1
|
Lamorie-Foote K, Kramer DR, Sundaram S, Cavaleri J, Gilbert ZD, Tang AM, Bashford L, Liu CY, Kellis S, Lee B. Primary somatosensory cortex organization for engineering artificial somatosensation. Neurosci Res 2024; 204:1-13. [PMID: 38278220 DOI: 10.1016/j.neures.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Somatosensory deficits from stroke, spinal cord injury, or other neurologic damage can lead to a significant degree of functional impairment. The primary (SI) and secondary (SII) somatosensory cortices encode information in a medial to lateral organization. SI is generally organized topographically, with more discrete cortical representations of specific body regions. SII regions corresponding to anatomical areas are less discrete and may represent a more functional rather than topographic organization. Human somatosensory research continues to map cortical areas of sensory processing with efforts primarily focused on hand and upper extremity information in SI. However, research into SII and other body regions is lacking. In this review, we synthesize the current state of knowledge regarding the cortical organization of human somatosensation and discuss potential applications for brain computer interface. In addition to accurate individualized mapping of cortical somatosensation, further research is required to uncover the neurophysiological mechanisms of how somatosensory information is encoded in the cortex.
Collapse
Affiliation(s)
- Krista Lamorie-Foote
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Daniel R Kramer
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Colorado School of Medicine, Denver, CO, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Texas at Houston, Houston, TX, United States
| | - Luke Bashford
- Department of Biology and Biological Engineering, T&C Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States; Department of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
2
|
Kent RD. The Feel of Speech: Multisystem and Polymodal Somatosensation in Speech Production. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:1424-1460. [PMID: 38593006 DOI: 10.1044/2024_jslhr-23-00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
PURPOSE The oral structures such as the tongue and lips have remarkable somatosensory capacities, but understanding the roles of somatosensation in speech production requires a more comprehensive knowledge of somatosensation in the speech production system in its entirety, including the respiratory, laryngeal, and supralaryngeal subsystems. This review was conducted to summarize the system-wide somatosensory information available for speech production. METHOD The search was conducted with PubMed/Medline and Google Scholar for articles published until November 2023. Numerous search terms were used in conducting the review, which covered the topics of psychophysics, basic and clinical behavioral research, neuroanatomy, and neuroscience. RESULTS AND CONCLUSIONS The current understanding of speech somatosensation rests primarily on the two pillars of psychophysics and neuroscience. The confluence of polymodal afferent streams supports the development, maintenance, and refinement of speech production. Receptors are both canonical and noncanonical, with the latter occurring especially in the muscles innervated by the facial nerve. Somatosensory representation in the cortex is disproportionately large and provides for sensory interactions. Speech somatosensory function is robust over the lifespan, with possible declines in advanced aging. The understanding of somatosensation in speech disorders is largely disconnected from research and theory on speech production. A speech somatoscape is proposed as the generalized, system-wide sensation of speech production, with implications for speech development, speech motor control, and speech disorders.
Collapse
|
3
|
Shah-Zamora D, Bowyer S, Zillgitt A, Sidiropoulos C, Mahajan A. Brain Connectivity in Dystonia: Evidence from Magnetoencephalography. ADVANCES IN NEUROBIOLOGY 2023; 31:141-155. [PMID: 37338700 DOI: 10.1007/978-3-031-26220-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Magnetoencephalography (MEG) detects synchronized activity within a neuronal network by measuring the magnetic field changes generated by intracellular current flow. Using MEG data, we can quantify brain region networks with similar frequency, phase, or amplitude of activity and thereby identify patterns of functional connectivity seen with specific disorders or disease states. In this review, we examine and summarize MEG-based literature on functional networks in dystonias. Specifically, we inspect literature evaluating the pathogenesis of focal hand dystonia, cervical dystonia, embouchure dystonia, the effects of sensory tricks, treatment with botulinum toxin and deep brain stimulation, and rehabilitation approaches. This review additionally highlights how MEG has potential for application to clinical care of patients with dystonia.
Collapse
Affiliation(s)
- Deepal Shah-Zamora
- Department of Neurological Sciences, Rush Parkinson's Disease and Movement Disorders Program, Chicago, IL, USA
| | - Susan Bowyer
- Neuromagnetism laboratory, Henry Ford Hospital, Detroit, MI, USA
| | - Andrew Zillgitt
- Adult Epilepsy Program, Department of Neurology, Beaumont Hospital, Royal Oak, MI, USA
| | - Christos Sidiropoulos
- Division of Movement disorders, Department of Neurology, Michigan State University, East Lansing, MI, USA
| | - Abhimanyu Mahajan
- Department of Neurological Sciences, Rush Parkinson's Disease and Movement Disorders Program, Chicago, IL, USA.
| |
Collapse
|
4
|
Root V, Muret D, Arribas M, Amoruso E, Thornton J, Tarall-Jozwiak A, Tracey I, Makin TR. Complex pattern of facial remapping in somatosensory cortex following congenital but not acquired hand loss. eLife 2022; 11:e76158. [PMID: 36583538 PMCID: PMC9851617 DOI: 10.7554/elife.76158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Cortical remapping after hand loss in the primary somatosensory cortex (S1) is thought to be predominantly dictated by cortical proximity, with adjacent body parts remapping into the deprived area. Traditionally, this remapping has been characterised by changes in the lip representation, which is assumed to be the immediate neighbour of the hand based on electrophysiological research in non-human primates. However, the orientation of facial somatotopy in humans is debated, with contrasting work reporting both an inverted and upright topography. We aimed to fill this gap in the S1 homunculus by investigating the topographic organisation of the face. Using both univariate and multivariate approaches we examined the extent of face-to-hand remapping in individuals with a congenital and acquired missing hand (hereafter one-handers and amputees, respectively), relative to two-handed controls. Participants were asked to move different facial parts (forehead, nose, lips, tongue) during functional MRI (fMRI) scanning. We first confirmed an upright face organisation in all three groups, with the upper-face and not the lips bordering the hand area. We further found little evidence for remapping of both forehead and lips in amputees, with no significant relationship to the chronicity of their phantom limb pain (PLP). In contrast, we found converging evidence for a complex pattern of face remapping in congenital one-handers across multiple facial parts, where relative to controls, the location of the cortical neighbour - the forehead - is shown to shift away from the deprived hand area, which is subsequently more activated by the lips and the tongue. Together, our findings demonstrate that the face representation in humans is highly plastic, but that this plasticity is restricted by the developmental stage of input deprivation, rather than cortical proximity.
