1
|
Clayton RW, Langan EA, Ansell DM, de Vos IJHM, Göbel K, Schneider MR, Picardo M, Lim X, van Steensel MAM, Paus R. Neuroendocrinology and neurobiology of sebaceous glands. Biol Rev Camb Philos Soc 2020; 95:592-624. [PMID: 31970855 DOI: 10.1111/brv.12579] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
The nervous system communicates with peripheral tissues through nerve fibres and the systemic release of hypothalamic and pituitary neurohormones. Communication between the nervous system and the largest human organ, skin, has traditionally received little attention. In particular, the neuro-regulation of sebaceous glands (SGs), a major skin appendage, is rarely considered. Yet, it is clear that the SG is under stringent pituitary control, and forms a fascinating, clinically relevant peripheral target organ in which to study the neuroendocrine and neural regulation of epithelia. Sebum, the major secretory product of the SG, is composed of a complex mixture of lipids resulting from the holocrine secretion of specialised epithelial cells (sebocytes). It is indicative of a role of the neuroendocrine system in SG function that excess circulating levels of growth hormone, thyroxine or prolactin result in increased sebum production (seborrhoea). Conversely, growth hormone deficiency, hypothyroidism, and adrenal insufficiency result in reduced sebum production and dry skin. Furthermore, the androgen sensitivity of SGs appears to be under neuroendocrine control, as hypophysectomy (removal of the pituitary) renders SGs largely insensitive to stimulation by testosterone, which is crucial for maintaining SG homeostasis. However, several neurohormones, such as adrenocorticotropic hormone and α-melanocyte-stimulating hormone, can stimulate sebum production independently of either the testes or the adrenal glands, further underscoring the importance of neuroendocrine control in SG biology. Moreover, sebocytes synthesise several neurohormones and express their receptors, suggestive of the presence of neuro-autocrine mechanisms of sebocyte modulation. Aside from the neuroendocrine system, it is conceivable that secretion of neuropeptides and neurotransmitters from cutaneous nerve endings may also act on sebocytes or their progenitors, given that the skin is richly innervated. However, to date, the neural controls of SG development and function remain poorly investigated and incompletely understood. Botulinum toxin-mediated or facial paresis-associated reduction of human sebum secretion suggests that cutaneous nerve-derived substances modulate lipid and inflammatory cytokine synthesis by sebocytes, possibly implicating the nervous system in acne pathogenesis. Additionally, evidence suggests that cutaneous denervation in mice alters the expression of key regulators of SG homeostasis. In this review, we examine the current evidence regarding neuroendocrine and neurobiological regulation of human SG function in physiology and pathology. We further call attention to this line of research as an instructive model for probing and therapeutically manipulating the mechanistic links between the nervous system and mammalian skin.
Collapse
Affiliation(s)
- Richard W Clayton
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Ewan A Langan
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Department of Dermatology, Allergology und Venereology, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - David M Ansell
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, U.K
| | - Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Klaus Göbel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne, The University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
| | - Marlon R Schneider
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatological Institute IRCCS, Via Elio Chianesi 53, Rome, 00144, Italy
| | - Xinhong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ralf Paus
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Dr. Phllip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB 2023A, Miami, FL, 33136, U.S.A.,Monasterium Laboratory, Mendelstraße 17, Münster, 48149, Germany
| |
Collapse
|
2
|
Catgut Implantation at Acupoint Reduces Immune Reaction in a Rat Model of Allergic Rhinitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7629239. [PMID: 30069225 PMCID: PMC6057314 DOI: 10.1155/2018/7629239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/07/2018] [Indexed: 11/17/2022]
Abstract
Allergic rhinitis (AR), an IgE-mediated response, is characterized by a Th2-type immunological pattern together with mast cells activation. Acupuncture, with the use of implanted catgut, is a traditional therapy that has been widely applied for the treatment of AR. However, the exact mechanism of the immunomodulatory effects of catgut implantation at acupoint (CIAA) remains unclear, in part due to the lack of a suitable laboratory animal model. We developed and optimized a rat model of ovalbumin- (OVA-) induced allergic inflammation, characterized by increased IL-4, sIgE, and SP and reciprocal decrease of IFN-γ. In the present study, we have further used this model to address the immunomodulatory effects of CIAA stimulation at Yingxiang (LI20) and Zusanli (ST36) acupoints and to elucidate the mechanisms involved in the regulation of SP, sIgE, IL-4, IFN-γ, TLR2, and TLR4. After AR model was established via OVA challenge, the rats were randomized as follows: control, model, sham-operated, 1-week CIAA (C1), 2-week CIAA (C2), and Budesonide nasal spray. The C1 and C2 groups were subjected to the bilateral acupoint Yingxiang (LI20) and Zusanli (ST36), respectively. Multiple analyses and quantifications were performed, which revealed that due to the persistent stimulus to acupoints by embedding catgut, the C2 group improved AR symptoms, compared to the C1 group. We conclude that CIAA at the Yingxiang (LI20) and Zusanli (ST36) acupoints effectively reduces allergic symptoms and inflammatory parameters in the rat model of AR. Thus, CIAA treatment is potentially an alternative therapeutic modality in AR.
