We have confirmed that A-type HCs and the somatic dendrites of B-type HCs receive input exclusively from cones, whereas the B-type ATs receive input only from rods. A single B-type AT may receive input from as many as 1,000 rods, but, surprisingly, our data reveal only one end terminal per rod spherule. The somatic dendrites of A- and B-type HCs form clusters at each cone pedicle coincident with GluR2/3 and GluR4 glutamate receptor subunits. The B-type ATs have GluR2/3- or GluR4-labeled glutamate receptors in two locations: small puncta on the end terminals within the rod spherule invagination and large clusters on the terminal stalks, approximately 1.5 microm from the rod synaptic ribbon. We conclude that AMPA receptors of the same or similar composition mediate photoreceptor input to all types of HCs.
Collapse
Affiliation(s)
- Feng Pan
- Department of Ophthalmology and Visual Science, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | |
Collapse
|
17
|
Dmitrieva NA, Strang CE, Keyser KT. Expression of alpha 7 nicotinic acetylcholine receptors by bipolar, amacrine, and ganglion cells of the rabbit retina. J Histochem Cytochem 2006; 55:461-76. [PMID: 17189521 DOI: 10.1369/jhc.6a7116.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cholinergic agents affect the light responses of many ganglion cells (GCs) in the mammalian retina by activating nicotinic acetylcholine receptors (nAChRs). Whereas retinal neurons that express beta2 subunit-containing nAChRs have been characterized in the rabbit retina, expression patterns of other nAChR subtypes remain unclear. Therefore, we evaluated the expression of alpha7 nAChRs in retinal neurons by means of single-, double-, and triple-label immunohistochemistry. Our data demonstrate that, in the rabbit retina, several types of bipolar cells, amacrine cells, and cells in the GC layer express alpha7 nAChRs. At least three different populations of cone bipolar cells exhibited alpha7 labeling, whereas glycine-immunoreactive amacrine cells comprised the majority of alpha7-positive amacrine cells. Some GABAergic amacrine cells also displayed alpha7 immunoreactivity; alpha7 labeling was never detected in rod bipolar cells or rod amacrine cells (AII amacrine cells). Our data suggest that activation of alpha7 nAChRs by acetylcholine (ACh) or choline may affect glutamate release from several types of cone bipolar cells, modulating GC responses. ACh-induced excitation of inhibitory amacrine cells might cause either inhibition or disinhibition of other amacrine and GC circuits. Finally, ACh may act on alpha7 nAChRs expressed by GCs themselves.
Collapse
Affiliation(s)
- Nina A Dmitrieva
- Vision Science Research Center, The University of Alabama at Birmingham, WORB, 626 Birmingham, AL 35294-4390, USA
| | | | | |
Collapse
|
18
|
Dumitrescu ON, Protti DA, Majumdar S, Zeilhofer HU, Wässle H. Ionotropic glutamate receptors of amacrine cells of the mouse retina. Vis Neurosci 2006; 23:79-90. [PMID: 16597352 DOI: 10.1017/s0952523806231079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 09/15/2005] [Indexed: 11/06/2022]
Abstract
The mammalian retina contains approximately 30 different morphological types of amacrine cells, receiving glutamatergic input from bipolar cells. In this study, we combined electrophysiological and pharmacological techniques in order to study the glutamate receptors expressed by different types of amacrine cells. Whole-cell currents were recorded from amacrine cells in vertical slices of the mouse retina. During the recordings the cells were filled with Lucifer Yellow/Neurobiotin allowing classification as wide-field or narrow-field amacrine cells. Amacrine cell recordings were also carried out in a transgenic mouse line whose glycinergic amacrine cells express enhanced green fluorescent protein (EGFP). Agonist-induced currents were elicited by exogenous application of NMDA, AMPA, and kainate (KA) while holding cells at −75 mV. Using a variety of specific agonists and antagonists (NBQX, AP5, cyclothiazide, GYKI 52466, GYKI 53655, SYM 2081) responses mediated by AMPA, KA, and NMDA receptors could be dissected. All cells (n= 300) showed prominent responses to non-NMDA agonists. Some cells expressed AMPA receptors exclusively and some cells expressed KA receptors exclusively. In the majority of cells both receptor types could be identified. NMDA receptors were observed in about 75% of the wide-field amacrine cells and in less than half of the narrow-field amacrine cells. Our results confirm that different amacrine cell types express distinct sets of ionotropic glutamate receptors, which may be critical in conferring their unique temporal responses to this diverse neuronal class.