Collapse
Affiliation(s)
- Victoria Root
- WIN Centre, University of OxfordOxfordUnited Kingdom
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - Maite Arribas
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Elena Amoruso
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - John Thornton
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | | | - Irene Tracey
- WIN Centre, University of OxfordOxfordUnited Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| |
Collapse
|
5
|
González-Gil D, Dib-Zaitun I, Flores-Fraile J, López-Marcos J. Active Tactile Sensibility in Implant Prosthesis vs. Complete Dentures: A Psychophysical Study. J Clin Med 2022; 11:jcm11226819. [PMID: 36431296 PMCID: PMC9697244 DOI: 10.3390/jcm11226819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Proprioceptive information from natural dentition and adjacent oral tissues enables correct masticatory function, avoiding damage to the teeth. Periodontium is the main source of this relevant information, and when a tooth is lost, all this proprioceptive sensibility relies on receptors from muscles, the mucous membrane or the temporomandibular joint, and this sensibility gets worse. Active tactile sensibility measures this proprioceptive capability in microns by psychophysical studies consisting of introducing thin metal foils between patients' dental arches during chewing to see if they are able to notice them or not. Osseoperception is a complex phenomenon that seems to improve this sensibility in patients wearing dental implants. The objective of this investigation is to measure this sensibility in different prosthetic situations by performing a psychophysical investigation. MATERIAL AND METHODS We divided 67 patients in three groups depending on their prosthetic situation and performed a psychophysical study by introducing aluminium foils of different thicknesses in order to establish an active tactile sensibility threshold in every group. We also measured variables such as prosthetic wearing time, age or gender to see how they may influence threshold values. We used Student's t-test and Mann-Whitney U tests to analyse these results. RESULTS Active tactile sensibility threshold values in implants are lower than those from complete dentures but higher than values in natural dentition. However, values in implants are closer to natural dentition than complete denture values. Age, gender or prosthetic wearing time have no influence in active tactile sensibility thresholds. CONCLUSION Active tactile sensibility threshold values depend on prosthetic rehabilitations and the mechanoreceptors involved in every situation. Implant prosthesis presents an increased active tactile sensibility thanks to osseoperception phenomenon.
Collapse
|
6
|
Neurophysiological Basis of Deep Brain Stimulation and Botulinum Neurotoxin Injection for Treating Oromandibular Dystonia. Toxins (Basel) 2022; 14:toxins14110751. [PMID: 36356002 PMCID: PMC9694803 DOI: 10.3390/toxins14110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Oromandibular dystonia (OMD) induces severe motor impairments, such as masticatory disturbances, dysphagia, and dysarthria, resulting in a serious decline in quality of life. Non-invasive brain-imaging techniques such as electroencephalography (EEG) and magnetoencephalography (MEG) are powerful approaches that can elucidate human cortical activity with high temporal resolution. Previous studies with EEG and MEG have revealed that movements in the stomatognathic system are regulated by the bilateral central cortex. Recently, in addition to the standard therapy of botulinum neurotoxin (BoNT) injection into the affected muscles, bilateral deep brain stimulation (DBS) has been applied for the treatment of OMD. However, some patients' OMD symptoms do not improve sufficiently after DBS, and they require additional BoNT therapy. In this review, we provide an overview of the unique central spatiotemporal processing mechanisms in these regions in the bilateral cortex using EEG and MEG, as they relate to the sensorimotor functions of the stomatognathic system. Increased knowledge regarding the neurophysiological underpinnings of the stomatognathic system will improve our understanding of OMD and other movement disorders, as well as aid the development of potential novel approaches such as combination treatment with BoNT injection and DBS or non-invasive cortical current stimulation therapies.
Collapse
|
7
|
Bono D, Belyk M, Longo MR, Dick F. Beyond language: The unspoken sensory-motor representation of the tongue in non-primates, non-human and human primates. Neurosci Biobehav Rev 2022; 139:104730. [PMID: 35691470 DOI: 10.1016/j.neubiorev.2022.104730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
The English idiom "on the tip of my tongue" commonly acknowledges that something is known, but it cannot be immediately brought to mind. This phrase accurately describes sensorimotor functions of the tongue, which are fundamental for many tongue-related behaviors (e.g., speech), but often neglected by scientific research. Here, we review a wide range of studies conducted on non-primates, non-human and human primates with the aim of providing a comprehensive description of the cortical representation of the tongue's somatosensory inputs and motor outputs across different phylogenetic domains. First, we summarize how the properties of passive non-noxious mechanical stimuli are encoded in the putative somatosensory tongue area, which has a conserved location in the ventral portion of the somatosensory cortex across mammals. Second, we review how complex self-generated actions involving the tongue are represented in more anterior regions of the putative somato-motor tongue area. Finally, we describe multisensory response properties of the primate and non-primate tongue area by also defining how the cytoarchitecture of this area is affected by experience and deafferentation.
Collapse
Affiliation(s)
- Davide Bono
- Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London WC1H0AP, UK; Department of Experimental Psychology, UCL Division of Psychology and Language Sciences, 26 Bedford Way, London WC1H0AP, UK.
| | - Michel Belyk
- Department of Speech, Hearing, and Phonetic Sciences, UCL Division of Psychology and Language Sciences, 2 Wakefield Street, London WC1N 1PJ, UK
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London WC1E7HX, UK
| | - Frederic Dick
- Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London WC1H0AP, UK; Department of Experimental Psychology, UCL Division of Psychology and Language Sciences, 26 Bedford Way, London WC1H0AP, UK; Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London WC1E7HX, UK.
| |
Collapse
|
8
|
Importance of body representations in social-cognitive development: New insights from infant brain science. PROGRESS IN BRAIN RESEARCH 2020; 254:25-48. [PMID: 32859291 DOI: 10.1016/bs.pbr.2020.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
There is significant interest in the ways the human body, both one's own and that of others, is represented in the human brain. In this chapter we focus on body representations in infancy and synthesize relevant findings from both infant cognitive neuroscience and behavioral experiments. We review six experiments in infant neuroscience that have used novel EEG and MEG methods to explore infant neural body maps. We then consider results from behavioral studies of social imitation and examine what they contribute to our understanding of infant body representations at a psychological level. Finally, we interweave both neuroscience and behavioral lines of research to ground new theoretical claims about early infant social cognition. We propose, based on the evidence, that young infants can represent the bodily acts of others and their own bodily acts in commensurate terms. Infants initially recognize correspondences between self and other-they perceive that others are "like me" in terms of bodies and bodily actions. This capacity for registering and using self-other equivalence mappings has far-reaching implications for mechanisms of developmental change. Infants can learn about the affordances and powers of their own body by watching adults' actions and their causal consequences. Reciprocally, infants can enrich their understanding of other people's internal states by taking into account the way they themselves feel when they perform similar acts. The faces, bodies, and matching actions of people are imbued with unique meaning because they can be mapped to the infant's own body and behavior.
Collapse
|
9
|
Hihara H, Kanetaka H, Kanno A, Shimada E, Koeda S, Kawashima R, Nakasato N, Sasaki K. Somatosensory evoked magnetic fields of periodontal mechanoreceptors. Heliyon 2020; 6:e03244. [PMID: 32021932 PMCID: PMC6993012 DOI: 10.1016/j.heliyon.2020.e03244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 09/25/2019] [Accepted: 01/14/2020] [Indexed: 11/02/2022] Open
Abstract
To evaluate the localization of responses to stimulation of the periodontal mechanoreceptors in the primary somatosensory cortex, somatosensory evoked fields (SEFs) were measured for stimulation of the left mandibular canine and first molar using magnetoencephalography in 25 healthy subjects. Tactile stimulation used a handmade stimulus device which recorded the trigger at the moment of touching the teeth.SEFs for the canine and first molar were detected in 20 and 19 subjects, respectively. Both responses were detected in the bilateral hemispheres. The latency for the canine was 62.1 ± 12.9 ms in the ipsilateral hemisphere and 65.9 ± 14.8 ms in the contralateral hemisphere. The latency for the first molar was 47.4 ± 6.6 ms in the ipsilateral hemisphere and 47.8 ± 9.1 ms in the contralateral hemisphere. The latency for the first molar was significantly shorter than that for the canine. The equivalent current dipoles were estimated in the central sulcus and localized anteroinferiorly compared to the locations for the SEFs for the median nerve. No significant differences in three-dimensional coordinates were found between the canine and first molar. These findings demonstrate the precise location of the teeth within the orofacial representation area in the primary somatosensory cortex.