Collapse
|
3
|
Schlereth T, Schukraft J, Krämer-Best HH, Geber C, Ackermann T, Birklein F. Interaction of calcitonin gene related peptide (CGRP) and substance P (SP) in human skin. Neuropeptides 2016; 59:57-62. [PMID: 27344069 DOI: 10.1016/j.npep.2016.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 11/25/2022]
Abstract
Calcitonin gene related peptide (CGRP) and substance P (SP) are neuropeptides that are simultaneously released from nociceptive C-fibers. CGRP is a potent vasodilator, inducing a long-lasting increase in superficial skin blood flow, whereas SP induces only a brief vasodilation but a significant plasma extravasation. CGRP and SP may play important roles in the pathophysiology of various pain states but little is known about their interaction. Different concentrations of SP (ranging from 10-5M to 10-9M) were applied to the volar forearm of 24 healthy subjects via dermal microdialysis. SP was applied either alone or in combination with CGRP10-9M and CGRP 10-6M. As expected, SP induced a transient increase in skin blood flow that decayed shortly after application. This transient blood flow peak was blunted with co-application of CGRP 10-9M and inhibited with co-application of CGRP10-6M. SP alone induced plasma protein extravasation (PPE). However, when CGRP10-6M was added, the PPE significantly increased. Our results demonstrate a complex interaction of the neuropeptides CGRP and SP. CGRP10-6M prevented SP-induced early vasodilation but augmented SP-induced PPE. These interactions might explain why vascular symptoms in chronic pain can differ strikingly between individuals.
Collapse
Affiliation(s)
- Tanja Schlereth
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany.
| | - Jonas Schukraft
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Heidrun H Krämer-Best
- Department of Neurology, Justus-Liebig-University, Klinikstr. 33, D-35385 Gießen, Germany
| | - Christian Geber
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Tatiana Ackermann
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| |
Collapse
|
4
|
Affiliation(s)
- F M Cutrer
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
5
|
Kispélyi B, Lohinai Z, Altdorfer K, Fehér E. Neuropeptide analysis of oral mucosa in diabetic rats. Neuroimmunomodulation 2014; 21:213-20. [PMID: 24514075 DOI: 10.1159/000356949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Increasing evidence indicates that different neuropeptide-containing nerve elements are involved in the immune system and influence the inflammation of the gastrointestinal tract. The aim of this study was to investigate the morphological localization and distribution of the different immunoreactive (IR) nerve fibers and immunocompetent cells in the oral mucosa (e.g. tongue, gingiva) and compare the results with data received from streptozotocin (STZ)-induced diabetic rats. MATERIALS AND METHODS The different nerve elements and immunocytes were detected by ABC immunohistochemistry. RESULTS The IR nerve fibers were found in the tunica propria of oral mucosa with different densities. These IR nerve fibers were mainly located beneath the epithelial lining, around the blood vessels and glands, and some of them were also located in the taste buds. After 2 weeks of STZ treatment the total number of IR nerve fibers, especially the SP and neuropeptide Y (NPY) IR ones, was significantly increased (p < 0.05), as was also the number of immunocytes (lymphocytes, plasma cells, mast cells). Some of these cells also showed immunoreactivity for substance P (SP) and NPY. In several cases the SP IR nerve fibers were found in close proximity to the immunocytes. Electron microscopic investigation also revealed the close association between the IR nerve fibers and immunocompetent cells where the gap was 1 µm or even less. CONCLUSIONS The close anatomical associations suggest communication between nerve fibers and immune cells which can be crucial for maintaining mucosal homeostasis and for ensuring an appropriate response to injury.