Collapse
Affiliation(s)
- Olivia N Dumitrescu
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
19
|
Petit-Jacques J, Völgyi B, Rudy B, Bloomfield S. Spontaneous oscillatory activity of starburst amacrine cells in the mouse retina. J Neurophysiol 2005; 94:1770-80. [PMID: 15917322 DOI: 10.1152/jn.00279.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using patch-clamp techniques, we investigated the characteristics of the spontaneous oscillatory activity displayed by starburst amacrine cells in the mouse retina. At a holding potential of -70 mV, oscillations appeared as spontaneous, rhythmic inward currents with a frequency of approximately 3.5 Hz and an average maximal amplitude of approximately 120 pA. Application of TEA, a potassium channel blocker, increased the amplitude of oscillatory currents by >70% but reduced their frequency by approximately 17%. The TEA effects did not appear to result from direct actions on starburst cells, but rather a modulation of their synaptic inputs. Oscillatory currents were inhibited by 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX), an antagonist of AMPA/kainate receptors, indicating that they were dependent on a periodic glutamatergic input likely from presynaptic bipolar cells. The oscillations were also inhibited by the calcium channel blockers cadmium and nifedipine, suggesting that the glutamate release was calcium dependent. Application of AP4, an agonist of mGluR6 receptors on on-center bipolar cells, blocked the oscillatory currents in starburst cells. However, application of TEA overcame the AP4 blockade, suggesting that the periodic glutamate release from bipolar cells is intrinsic to the inner plexiform layer in that, under experimental conditions, it can occur independent of photoreceptor input. The GABA receptor antagonists picrotoxin and bicuculline enhanced the amplitude of oscillations in starburst cells prestimulated with TEA. Our results suggest that this enhancement was due to a reduction of a GABAergic feedback inhibition from amacrine cells to bipolar cells and the resultant increased glutamate release. Finally, we found that some ganglion cells and other types of amacrine cell also displayed rhythmic activity, suggesting that oscillatory behavior is expressed by a number of inner retinal neurons.
Collapse
Affiliation(s)
- Jerome Petit-Jacques
- Department of Ophthalmology, New York University School of Medicine, 550 First Ave., New York, New York 10016, USA
| | | | | | | |
Collapse
|
20
|
Dijk F, van Leeuwen S, Kamphuis W. Differential effects of ischemia/reperfusion on amacrine cell subtype-specific transcript levels in the rat retina. Brain Res 2005; 1026:194-204. [PMID: 15488481 DOI: 10.1016/j.brainres.2004.08.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2004] [Indexed: 10/26/2022]
Abstract
Transient retinal ischemia induces loss of retinal ganglion cells, supporting the hypothesis that ischemic conditions contribute to the induction and progression of glaucoma. However, after 60 min of ischemia, also amacrine cells are lost from the inner nuclear layer. The main goal was to determine the relative vulnerability of various amacrine subpopulations by measuring the levels of transcripts that are known to be specifically expressed by different amacrine subpopulations. A 60-min ischemic period was administered to the rat eye by raising the intraocular pressure, followed by a reperfusion period lasting between 2 h and 4 weeks. Total RNA was isolated from the whole retina and expression levels were assessed by real-time quantitative polymerase chain reaction (qPCR). Retinal ischemia/reperfusion has differential effects on the levels of the various transcripts. Three main patterns of changes were identified. (i) A gradual decrease of transcript level without recovery was observed for parvalbumin; this transcript is expressed by the glycinergic AII cells. (ii) A gradual reduction to different levels at 72 h of reperfusion followed by a partial or complete recovery (glycine transporter 1, glutamate decarboxylase, calretinin, and several other transcripts). The glycinergic amacrine cell markers recovered to 65-75% of the control level, while the main GABAergic markers had completely recovered at 4 weeks. (iii) No significant changes of transcript levels were found for markers of several smaller GABAergic subpopulations [including substance P (Tac1), somatostatin, and others]. Expression levels of photoreceptor-, horizontal cell-, and bipolar cell-specific transcripts were not altered. These patterns were confirmed by a cluster analysis of the data. Based on gene expression levels, it may be concluded that amacrine cells are vulnerable to ischemic insults and that the glycinergic amacrine cells are relatively more sensitive to ischemia than the GABAergic population. In particular, the extensive loss of the parvalbumin-containing AII amacrine cells, which serve in the rod pathway, may have functional implications for vision under scotopic conditions. In the accompanying paper [F. Dijk and W. Kamphuis, An immunocytochemical study on specific amacrine subpopulations in the rat retina after ischemia, Brain Res. (2004).], the results are evaluated at the protein level by immunostaining for a selection of the amacrine cell markers.