Collapse
Affiliation(s)
- Hiroki Hihara
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroyasu Kanetaka
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Akitake Kanno
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Japan.,Department of Electromagnetic Neurophysiology, Tohoku University, Sendai, Japan
| | - Eriya Shimada
- Division of Oral Dysfunction Science, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Satoko Koeda
- Yokohama Clinic, Kanagawa Dental University, Yokohama, Japan
| | - Ryuta Kawashima
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Japan.,Department of Electromagnetic Neurophysiology, Tohoku University, Sendai, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
10
|
Meltzoff AN, Saby JN, Marshall PJ. Neural representations of the body in 60-day-old human infants. Dev Sci 2018; 22:e12698. [PMID: 29938877 DOI: 10.1111/desc.12698] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/23/2018] [Accepted: 05/15/2018] [Indexed: 11/28/2022]
Abstract
The organization of body representations in the adult brain has been well documented. Little is understood about this aspect of brain organization in human infancy. The current study employed electroencephalography (EEG) with 60-day-old infants to test the distribution of brain responses to tactile stimulation of three different body parts: hand, foot, and lip. Analyses focused on a prominent positive response occurring at 150-200 ms in the somatosensory evoked potential at central and parietal electrode sites. The results show differential electrophysiological signatures for touch of these three body parts. Stimulation of the left hand was associated with greater positive amplitude over the lateral central region contralateral to the side stimulated. Left foot stimulation was associated with greater positivity over the midline parietal site. Stimulation of the midline of the upper lip was associated with a strong bilateral response over the central region. These findings provide new insights into the neural representation of the body in infancy and shed light on research and theories about the involvement of somatosensory cortex in infant imitation and social perception.
Collapse
Affiliation(s)
- Andrew N Meltzoff
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington
| | - Joni N Saby
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Peter J Marshall
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Hihara H, Kanetaka H, Kanno A, Koeda S, Nakasato N, Kawashima R, Sasaki K. Evaluating age-related change in lip somatosensation using somatosensory evoked magnetic fields. PLoS One 2017; 12:e0179323. [PMID: 28617862 PMCID: PMC5472294 DOI: 10.1371/journal.pone.0179323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/26/2017] [Indexed: 12/04/2022] Open
Abstract
Somatosensory evoked fields (SEFs) to electrical stimulation on the right and left sides of the lower lip were measured using magnetoencephalography and compared in the bilateral hemispheres of 31 healthy normal young and 29 healthy normal elderly subjects to evaluate age-related change in lip somatosensation. The initial peak of the response around 13 ms, designated as N13m, and the second peak of the response, designated as P21m, were investigated. The N13m response, which was detected in 22 of 62 hemispheres in young adults and 37 of 58 hemispheres in elderly adults, showed significantly prolonged latency and increased equivalent current dipole (ECD) moment in the elderly adults. The P21m response, which was detected in 56 of 62 hemispheres in young adults and in 52 of 58 hemispheres in elderly adults, showed longer peak latency in the elderly adults. No significant difference was found in the ECD moment for P21m, which suggests that aging affected the SEFs of the lip somatosensation, but the effects of aging on N13m and P21m differed. Prolonged latency and increased ECD moment of N13m might result from decreased peripheral conduction and increased cortical excitation system associated with aging. Therefore, the initial response component might be an objective parameter for investigating change in lip function with age.
Collapse
Affiliation(s)
- Hiroki Hihara
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Hiroyasu Kanetaka
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Akitake Kanno
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Satoko Koeda
- Graduate School of Tokyo Medical and Dental University, Oral and Maxillofacial Surgery, Tokyo, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| |
Collapse
|
12
|
Maezawa H. Cortical Mechanisms of Tongue Sensorimotor Functions in Humans: A Review of the Magnetoencephalography Approach. Front Hum Neurosci 2017; 11:134. [PMID: 28400725 PMCID: PMC5368248 DOI: 10.3389/fnhum.2017.00134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
The tongue plays important roles in a variety of critical human oral functions, including speech production, swallowing, mastication and respiration. These sophisticated tongue movements are in part finely regulated by cortical entrainment. Many studies have examined sensorimotor processing in the limbs using magnetoencephalography (MEG), which has high spatiotemporal resolution. Such studies have employed multiple methods of analysis, including somatosensory evoked fields (SEFs), movement-related cortical fields (MRCFs), event-related desynchronization/synchronization (ERD/ERS) associated with somatosensory stimulation or movement and cortico-muscular coherence (CMC) during sustained movement. However, the cortical mechanisms underlying the sensorimotor functions of the tongue remain unclear, as contamination artifacts induced by stimulation and/or muscle activity within the orofacial region complicates MEG analysis in the oral region. Recently, several studies have obtained MEG recordings from the tongue region using improved stimulation methods and movement tasks. In the present review, we provide a detailed overview of tongue sensorimotor processing in humans, based on the findings of recent MEG studies. In addition, we review the clinical applications of MEG for sensory disturbances of the tongue caused by damage to the lingual nerve. Increased knowledge of the physiological and pathophysiological mechanisms underlying tongue sensorimotor processing may improve our understanding of the cortical entrainment of human oral functions.
Collapse
Affiliation(s)
- Hitoshi Maezawa
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University Sapporo, Japan
| |
Collapse
|
13
|
Bessho H, Shibukawa Y, Shintani M, Yajima Y, Suzuki T, Shibahara T. Localization of Palatal Area in Human Somatosensory Cortex. J Dent Res 2016; 86:265-70. [PMID: 17314260 DOI: 10.1177/154405910708600313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To determine the ’hard palate representing’ area in the primary somatosensory cortex, we recorded somatosensory-evoked magnetic fields from the cortex in ten healthy volunteers, using magnetoencephalography. Following electrical stimulation of 3 sites on the hard palate (the first and third transverse palatine ridges, and the greater palatine foramen), magnetic responses showed peak latencies of 15, 65, and 125 ms. Equivalent current dipoles for early magnetic responses were found along the posterior wall of the inferior part of the central sulcus. These dipoles were localized anterior-inferiorly, compared with locations for the hand area in the cortex. However, there were no significant differences in three-dimensional locations among the 3 selected regions for hard palate stimulation. These results demonstrated the precise location of palatal representation in the primary somatosensory cortex, the actual area being small.