Collapse
Affiliation(s)
- Barbara Kispélyi
- Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
6
|
Mitsui R, Hashitani H. Immunohistochemical characteristics of suburothelial microvasculature in the mouse bladder. Histochem Cell Biol 2013; 140:189-200. [PMID: 23314591 DOI: 10.1007/s00418-012-1074-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2012] [Indexed: 11/26/2022]
Abstract
The morphological characteristics of smooth muscle cells (SMCs) and their innervation of the suburothelial microvasculature of the mouse bladder were investigated by immunohistochemistry. Whole mount bladder mucosal preparations were immune-stained for α-smooth muscle actin (α-SMA) and/or neuronal markers and examined using confocal laser scanning microscopy. Suburothelial arterioles consisted of α-SMA-immunopositive circular smooth muscle cells, while the venular wall composed of α-SMA-positive SMCs that displayed several processes which extended from their cell bodies to form an extensive meshwork. In larger venules, a complex meshwork of stellate-shaped SMCs were observed. NG2 chondroitin sulphate proteoglycan-immunoreactive cell bodies of capillary pericytes were not immunoreactive for α-SMA. In the rat bladder suburothelial venules, circular SMCs were the dominant cell type expressing α-SMA-immunoreactivity. Since α-SMA-positive SMCs in suburothelial arterioles and venules in the mouse bladder had quite distinct morphologies, the innervation of both vessels could be examined by double labelling for α-SMA and various neuronal markers. Varicose nerve bundles immunoreactive for tyrosine hydroxylase (sympathetic nerves), choline acetyltransferase (cholinergic nerves) or substance P (primary afferent nerves) were all detected along side suburothelial arterioles. Single varicose nerve fibres positive for these three neuronal markers were also detected around the venules. Thus, whole mount preparations are useful when examining the morphology of α-SMA-positive SMCs of the microvasculature in the suburothelium of mouse bladder as well as their relationship with their innervations. In conclusion, arterioles and venules of the bladder suburothelium are the target of sympathetic, cholinergic and primary afferent nerve fibres.
Collapse
Affiliation(s)
- Retsu Mitsui
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan.
| | | |
Collapse
|
7
|
Altawil R, Lyström J, El-Nour H. Kinetics of neuronal contribution during the development of a contact allergic reaction. Arch Dermatol Res 2011; 304:273-81. [PMID: 22198823 DOI: 10.1007/s00403-011-1202-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 12/09/2011] [Accepted: 12/14/2011] [Indexed: 01/27/2023]
Abstract
The nervous system contributes to allergic contact dermatitis (ACD). Elucidation of the implication of the nervous system during different stages of ACD could be of therapeutic value. Our aim was to study the kinetics and contribution of the nervous system to ACD by investigating innervation and expression of neuropeptides in skin biopsies obtained at 0, 6, 24, 48 and 72 h post-challenge. Biopsies were stained using antisera against protein gene product (PGP) 9.5, growth associated protein (GAP)-43, substance P and its receptor (R) neurokinin (NK)-1, NKA and NK-2R, and calcitonin gene-related peptide (CGRP). GAP-43-immunoreactive (ir) nerves revealed a time-dependent increase that was more pronounced at 48 and 72 h, while PGP 9.5-ir nerves remained unaltered. Substance P-, NKA- and CGRP-ir nerves at 0 and 6 h were significantly higher compared to later time points, whereas NKA-, NK-1R- and NK-2R-ir cells were lower. A dramatic rise in cell numbers was noted at 24 h. Our findings demonstrate the implication of nerves and sensory neuropeptides during the kinetics of ACD and suggest a possibility to target this system at an early time point for therapy.