Collapse
Affiliation(s)
- Frederike Dijk
- Netherlands Ophthalmic Research Institute KNAW, Glaucoma Research Group, Research Unit Molecular Ophthalmogenetics, Graduate School for the Neurosciences Amsterdam, Meibergdreef 47, Amsterdam 1105 BA, The Netherlands
| | | | | |
Collapse
|
21
|
Dijk F, Kamphuis W. An immunocytochemical study on specific amacrine cell subpopulations in the rat retina after ischemia. Brain Res 2005; 1026:205-17. [PMID: 15488482 DOI: 10.1016/j.brainres.2004.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2004] [Indexed: 12/27/2022]
Abstract
Transient retinal ischemia leads to the loss of neurons in the inner retina. In an accompanying paper [F. Dijk, S. Van Leeuwen, W. Kamphuis, Differential effects of ischemia/reperfusion on amacrine cell subtype-specific transcript levels in the rat retina, Brain Res., 1026 (2004) 194-204] we present the results of a study on the effects of experimentally induced retinal ischemia on transcript levels of genes expressed by distinct subpopulations of amacrine cells. In response to 60-min ischemia, three different patterns of changes in transcript levels were found, indicating a differential vulnerability of amacrine subtypes: (i) a gradual decrease of transcript level without recovery (parvalbumin; PV); (ii) a gradual decrease, with varying rates and degrees, followed by partial recovery after 72 h of reperfusion (choline acetyltransferase (ChAT), calretinin (CR) and glycine transporter (Glyt1)); (iii) no significant changes (substance P (SP)). In order to verify whether the degree of cell loss can be predicted from the quantified alterations in gene expression level, immunocytochemical stainings were carried out. A 60-min ischemic period was administered to the rat eye by raising the intraocular pressure, followed by a reperfusion period lasting between 2 h and 4 weeks. Cryosections were immunostained for Glyt1, PV, ChAT, CR, and SP. Double-labelling with apoptosis marker TUNEL was used to demonstrate cell type-specific apoptosis. Following ischemia, the numbers of detected PV-, Glyt1, ChAT-, and CR-immunopositive somata showed a substantial, but differential, reduction at 1-4 weeks after ischemia. The total amount of immunoreactivity present in the inner plexiform layer (IPL) also decreased. The extent of alterations derived from immunocytochemical staining was greater than was anticipated from the decrease of transcript levels. Only for SP, no significant decrease in number of cells or in the intensity of immunoreactivity in IPL was observed, which is in agreement with the absence of significant changes in transcript levels. In conclusion, retinal ischemia/reperfusion differentially affects amacrine cell populations. Although both protein and mRNA levels are reduced, transcript levels are less attenuated. Caution must be applied in the use of real-time quantitative PCR (qPCR) screening as a tool to assess the cellular pattern of neurodegeneration in the retina.