Collapse
Affiliation(s)
- H Bessho
- Oral Health Science Center, Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Muret D, Daligault S, Dinse HR, Delpuech C, Mattout J, Reilly KT, Farnè A. Neuromagnetic correlates of adaptive plasticity across the hand-face border in human primary somatosensory cortex. J Neurophysiol 2016; 115:2095-104. [PMID: 26888099 DOI: 10.1152/jn.00628.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] Open
Abstract
It is well established that permanent or transient reduction of somatosensory inputs, following hand deafferentation or anesthesia, induces plastic changes across the hand-face border, supposedly responsible for some altered perceptual phenomena such as tactile sensations being referred from the face to the phantom hand. It is also known that transient increase of hand somatosensory inputs, via repetitive somatosensory stimulation (RSS) at a fingertip, induces local somatosensory discriminative improvement accompanied by cortical representational changes in the primary somatosensory cortex (SI). We recently demonstrated that RSS at the tip of the right index finger induces similar training-independent perceptual learning across the hand-face border, improving somatosensory perception at the lips (Muret D, Dinse HR, Macchione S, Urquizar C, Farnè A, Reilly KT.Curr Biol24: R736-R737, 2014). Whether neural plastic changes across the hand-face border accompany such remote and adaptive perceptual plasticity remains unknown. Here we used magnetoencephalography to investigate the electrophysiological correlates underlying RSS-induced behavioral changes across the hand-face border. The results highlight significant changes in dipole location after RSS both for the stimulated finger and for the lips. These findings reveal plastic changes that cross the hand-face border after an increase, instead of a decrease, in somatosensory inputs.
Collapse
Affiliation(s)
- Dollyane Muret
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France;
| | | | - Hubert R Dinse
- Neural Plasticity Laboratory, Institute of Neuroinformatics, Ruhr University, Bochum, Germany; Clinic of Neurology, BG University Hospital Bergmannsheil, Bochum, Germany; and
| | | | - Jérémie Mattout
- University Claude Bernard Lyon I, Lyon, France; Dycog Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France
| | - Karen T Reilly
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| | - Alessandro Farnè
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
15
|
Zlatkina V, Amiez C, Petrides M. The postcentral sulcal complex and the transverse postcentral sulcus and their relation to sensorimotor functional organization. Eur J Neurosci 2015; 43:1268-83. [PMID: 26296305 DOI: 10.1111/ejn.13049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 12/19/2022]
Abstract
It has been demonstrated that the postcentral sulcus, which forms the posterior boundary of the sensorimotor region, is a complex of distinct sulcal segments. Although the general somatotopic arrangement in the human sensorimotor cortex is relatively well known, we do not know whether the different segments of the postcentral sulcus relate in a systematic way to the sensorimotor functional representations. Participants were scanned with functional magnetic resonance imaging while they made movements of different body parts and the location of functional activity was examined on a subject-by-subject basis with respect to the morphological features of the postcentral sulcus. The findings demonstrate that the postcentral sulcus of each subject may be divided into five segments and there is a tight relationship between sensorimotor representations of different body parts and specific segments of the postcentral sulcus. The results also addressed the issue of the transverse postcentral sulcus, a short sulcus that is present within the ventral part of the postcentral gyrus in some brains. It was shown that, when present, this sulcus is functionally related to the oral (mouth and tongue) sensorimotor representation. When this sulcus is not present, the inferior postcentral sulcus which is also related to the oral representation is longer. Thus, the sulcal morphology provides an improved framework for functional assignments in individual subjects.
Collapse
Affiliation(s)
- Veronika Zlatkina
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Céline Amiez
- Stem Cell and Brain Research Institute, INSERM U846, Bron, France
| | - Michael Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
16
|
Mascioli G, Berlucchi G, Pierpaoli C, Salvolini U, Barbaresi P, Fabri M, Polonara G. Functional MRI cortical activations from unilateral tactile-taste stimulations of the tongue. Physiol Behav 2015. [PMID: 26220466 DOI: 10.1016/j.physbeh.2015.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Functional magnetic resonance imaging (fMRI) was used for revealing activations in the human brain by lateralized tactile-gustatory stimulations of the tongue. Salt, a basic taste stimulus, and water, now recognized as an independent taste modality, were applied to either hemitongues with pads similar to the taste strips test for the clinical psychophysical evaluation of taste. With both stimuli, the observed cortical patterns of activations could be attributed to a combined somatosensory and gustatory stimulation of the tongue, with no significant differences between salt and water. Stimulation of each hemitongue evoked a bilateral activation of the anterior insula-frontal operculum, ascribable to the gustatory component of the stimulation, and a bilateral activation of the inferior part of the postcentral gyrus, ascribable to the tactile component of the stimulation. The results are in line with the notion that the representation of the tongue in the cerebral hemispheres in both the touch and the taste modalities is bilateral. Clinical and brain stimulation findings indicate that this bilaterality depends primarily on a partial crossing of the afferent pathways, perhaps with a predominance of the crossed pathway in the touch modality and the uncrossed pathway in the taste modality. Previous evidence suggests that the corpus callosum is not indispensible for this bilateral representation, but can contribute to it by interhemispheric transfer of information in both modalities.
Collapse
Affiliation(s)
- Giulia Mascioli
- Dipartimento di Scienze Cliniche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Berlucchi
- Dipartimento di Scienze Neurologiche e del Movimento, Università degli Studi di Verona, Italy; National Institute of Neuroscience, Italy
| | - Chiara Pierpaoli
- Dipartmento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy
| | - Ugo Salvolini
- Dipartimento di Scienze Cliniche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Paolo Barbaresi
- Dipartmento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy
| | - Mara Fabri
- Dipartmento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy.
| | - Gabriele Polonara
- Dipartimento di Scienze Cliniche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
17
|
Experimental orofacial pain and sensory deprivation lead to perceptual distortion of the face in healthy volunteers. Exp Brain Res 2015; 233:2597-606. [DOI: 10.1007/s00221-015-4330-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 05/14/2015] [Indexed: 12/29/2022]
|
18
|
Evaluation of lip sensory disturbance using somatosensory evoked magnetic fields. Clin Neurophysiol 2014; 125:363-9. [DOI: 10.1016/j.clinph.2013.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/15/2013] [Accepted: 07/31/2013] [Indexed: 11/21/2022]
|
19
|
Boendermaker B, Meier ML, Luechinger R, Humphreys BK, Hotz-Boendermaker S. The cortical and cerebellar representation of the lumbar spine. Hum Brain Mapp 2014; 35:3962-71. [PMID: 24464423 DOI: 10.1002/hbm.22451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/11/2013] [Accepted: 12/02/2013] [Indexed: 11/09/2022] Open
Abstract
Eight decades after Penfield's discovery of the homunculus only sparse evidence exists on the cortical representation of the lumbar spine. The aim of our investigation was the description of the lumbar spine's cortical representation in healthy subjects during the application of measured manual pressure. Twenty participants in the prone position were investigated during functional magnetic resonance imaging (fMRI). An experienced manual therapist applied non-painful, posterior-to-anterior (PA) pressure on three lumbar spinous processes (L1, L3, and L5). The pressure (30 N) was monitored and controlled by sensors. The randomized stimulation protocol consisted of 68 pressure stimuli of 5 s duration. Blood oxygenation level dependent (BOLD) responses were analyzed in relation to the lumbar stimulations. The results demonstrate that controlled PA pressure on the lumbar spine induced significant activation patterns. The major new finding was a strong and consistent activation bilaterally in the somatosensory cortices (S1 and S2). In addition, bilateral activation was located medially in the anterior cerebellum. The activation pattern also included other cortical areas probably related to anticipatory postural adjustments. These revealed stable somatosensory maps of the lumbar spine in healthy subjects can subsequently be used as a baseline to investigate cortical and subcortical reorganization in low back pain patients.