Collapse
Affiliation(s)
- Reem Altawil
- Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
8
|
Im SH, Taghert PH. PDF receptor expression reveals direct interactions between circadian oscillators in Drosophila. J Comp Neurol 2010; 518:1925-45. [PMID: 20394051 DOI: 10.1002/cne.22311] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Daily rhythms of behavior are controlled by a circuit of circadian pacemaking neurons. In Drosophila, 150 pacemakers participate in this network, and recent observations suggest that the network is divisible into M and E oscillators, which normally interact and synchronize. Sixteen oscillator neurons (the small and large lateral neurons [LNvs]) express a neuropeptide called pigment-dispersing factor (PDF) whose signaling is often equated with M oscillator output. Given the significance of PDF signaling to numerous aspects of behavioral and molecular rhythms, determining precisely where and how signaling via the PDF receptor (PDFR) occurs is now a central question in the field. Here we show that GAL4-mediated rescue of pdfr phenotypes using a UAS-PDFR transgene is insufficient to provide complete behavioral rescue. In contrast, we describe a approximately 70-kB PDF receptor (pdfr) transgene that does rescue the entire pdfr circadian behavioral phenotype. The transgene is widely but heterogeneously expressed among pacemakers, and also among a limited number of non-pacemakers. Our results support an important hypothesis: the small LNv cells directly target a subset of the other crucial pacemaker neurons cells. Furthermore, expression of the transgene confirms an autocrine feedback signaling by PDF back to PDF-expressing cells. Finally, the results present an unexpected PDF receptor site: the large LNv cells appear to target a population of non-neuronal cells that resides at the base of the eye.
Collapse
Affiliation(s)
- Seol Hee Im
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | |
Collapse
|
9
|
The relationship between keloid growth pattern and stretching tension: visual analysis using the finite element method. Ann Plast Surg 2008; 60:445-51. [PMID: 18362577 DOI: 10.1097/sap.0b013e3181238dd7] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Keloids grow and spread horizontally, like malignant tumors, for reasons that remain unknown. Yet, stretching tension is clearly associated with keloid generation, as keloids tend to occur on high tension sites such as the anterior chest and scapular region. Thus, we analyzed the relationship between keloid growth patterns and stretching tension using a visualized finite element study. MATERIALS AND METHODS Keloids, normal skin, and fat structures were reproduced using DISCUS software. The contours were transferred to ADINA analytical software to rebuild and mesh volumes. RESULTS (1) High tension was observed at the edges, and not in the entire region, of stretched keloids. (2) Keloid centers were regions of low tension, which helps to explain the healing that generally occurs in the central regions of keloids. (3) Expansion of a keloid occurred in the direction in which it was pulled. (4) The "crab's claw"-shaped invasion occurred in response to increased stretching tension. (5) Skin stiffness in the circumference of a keloid was associated with greatly increased tension. (6) Fat hardness and thickness did not influence the amount of tension. (7) Adhesion with subcutaneous hard tissue greatly increased the tension in the keloid. CONCLUSION These stretching results have advanced understanding of keloid formation under various conditions. Our results suggest that stretching tension is an important condition associated with keloid growth.
Collapse
|
10
|
Katayama M, Aoki E, Suzuki H, Kawana S. Foot shock stress prolongs the telogen stage of the spontaneous hair cycle in a non-depilated mouse model. Exp Dermatol 2007; 16:553-60. [PMID: 17576234 DOI: 10.1111/j.1600-0625.2007.00558.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is an increasing evidence to indicate that stress can influence skin disease and cutaneous functions. Previous studies have shown that stress alters the murine hair cycle; however, these studies have been carried out by using mouse models in which the hair cycle is forcibly synchronized after depilation. OBJECTIVE To examine whether foot shock stress (FS) changes the spontaneous hair cycle in a non-depilated animal model, and to evaluate the role of mast cells and substance P (SP) in the influence of stress on the hair cycle. METHODS Changes in the spontaneous hair cycle and the inhibitory effects of a specific SP NK1 receptor antagonist were examined in non-depilated mice during 3-4 weeks of FS. RESULTS Foot shock stress prolonged the telogen stage of the hair cycle and delayed the induction of the subsequent anagen stage in the animal model. FS caused an increase in the ratio of de-granulated mast cells in the skin, an increase in the number of TUNEL-positive cells, and a decrease in the number of Ki67-positive cells. The NK1 receptor antagonist, WIN 62577, inhibited these stress responses. CONCLUSION Our results strongly support previous work, demonstrating that stress alters active hair-cycling in vivo through the action of SP.