Collapse
Affiliation(s)
- Frederike Dijk
- Netherlands Ophthalmic Research Institute, KNAW, Glaucoma Research Group, Research Unit Molecular Ophthalmogenetics, Graduate School for the Neurosciences Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | |
Collapse
|
22
|
Zheng JJ, Lee S, Zhou ZJ. A developmental switch in the excitability and function of the starburst network in the mammalian retina. Neuron 2005; 44:851-64. [PMID: 15572115 DOI: 10.1016/j.neuron.2004.11.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2004] [Revised: 08/26/2004] [Accepted: 11/12/2004] [Indexed: 10/26/2022]
Abstract
Dual patch-clamp recording and Ca2+ uncaging revealed Ca2+-dependent corelease of ACh and GABA from, and the presence of reciprocal nicotinic and GABAergic synapses between, starburst cells in the perinatal rabbit retina. With maturation, the nicotinic synapses between starburst cells dramatically diminished, whereas the GABAergic synapses remained and changed from excitatory to inhibitory, indicating a coordinated conversion of the starburst network excitability from an early hyperexcitatory to a mature nonepileptic state. We show that this transition allows the starburst cells to use their neurotransmitters for two completely different functions. During early development, the starburst network mediates recurrent excitation and spontaneous retinal waves, which are important for visual system development. After vision begins, starburst cells release GABA in a prolonged and Ca2+-dependent manner and inhibit each other laterally via direct GABAergic synapses, which may be important for visual integration, such as the detection of motion direction.
Collapse
Affiliation(s)
- Ji-Jian Zheng
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
23
|
Park WM, Kim MJ, Jeon CJ. Ionotropic glutamate receptor GluR2/3-immunoreactive neurons in the cat, rabbit, and hamster superficial superior colliculus. Neurosci Res 2004; 49:139-55. [PMID: 15140557 DOI: 10.1016/j.neures.2004.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Accepted: 02/05/2004] [Indexed: 01/08/2023]
Abstract
Ionotropic glutamate receptor (GluR) subtypes occur in various types of cells in the central nervous system. We studied the distribution of AMPA glutamate receptor subtype GluR2/3 in the superficial layers of cat, rabbit, and hamster superior colliculus (SC) with antibody immunocytochemistry and the effect of enucleation on this distribution. Furthermore, we compared this labeling to that of calbindin D28K and parvalbumin. Anti-GluR2/3-immunoreactive (IR) cells formed a dense band of labeled cells within the lower superficial gray layer (SGL) and upper optic layer (OL) in the cat SC. By contrast, GluR2/3-IR cells formed a dense band within the upper OL in the rabbit and within the OL in the hamster SC. Calbindin D28K-IR cells are located in three layers in the SC: one within the zonal layer (ZL) and the upper SGL in all three animals, a second within the lower OL and upper IGL in the cat, within the IGL in the rabbit and within the OL in the hamster, and a third within the deep gray layer (DGL) in all three animals. Many parvalbumin-IR neurons were found within the lower SGL and upper OL. Thus, the GluR2/3-IR band was sandwiched between the first and second layers of calbindin D28K-IR cells in the cat and rabbit SC while the distribution of GluR2/3-IR cells in the hamster matches the second layer of calbindin D28K-IR cells. The patterned distribution of GluR2/3-IR cells overlapped the tier of parvalbumin-IR neurons in cat, but only partially overlapped in hamster and rabbit. Two-color immunofluorescence revealed that more than half (55.1%) of the GluR2/3-IR cells in the hamster SC expressed calbindin D28K. By contrast, only 9.9% of GluR2/3-IR cells expressed calbindin D28K in the cat. Double-labeled cells were not found in the rabbit SC. Some (4.8%) GluR2/3-IR cells in the cat SC also expressed parvalbumin, while no GluR2/3-IR cells in rabbit and hamster SC expressed parvalbumin. In this dense band of GluR2/3, the majority of labeled cells were small to medium-sized round/oval or stellate cells. Immunoreactivity for the GluR2/3 was clearly reduced in the contralateral SC following unilateral enucleation in the hamster. By contrast, enucleation appeared to have had no effect on the GluR2/3 immunoreactivity in the cat and rabbit SC. The results indicate that neurons in the mammalian SC express GluR2/3 in specific layers, which does not correlate with the expression of calbindin D28K and parvalbumin among the animals.
Collapse
Affiliation(s)
- Won-Mee Park
- Department of Biology, College of Natural Sciences, Kyungpook National University, 1370 Sankyuk-dong, Daegu 702-701, South Korea
| | | | | |
Collapse
|