Collapse
Affiliation(s)
- Bart Boendermaker
- Department of Experimental Anatomy, Vrije Universiteit Brussel, Brussel, Belgium
| | | | | | | | | |
Collapse
|
20
|
Habre-Hallage P, Dricot L, Hermoye L, Reychler H, van Steenberghe D, Jacobs R, Grandin CB. Cortical activation resulting from the stimulation of periodontal mechanoreceptors measured by functional magnetic resonance imaging (fMRI). Clin Oral Investig 2014; 18:1949-61. [PMID: 24420503 DOI: 10.1007/s00784-013-1174-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 12/23/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To describe the normal cortical projections of periodontal mechanoreceptors. MATERIAL AND METHODS A device using von Frey filaments delivered 1-Hz punctate tactile stimuli to the teeth during fMRI. In a block design paradigm, tooth (T) 11 and T13 were stimulated in ten volunteers and T21 and T23 in ten other subjects. Random-effect group analyses were performed for each tooth, and differences between teeth were examined using ANOVA. RESULTS The parietal operculum (S2) was activated bilaterally for all teeth; the postcentral gyrus (S1) was activated bilaterally for T21 and T23 and contralaterally for T11 and T13. In the second-level analysis including the four teeth, we found five clusters: bilateral S1 and S2, and left inferior frontal gyrus, with no difference between teeth in somatosensory areas. However, the ANOVA performed on the S1 clusters found separately in each tooth showed that S1 activation was more contralateral for the canines. CONCLUSION One-hertz mechanical stimulation activates periodontal mechanoreceptors and elicits bilateral cortical activity in S1 and S2, with a double representation in S2, namely in OP1 and OP4. CLINICAL RELEVANCE The cortical somatotopy of periodontal mechanoreceptors is poorly described. These findings may serve as normal reference to further explore the cortical plasticity induced by periodontal or neurological diseases.
Collapse
Affiliation(s)
- P Habre-Hallage
- Department of Prosthodontics, Faculty of Dentistry, Saint Joseph University, Campus of Medical Sciences, B.P. 11-5076, Damascus Road, Beirut, Lebanon,
| | | | | | | | | | | | | |
Collapse
|
21
|
Miyaji H, Hironaga N, Umezaki T, Hagiwara K, Shigeto H, Sawatsubashi M, Tobimatsu S, Komune S. Neuromagnetic detection of the laryngeal area: Sensory-evoked fields to air-puff stimulation. Neuroimage 2013; 88:162-9. [PMID: 24246493 DOI: 10.1016/j.neuroimage.2013.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 10/16/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022] Open
Abstract
The sensory projections from the oral cavity, pharynx, and larynx are crucial in assuring safe deglutition, coughing, breathing, and voice production/speaking. Although several studies using neuroimaging techniques have demonstrated cortical activation related to pharyngeal and laryngeal functions, little is known regarding sensory projections from the laryngeal area to the somatosensory cortex. The purpose of this study was to establish the cortical activity evoked by somatic air-puff stimulation at the laryngeal mucosa using magnetoencephalography. Twelve healthy volunteers were trained to inhibit swallowing in response to air stimuli delivered to the larynx. Minimum norm estimates was performed on the laryngeal somatosensory evoked fields (LSEFs) to best differentiate the target activations from non-task-related activations. Evoked magnetic fields were recorded with acceptable reproducibility in the left hemisphere, with a peak latency of approximately 100ms in 10 subjects. Peak activation was estimated at the caudolateral region of the primary somatosensory area (S1). These results establish the ability to detect LSEFs with an acceptable reproducibility within a single subject and among subjects. These results also suggest the existence of laryngeal somatic afferent input to the caudolateral region of S1 in human. Our findings indicate that further investigation in this area is needed, and should focus on laryngeal lateralization, swallowing, and speech processing.
Collapse
Affiliation(s)
- Hideaki Miyaji
- Department of Otorhinolaryngology, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Japan; Department of Otorhinolaryngology, Yuaikai Oda Regional Medical Center, Japan.
| | - Naruhito Hironaga
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Toshiro Umezaki
- Department of Otorhinolaryngology, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Koichi Hagiwara
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Hiroshi Shigeto
- Division of Epilepsy and Sleep Center, Fukuoka Sanno Hospital, Japan
| | - Motohiro Sawatsubashi
- Department of Otorhinolaryngology, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Shozo Tobimatsu
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Shizuo Komune
- Department of Otorhinolaryngology, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
22
|
Niranjan A, Laing EJC, Laghari FJ, Richardson RM, Lunsford LD. Preoperative magnetoencephalographic sensory cortex mapping. Stereotact Funct Neurosurg 2013; 91:314-22. [PMID: 23797479 DOI: 10.1159/000350019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 01/20/2013] [Indexed: 11/19/2022]
Abstract
The use of functional neuroimaging holds the promise of improving neurosurgical outcomes by providing preoperative localization of critical brain functions. The brain representation of somatosensory function can be effectively localized using magnetoencephalography (MEG) in both normal subjects and in patients with tumors, vascular malformation, and epilepsy. This study investigates the pattern of somatosensory localization in 45 patients. Thirty-two of these patients underwent subsequent resective surgery for brain pathologies. Electrical stimulation of the median nerve was conducted, and the most prominent somatosensory peak in the resultant averaged data was localized using the single equivalent current dipole technique. Results showed that this peak localized either to the central or postcentral sulcus of the somatosensory cortex. We found that neither age nor the presence of brain pathologies had significant effect on the recognition of the somatosensory cortex. Patients who underwent surgery after presurgical planning using MEG suffered no new somatosensory deficits, indicating the valuable role of pre-surgical mapping using MEG in the surgical planning.
Collapse
Affiliation(s)
- Ajay Niranjan
- Department of Neurological Surgery, University of Pittsburgh and UPMC Brain Mapping Center, Pittsburgh, Pa., USA
| | | | | | | | | |
Collapse
|
23
|
Otsuka T, Dan H, Dan I, Sase M, Sano T, Tsuzuki D, Fujita A, Sasaguri K, Okada N, Kusama M, Jinbu Y, Watanabe E. Effect of local anesthesia on trigeminal somatosensory-evoked magnetic fields. J Dent Res 2012; 91:1196-201. [PMID: 23018817 DOI: 10.1177/0022034512462398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
For objective neurophysiological evaluation of the function of the trigeminal system, magnetoencephalography- based TSEF (trigeminal somatosensory-evoked field) assessment would be valuable in providing spatial and temporal profiles of cortical responses. However, this necessitates knowledge of how TSEF varies with trigeminal nerve dysfunctions. We introduced a conduction block of the trigeminal nerve using local anesthesia (lidocaine) to temporally mimic nerve dysfunctions, and monitored TSEF changes. Following an electrical stimulation of the lower lip, a magnetic response with peak latency of approximately 20 ms was identified in all participants. Dipole for the peak was estimated on the post-central gyrus in the participant's own magnetic resonance image. After normalization to Montreal Neurological Institute (MNI) space and inter-participant data integration, the summary equivalent current dipole localization among participants remained in the post-central gyrus, suggesting validity of the use of MNI space. Partial anesthesia of the lower lip led to a loss of the waveform characteristics of TSEF for electrical stimulation to the trigeminal nerve. We verified that the 20-ms latency cortical response of TSEF components localized at the primary sensory cortex can serve as a robust neurofunctional marker of experimental trigeminal nerve dysfunction.