Collapse
Affiliation(s)
- Mirei Katayama
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
11
|
Landau AM, Yashpal K, Cahill CM, St Louis M, Ribeiro-da-Silva A, Henry JL. Sensory neuron and substance P involvement in symptoms of a zymosan-induced rat model of acute bowel inflammation. Neuroscience 2007; 145:699-707. [PMID: 17257769 DOI: 10.1016/j.neuroscience.2006.11.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Revised: 11/26/2006] [Accepted: 11/29/2006] [Indexed: 11/27/2022]
Abstract
Intestinal inflammation is a painful syndrome with multiple symptoms, including chronic pain. This study examined the possible role of sensory neurons and substance P in symptoms of an animal model of acute intestinal inflammation. The model was induced by injecting ethanol and zymosan into the colon of anesthetized male rats. Three hours later, sections of the colon were stained with hematoxylin and eosin. To determine the role of substance P, 5 mg/kg of the neurokinin-1 receptor (NK-1r) antagonist, CP-96,345, or 300 microg/kg of an antisense oligonucleotide targeted at NK-1r mRNA was administered. Spinal cord sections were examined for internalization of NK-1r, as an indicator of substance P release. Sections of colon revealed infiltration of inflammatory cells following ethanol and zymosan treatment. Plasma extravasation in rats given ethanol and zymosan was significantly greater than in controls given saline only (P<0.0001) or saline and ethanol (P<0.001). In ethanol- and zymosan-treated rats given CP-96,345, plasma extravasation was significantly less than in rats given ethanol and zymosan without the antagonist (P<0.0001). Administration of the antisense oligonucleotide also resulted in lower levels of plasma extravasation compared with controls (P<0.01). Internalization of the NK-1r was observed in neurons of lamina I in the T13-L2 and L6-S2 regions of the spinal cord, as well as in sympathetic preganglionic neurons at the L1 level. This internalization was observed in the absence of any other stimulus besides the inflammation itself. This study implicates substance P and its receptor, the NK-1r, in acute inflammation of the colon.
Collapse
Affiliation(s)
- A M Landau
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Mertens I, Vandingenen A, Johnson EC, Shafer OT, Li W, Trigg JS, De Loof A, Schoofs L, Taghert PH. PDF receptor signaling in Drosophila contributes to both circadian and geotactic behaviors. Neuron 2006; 48:213-9. [PMID: 16242402 DOI: 10.1016/j.neuron.2005.09.009] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 07/21/2005] [Accepted: 09/02/2005] [Indexed: 11/30/2022]
Abstract
The neuropeptide Pigment-Dispersing Factor (PDF) is a principle transmitter regulating circadian locomotor rhythms in Drosophila. We have identified a Class II (secretin-related) G protein-coupled receptor (GPCR) that is specifically responsive to PDF and also to calcitonin-like peptides and to PACAP. In response to PDF, the PDF receptor (PDFR) elevates cAMP levels when expressed in HEK293 cells. As predicted by in vivo studies, cotransfection of Neurofibromatosis Factor 1 significantly improves coupling of PDFR to adenylate cyclase. pdfr mutant flies display increased circadian arrhythmicity, and also display altered geotaxis that is epistatic to that of pdf mutants. PDFR immunosignals are expressed by diverse neurons, but only by a small subset of circadian pacemakers. These data establish the first synapse within the Drosophila circadian neural circuit and underscore the importance of Class II peptide GPCR signaling in circadian neural systems.