Collapse
Affiliation(s)
- T Otsuka
- Department of Craniofacial Growth and Developmental Dentistry, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Avivi-Arber L, Martin R, Lee JC, Sessle BJ. Face sensorimotor cortex and its neuroplasticity related to orofacial sensorimotor functions. Arch Oral Biol 2011; 56:1440-65. [DOI: 10.1016/j.archoralbio.2011.04.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/20/2022]
|
25
|
Maezawa H, Yoshida K, Matsuhashi M, Yokoyama Y, Mima T, Bessho K, Fujita S, Nagamine T, Fukuyama H. Evaluation of tongue sensory disturbance by somatosensory evoked magnetic fields following tongue stimulation. Neurosci Res 2011; 71:244-50. [DOI: 10.1016/j.neures.2011.07.1831] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/25/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
|
26
|
Wasaka T, Kakigi R. Conflict caused by visual feedback modulates activation in somatosensory areas during movement execution. Neuroimage 2011; 59:1501-7. [PMID: 21889595 DOI: 10.1016/j.neuroimage.2011.08.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 11/25/2022] Open
Abstract
The role of sensory information in motor control has been studied, but the cortical processing underlying cross-modal relationship between visual and somatosensory information for movement execution remains a matter of debate. Visual estimates of limb positions are congruent with proprioceptive estimates under normal visual conditions, but a mismatch between the watched and felt movement of the hand disrupts motor execution. We investigated whether activation in somatosensory areas was affected by the discordance between the intended and an executed action. Subjects performed self-paced thumb movement of the left hand under normal visual and mirror conditions. The Mirror condition provided a non-veridical and unexpected visual feedback. The results showed activity in the primary somatosensory area to be inhibited and activity in the secondary somatosensory area (SII) to be enhanced with voluntary movement, and neural responses in the SII and parietal cortex were strongly affected by the unexpected visual feedback. These results provide evidence that the visual information plays a crucial role in activation in somatosensory areas during motor execution. A mechanism that monitors sensory inputs and motor outputs congruent with current intension is necessary to control voluntary movement.
Collapse
Affiliation(s)
- Toshiaki Wasaka
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | | |
Collapse
|
27
|
Sakamoto K, Nakata H, Yumoto M, Kakigi R. Somatosensory processing of the tongue in humans. Front Physiol 2010; 1:136. [PMID: 21423377 PMCID: PMC3059928 DOI: 10.3389/fphys.2010.00136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/12/2010] [Indexed: 11/13/2022] Open
Abstract
We review research on somatosensory (tactile) processing of the tongue based on data obtained using non-invasive neurophysiological and neuroimaging methods. Technical difficulties in stimulating the tongue, due to the noise elicited by the stimulator, the fixation of the stimulator, and the vomiting reflex, have necessitated the development of specialized devices. In this article, we show the brain activity relating to somatosensory processing of the tongue evoked by such devices. More recently, the postero-lateral part of the tongue has been stimulated, and the brain response compared with that on stimulation of the antero-lateral part of the tongue. It is likely that a difference existed in somatosensory processing of the tongue, particularly around primary somatosensory cortex, Brodmann area 40, and the anterior cingulate cortex.
Collapse
Affiliation(s)
- Kiwako Sakamoto
- Department of Integrative Physiology, National Institute for Physiological SciencesOkazaki, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo HospitalTokyo, Japan
| | - Hiroki Nakata
- Department of Integrative Physiology, National Institute for Physiological SciencesOkazaki, Japan
- Faculty of Sport Sciences, Waseda UniversityTokorozawa, Saitama, Japan
| | - Masato Yumoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo HospitalTokyo, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological SciencesOkazaki, Japan
| |
Collapse
|
28
|
Zumer JM, Nagarajan SS, Krubitzer LA, Zhu Z, Turner RS, Disbrow EA. MEG in the macaque monkey and human: distinguishing cortical fields in space and time. Brain Res 2010; 1345:110-24. [PMID: 20493828 DOI: 10.1016/j.brainres.2010.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 05/01/2010] [Accepted: 05/12/2010] [Indexed: 11/29/2022]
Abstract
Magnetoencephalography (MEG) is an increasingly popular non-invasive tool used to record, on a millisecond timescale, the magnetic field changes generated by cortical neural activity. MEG has the advantage, over fMRI for example, that it is a direct measure of neural activity. In the current investigation we used MEG to measure cortical responses to tactile and auditory stimuli in the macaque monkey. We had two aims. First, we sought to determine whether MEG, a technique that may have low spatial accuracy, could be used to distinguish the location and organization of sensory cortical fields in macaque monkeys, a species with a relatively small brain compared to that of the human. Second, we wanted to examine the temporal dynamics of cortical responses in the macaque monkey relative to the human. We recorded MEG data from anesthetized monkeys and, for comparison, from awake humans that were presented with simple tactile and auditory stimuli. Neural source reconstruction of MEG data showed that primary somatosensory and auditory cortex could be differentiated and, further, that separate representations of the digit and lip within somatosensory cortex could be identified in macaque monkeys as well as humans. We compared the latencies of activity from monkey and human data for the three stimulation types and proposed a correspondence between the neural responses of the two species. We thus demonstrate the feasibility of using MEG in the macaque monkey and provide a non-human primate model for examining the relationship between external evoked magnetic fields and their underlying neural sources.
Collapse
Affiliation(s)
- Johanna M Zumer
- Department of Radiology, University of California, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
29
|
Sakamoto K, Nakata H, Inui K, Perrucci MG, Del Gratta C, Kakigi R, Romani GL. A difference exists in somatosensory processing between the anterior and posterior parts of the tongue. Neurosci Res 2010; 66:173-9. [DOI: 10.1016/j.neures.2009.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 11/17/2022]
|
30
|
Preferred chewing side-dependent two-point discrimination and cortical activation pattern of tactile tongue sensation. Behav Brain Res 2009; 203:118-26. [DOI: 10.1016/j.bbr.2009.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 04/17/2009] [Accepted: 04/22/2009] [Indexed: 01/31/2023]
|
31
|
Effects of oropharyngeal air-pulse stimulation on swallowing in healthy older adults. Dysphagia 2009; 24:302-13. [PMID: 19390893 DOI: 10.1007/s00455-009-9207-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 01/05/2009] [Indexed: 01/20/2023]
Abstract
While previous research has shown that air-pulse stimulation of the oropharynx facilitates saliva swallowing in young adults, the effects of air pulses in older adults have not been examined. Responses to air-pulse stimulation may differ in young and older adults given age-related changes in sensation, swallowing physiology, and swallow-related brain activation. Therefore, this study sought to determine the effects of oropharyngeal air-pulse stimulation on saliva swallowing rates in 18 healthy older adults. Saliva swallowing rates were monitored across six conditions: baseline without mouthpiece, baseline with mouthpiece in situ, unilateral right oropharyngeal stimulation, unilateral left oropharyngeal stimulation, bilateral oropharyngeal stimulation, and sham stimulation. Results indicated that bilateral oropharyngeal air-pulse stimulation was associated with a statistically significant increase in mean saliva swallowing rate compared to baseline without mouthpiece, baseline with mouthpiece in situ, and sham stimulation. In previous studies, young adults reported an irrepressible urge to swallow in response to oropharyngeal air-pulse delivery, but the older adults in the current study did not perceive the air-pulse stimulation as being associated with swallowing or other behaviors. These findings indicate that oropharyngeal air-pulse stimulation facilitates the elicitation of saliva swallowing in older adults.
Collapse
|
32
|
Somatosensory evoked magnetic fields following electric tongue stimulation using pin electrodes. Neurosci Res 2008; 62:131-9. [DOI: 10.1016/j.neures.2008.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 07/08/2008] [Accepted: 07/11/2008] [Indexed: 11/21/2022]
|
33
|
Tamura Y, Shibukawa Y, Shintani M, Kaneko Y, Ichinohe T. Oral structure representation in human somatosensory cortex. Neuroimage 2008; 43:128-35. [DOI: 10.1016/j.neuroimage.2008.06.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/05/2008] [Accepted: 06/20/2008] [Indexed: 10/21/2022] Open
|
34
|
Sakamoto K, Nakata H, Kakigi R. Somatotopic representation of the tongue in human secondary somatosensory cortex. Clin Neurophysiol 2008; 119:2125-34. [DOI: 10.1016/j.clinph.2008.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 04/25/2008] [Accepted: 05/02/2008] [Indexed: 10/21/2022]
|
35
|
Sakamoto K, Nakata H, Kakigi R. Somatosensory-evoked magnetic fields following stimulation of the tongue in humans. Clin Neurophysiol 2008; 119:1664-73. [DOI: 10.1016/j.clinph.2008.03.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 02/26/2008] [Accepted: 03/25/2008] [Indexed: 11/28/2022]
|
36
|
Functional MRI of oropharyngeal air-pulse stimulation. Neuroscience 2008; 153:1300-8. [DOI: 10.1016/j.neuroscience.2008.02.079] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 02/23/2008] [Accepted: 02/27/2008] [Indexed: 11/21/2022]
|
37
|
Iida T, Fenwick PBC, Ioannides AA. Analysis of brain activity immediately before conscious teeth clenching using magnetoencephalographic method. J Oral Rehabil 2007; 34:487-96. [PMID: 17559616 DOI: 10.1111/j.1365-2842.2007.01736.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reasons for unconscious teeth clenching have not been clarified. The long-term goal of our project was the elucidation of processing in the brain immediately before unconscious teeth clenching, in order to clarify its significance in humans. The objective of the present study was to establish a magnetoencephalographic (MEG) method of measuring brain activity immediately before clenching, and to clarify the time-course of brain activity immediately before conscious clenching. We measured the MEG signal in six subjects before, during and after clenching in a protocol that restricted head movement <5 mm. We derived tomographic estimates of brain activity for each time slice of data, as well as time courses for regional brain activations. Analysis of the tomographic images and time courses yielded statistical maps of activity in the motor, pre-motor and somatosensory cortices immediately before clenching in all subjects. Activations were found bilaterally, but with a strong unilateral bias in most subjects. Our results demonstrate that the MEG procedures, we have introduced are capable of measuring brain activity immediately before clenching, and indicate that analysis should begin from at least 200 ms before electromyogram onset.
Collapse
Affiliation(s)
- T Iida
- Clinical Pathology, Nihon University Graduate School of Dentistry at Matsudo, Matsudo, Chiba, Japan.
| | | | | |
Collapse
|
38
|
Fabri M, Polonara G, Mascioli G, Paggi A, Salvolini U, Manzoni T. Contribution of the corpus callosum to bilateral representation of the trunk midline in the human brain: an fMRI study of callosotomized patients. Eur J Neurosci 2006; 23:3139-48. [PMID: 16820004 DOI: 10.1111/j.1460-9568.2006.04823.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human brain studies have shown that the cutaneous receptors of trunk regions close to the midline are represented in the first somatosensory cortex (SI) of both hemispheres. The present study aims to establish whether in humans, as in non-human primates, the bilateral representation of the trunk midline in area SI depends on the corpus callosum. Data were obtained from eight callosotomized patients: three with complete callosal resection, one with a partial posterior resection including the splenium and the callosal trunk, and four with partial anterior resections sparing the splenium and in one case also the posterior part of the callosal trunk. The investigation was carried out with functional magnetic resonance imaging. Unilateral tactile stimulation was applied by rubbing ventral trunk regions close to the midline (about 20 x 10 cm in width) with a soft cotton pad (frequency 1 Hz). Cortical activation foci elicited by unilateral stimulation of cutaneous regions adjacent to the midline were detected in the contralateral post-central gyrus (PCG), in a region corresponding to the trunk ventral midline representation zone of area SI, as described in a previous study of intact subjects. In most patients, activation foci were also found in the ipsilateral PCG, again as in subjects with an intact corpus callosum. The data confirm that the skin regions adjacent to the trunk midline are represented bilaterally in SI, and indicate that ipsilateral activation is at least partially independent of the corpus callosum.
Collapse
Affiliation(s)
- M Fabri
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università Politecnica delle Marche, Via Tronto 10/A, 60020 Ancona, Torrette, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Okamoto M, Dan H, Singh AK, Hayakawa F, Jurcak V, Suzuki T, Kohyama K, Dan I. Prefrontal activity during flavor difference test: Application of functional near-infrared spectroscopy to sensory evaluation studies. Appetite 2006; 47:220-32. [PMID: 16797780 DOI: 10.1016/j.appet.2006.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/04/2006] [Accepted: 04/14/2006] [Indexed: 11/16/2022]
Abstract
Sensory evaluation (SE) of food attributes involves various levels of cognitive functions, yet not much has been studied about its neural basis. Using multi-channel functional near-infrared spectroscopy (fNIRS), we examined the activation of the anterior portion of the lateral prefrontal cortex (LPFC) of 12 healthy volunteers during the SE of tea samples. The experimental task used corresponded to the early phase of the same-different test, and required subjects to attentively taste tea samples and memorize their flavors. To isolate activation associated with the cognitive functions involved in the task, we contrasted the results with those achieved by a control (Ctl) task during which subjects held familiar tea samples in their mouths without actively evaluating their flavor. We probabilistically registered the fNIRS data to the Montreal Neurological Institute standard brain space to examine the results as they correspond with other published neuroimaging studies. We found significant activation in the left LPFC and in the right inferior frontal gyrus. The activation pattern was consistent with earlier studies on encoding of other sensory stimuli, with cortical regions supposed to be involved in semantic and perceptual processing. This research makes a start on characterizing the cognitive process employed during SE from the neuroimaging perspective.
Collapse
Affiliation(s)
- Masako Okamoto
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Nevalainen P, Ramstad R, Isotalo E, Haapanen ML, Lauronen L. Trigeminal somatosensory evoked magnetic fields to tactile stimulation. Clin Neurophysiol 2006; 117:2007-15. [PMID: 16859989 DOI: 10.1016/j.clinph.2006.05.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 05/08/2006] [Accepted: 05/21/2006] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterise the activation of the contra- and ipsilateral primary somatosensory cortex (SI) after tactile stimulation of the face. METHODS Trigeminal somatosensory evoked magnetic fields (TSEFs) were recorded after tactile stimulation of the lower lip, cheek, chin and forehead in 11 healthy subjects. The responses were determined visually from the waveforms and modelled with equivalent current dipoles (ECDs). RESULTS Contralateral SI responses were evoked in all subjects after lip stimulation, and in 91% and 64% after right and left cheek, 73% and 82% after chin and 64% and 27% after forehead stimulation. The responses usually showed an early double-peak wave pattern, the underlying sources localising to the SI. In addition, altogether 37 ipsilateral SI responses were evoked in eight subjects. Fourteen of these responses were amenable to ECD modelling and localised to ipsilateral SI. CONCLUSIONS Tactile stimulation of the lip area reliably activates the contralateral SI in normal subjects, but the success rate for other trigeminal areas is lower. Ipsilateral responses can be present after stimulation of any of the trigeminal branches in normal subjects. SIGNIFICANCE Recording of TSEFs after tactile stimulation of particularly the lip area provides a non-invasive technique to study the function of the trigeminal nerve.