Collapse
Affiliation(s)
- Inge Mertens
- Laboratory of Developmental Physiology, Genomics and Proteomics, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kawana S, Liang Z, Nagano M, Suzuki H. Role of substance P in stress-derived degranulation of dermal mast cells in mice. J Dermatol Sci 2006; 42:47-54. [PMID: 16412613 DOI: 10.1016/j.jdermsci.2005.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 12/03/2005] [Accepted: 12/06/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND The interaction between nerves and mast cells can effect regulation of the immune system and inflammatory responses. Recent studies have shown that various stressors can induce degranulation of dermal mast cells in animals. OBJECTIVES This study was conducted to confirm that substance P (SP) was involved in the degranulation of dermal mast cells in stress conditions. METHODS Using a communication box system, foot shock stress (FS) and psychological stress (PS) were administered to mice and the degranulation rate of dermal mast cells, the number of SP-positive nerve fibers and changes in SP content were determined. The inhibitory effect of a non-peptide NK1-receptor antagonist on these changes was investigated. RESULTS Both FS and PS significantly enhanced the degranulation of dermal mast cells and increased the number of SP-positive nerve fibers. FS significantly decreased dermal SP content whereas SP was increased by PS. These changes were inhibited by intraperitoneal injection of NK(1) receptor antagonist. CONCLUSIONS It was considered that SP released from the nerve ending, had an important role in the degranulation of dermal mast cells. Results of this study suggest that the tachykinin receptor antagonist exhibited an inhibitory effect on aggravated stress-induced dermatitis.
Collapse
Affiliation(s)
- Seiji Kawana
- Nippon Medical School, Department of Dermatology, 1-1-5 Sendagi, 113-8603 Tokyo, Japan.
| | | | | | | |
Collapse
|
14
|
Grelik C, Bennett GJ, Ribeiro-da-Silva A. Autonomic fibre sprouting and changes in nociceptive sensory innervation in the rat lower lip skin following chronic constriction injury. Eur J Neurosci 2005; 21:2475-87. [PMID: 15932605 DOI: 10.1111/j.1460-9568.2005.04089.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study we used immunocytochemistry to investigate whether autonomic fibres sprouted in the skin of the lower lip in a rat model of neuropathic pain. We used a bilateral chronic constriction injury (CCI) of the mental nerve (MN), a branch of the trigeminal nerve. In this model, we also studied the accompanying changes in peptidergic [calcitonin gene-related peptide (CGRP)-immunoreactive] sensory fibres, as well as in trkA receptor immunoreactivity in the sensory nerves. Autonomic (sympathetic and parasympathetic) fibre sprouting was first observed 1 week post-injury with a peak in the number of sprouted fibres occurring at 4 and 6 weeks post-CCI. CGRP-IR fibres almost disappeared at 2 weeks post-CCI, but quickly sprouted, leading to a significant peak above sham levels 4 weeks post-injury. trkA receptor expression was found to be up-regulated in small cutaneous nerves 4 weeks post-CCI, returning to sham levels by 8 weeks post-CCI. There was no sympathetic fibre sprouting in the trigeminal ganglion following CCI. At 4 weeks post-CCI, rats displayed spontaneous, directed grooming to the area innervated by the MN that was not seen in sham animals, which we interpreted as a sign of spontaneous pain or dysesthesiae. Collectively, our findings indicate that as a result of autonomic sprouting due to CCI of the MN, remaining intact nociceptive fibres may potentially develop sensitivity to sympathetic and parasympathetic stimulation, which may have a role in the generation of abnormal pain following nerve injury.
Collapse
Affiliation(s)
- C Grelik
- Department of Pharmacology & Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | |
Collapse
|
15
|
Batbayar B, Somogyi J, Zelles T, Fehér E. Immunohistochemical analysis of substance P containing nerve fibres and their contacts with mast cells in the diabetic rat's tongue. ACTA BIOLOGICA HUNGARICA 2004; 54:275-83. [PMID: 14711032 DOI: 10.1556/abiol.54.2003.3-4.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sensory neuropathy is common symptom of the diabetes mellitus and the prevalence of oral lesions is higher in diabetic patients. The distribution of substance P was studied immunohistochemically in streptozotocin induced diabetic rat's tongue. The morphological association of sensory nerves (substance P immunoreactive) with mast cells (nerve fibre-mast cell contact) was monitored. The substance P nerve fibre mast cell contacts were very scanty in control tongue. The number of substance P nerve terminals and mast cells was significantly increased (p < 0.05) in diabetes mellitus after 4 weeks of the treatment compared with the control tongue. The number of mast cell nerve contacts was even more significantly increased (p < 0.001) in diabetes. The distance between nerve fibres and mast cells was about 1 mm and very often less than 200 nm. In some instances, the mast cells were degranulated in the vicinity to nerve fibres. Increased number of mast cell nerve contacts in neurogenic inflammation might cause vasoconstriction and lesions of the oral mucosa, so some disorders such lichen planus, leukoplakia and cancer might frequently develop in diabetes mellitus.