Collapse
Affiliation(s)
- P Nevalainen
- BioMag Laboratory, Helsinki University Central Hospital, P.O. Box 340, FIN-00029 HUS, Finland
| | | | | | | | | |
Collapse
|
41
|
Lipton ML, Fu KMG, Branch CA, Schroeder CE. Ipsilateral hand input to area 3b revealed by converging hemodynamic and electrophysiological analyses in macaque monkeys. J Neurosci 2006; 26:180-5. [PMID: 16399685 PMCID: PMC4465455 DOI: 10.1523/jneurosci.1073-05.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) of the hand representation in primary somatosensory cortex (area 3b) of macaque monkeys revealed an ipsilateral hand input undetected by most previous studies. Ipsilateral responses had a hemodynamic signature indistinguishable from that of contralateral hand responses. We explored the neural mechanisms of the fMRI effects using a second derivative analysis of field potentials [current source density (CSD) analysis] combined with action potential profiles, sampled from area 3b using linear array multielectrodes. In contrast to the predominantly excitatory contralateral response, the colocated ipsilateral response appeared dominated by inhibition, suggesting that ipsilateral inputs may have modulatory effects on contralateral input processing. Our findings confirm bimanual convergence at the earliest stage of cortical somatosensory processing in primates. They also illustrate the value of combined CSD and fMRI analyses in monkeys for defining hidden aspects of sensory function and for investigating the neuronal processes generating fMRI signals.
Collapse
Affiliation(s)
- Michael L Lipton
- Center for Advanced Brain Imaging and Cognitive Neuroscience Program, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| | | | | | | |
Collapse
|
42
|
Türker KS, Yeo PLM, Gandevia SC. Perceptual distortion of face deletion by local anaesthesia of the human lips and teeth. Exp Brain Res 2005; 165:37-43. [PMID: 15818498 DOI: 10.1007/s00221-005-2278-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
As visual guidance of facial movements is impossible, accurate movements for speech and mastication require an established body image that is formed via the information from mechanoreceptors in the skin, mucosa, periodontium, and proprioceptors in the facial and masticatory muscles and in the jaw joints. In this study we aimed to investigate how the acute deafferentation of lips and teeth alters the established image of lips, teeth and the thumb. We used a psychophysical method to determine whether the perceived sizes of the upper lip and front teeth change when the sensory input from the lips and front teeth is fully blocked. We also examined the perceived size of the thumb to test for acute interactions between the thumb and facial structures. Local anaesthetic blocking of upper lip and upper front teeth significantly increased the perceived size of the upper lip by as much as 100% (range 21-100%) in ten out of eleven subjects tested (overall mean 52%; p=0.001). The perceived size of the upper teeth also significantly increased by as much as 155% (range 30-155%) in eight of the eleven subjects during anaesthesia (overall mean 41%; p=0.035). When the region of anaesthesia was increased and both upper and lower teeth and lips were anaesthetised, the perceived size of the upper lip again increased, by 53% (p=0.040), but the change in perceived size of the upper front teeth (18%) was not significant (p=0.206). In both studies there was no change in perceived size of the thumb. The results illustrate the labile central interaction between sensory inputs and the importance of feedback from peripheral afferents in generating the subjective facial image. The timing, level, and area of anaesthesia may be important modifiers of these interactions.
Collapse
Affiliation(s)
- Kemal S Türker
- Discipline of Physiology, School of Molecular and Biomedical Science, University of Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
43
|
Castillo EM, Papanicolaou AC. Cortical representation of dermatomes: MEG-derived maps after tactile stimulation. Neuroimage 2005; 25:727-33. [PMID: 15808974 DOI: 10.1016/j.neuroimage.2004.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 12/14/2004] [Accepted: 12/16/2004] [Indexed: 11/21/2022] Open
Abstract
Mechanical stimulation of skin receptors is known to evoke cortical responses arising from the somatosensory cortex. Here we present a magnetoencephalographic (MEG) study where dermatomal somatosensory-evoked fields (DSSEFs) were recorded after mechanical stimulation of sacral (S1), lumbar (L3), thoracic (Th7), and cervical (C4) dermatomes in three healthy volunteers. All MEG measurements were repeated in order to test the replicability of the results. DSSEFs were successfully measured and modeled in all three participants. The topography and temporal dynamics of cortical responses derived after stimulation of each dermatome are described. We found that cortical-evoked responses can be reliably recorded using MEG after mechanical stimulation of dermatomes when a sufficiently large skin region within the dermatome is stimulated. Primary sensory cortex response (SI) to each of the four dermatomes was replicable and showed stability over time. The MEG-derived individual maps of activation confirm the somatotopic representation of dermatomes in primary sensory cortex and the utility of MEG recordings in disentangling the interactions between primary and secondary sensory cortex during somatic perception.
Collapse
Affiliation(s)
- Eduardo M Castillo
- Department of Neurosurgery, Vivian L. Smith Center for Neurologic Research, University of Texas Houston, Medical School, 1333 Moursund Street, Ste. H114, Houston, TX 77030, USA.
| | | |
Collapse
|
44
|
Henry EC, Marasco PD, Catania KC. Plasticity of the cortical dentition representation after tooth extraction in naked mole-rats. J Comp Neurol 2005; 485:64-74. [PMID: 15776439 DOI: 10.1002/cne.20511] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Naked mole-rats (Heterocephalus glaber) have a large cortical representation of their behaviorally important front teeth, accounting for 30% of primary somatosensory cortex (SI). Here we investigated the plasticity of this dental representation after the extraction of a single lower tooth. The representation of the contralateral lower incisor normally accounts for approximately 15% of somatosensory cortex in mole-rats. In five mole-rats the lower right incisor was extracted on either postnatal day 7 or 21. After 5-8 months the deprived tooth zone in S1 was investigated with multiunit microelectrode recordings. The results revealed a dramatic reorganization of the orofacial representation in SI. Neurons in the cortical lower tooth representation were responsive to tactile inputs from surrounding orofacial structures, including the contralateral upper incisor, ipsilateral lower incisor, tongue, chin, gums, and buccal pad. Neurons in the former lower tooth zone had complex receptive fields that often encompassed multiple sensory surfaces surrounding the extracted tooth in the periphery. These results suggest that the representation of the dentition in mammals is capable of significant reorganization after the loss of sensory inputs from the teeth. These data parallel findings in the somatosensory hand area of primates after deafferentation where cortex can become activated by a mixture of widely spaced surrounding sensory surfaces (e.g., chin and upper arm).
Collapse
Affiliation(s)
- Erin C Henry
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | |
Collapse
|