Collapse
Affiliation(s)
- Bayarchimeg Batbayar
- Laboratory of Oral Morphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzoltó u. 58, H-1450 Budapest, Hungary
| | | | | | | |
Collapse
|
16
|
Lever IJ, Grant AD, Pezet S, Gerard NP, Brain SD, Malcangio M. Basal and activity-induced release of substance P from primary afferent fibres in NK1 receptor knockout mice: evidence for negative feedback. Neuropharmacology 2003; 45:1101-10. [PMID: 14614953 DOI: 10.1016/s0028-3908(03)00298-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The concept that NK1 receptors are located pre-junctionally on substance P (SP)-containing nerves, acting as autoreceptors to inhibit SP release, has been suggested, but remains a controversial issue. To further investigate the existence of this receptor on central and peripheral terminals of primary afferent fibres, NK1 receptor knockout mice and an NK1 receptor antagonist were used in nerve-attached tissue preparations. These were the isolated dorsal horn of the spinal cord with dorsal roots attached, and the hairy skin of the hind paw with attached saphenous nerve. The results reveal that in the dorsal horn preparation, basal release of SP is significantly higher in NK1(-/-) mice than NK1(+/+) mice (P<0.05, n=7 mice/strain). However, a difference in SP release evoked in the dorsal horn by electrical stimulation of the dorsal roots or capsaicin application was not observed. In contrast, antidromic electrical stimulation of the saphenous nerve caused a substantially greater release of SP in the skin of NK1(-/-) mice than in NK1(+/+) mice (P<0.05, n=5 to 6 mice/strain). These results provide evidence for the existence of NK1 autoreceptors on sensory nerves in skin, which may be relevant to the modulation of their peripheral pathophysiological effector functions.
Collapse
Affiliation(s)
- Isobel J Lever
- Centre for Neuroscience, Hodgkin Building, Guy's Campus, King's College, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
17
|
Ramien M, Ruocco I, Cuello AC, St-Louis M, Ribeiro-Da-Silva A. Parasympathetic nerve fibers invade the upper dermis following sensory denervation of the rat lower lip skin. J Comp Neurol 2003; 469:83-95. [PMID: 14689474 DOI: 10.1002/cne.10998] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The sympathetic division of the autonomic nervous system is known to play a role in the genesis of neuropathic pain. In the skin of the rat lower lip (hairy skin), sympathetic and parasympathetic fibers normally innervate the same blood vessels in the lower dermis but do not occur in the upper dermis. However, we have shown that sympathetic fiber migration into the upper dermis occurs following mental nerve lesions (Ruocco et al. [2000] J. Comp. Neurol. 422:287-296). As sensory denervation has a dramatic effect on sympathetic fiber innervation patterns in the rat lower lip skin, we decided to investigate the possible changes in the other autonomic fiber type in the skin-the parasympathetic fiber. Sensory denervation of the rat lower lip was achieved by bilateral transection of the mental nerve, and animals were allowed to recover for 1-8 weeks. Lower lip tissue was processed for double-labeling light microscopic immunocytochemistry (ICC), using antibodies against substance P (SP), which labels a subpopulation of peptidergic sensory fibers, and against the vesicular acetycholine transporter (VAChT), as a marker for parasympathetic fibers. In sham-operated rats, SP-immunoreactive (IR) sensory fibers were found in the epidermis and upper and lower dermal regions, whereas VAChT-IR fibers were confined to the lower dermis. Mental nerve lesions induced the gradual disappearance of SP-IR fibers from all skin layers accompanied by the progressive migration of VAChT-IR fibers into the upper dermis. Cholinergic fiber migration was evident by the second week post surgery, and the ectopic innervation of the upper dermis by these fibers persisted even at the last time point studied (8 weeks) when SP-IR fibers have completely regrown. VAChT-IR fibers were observed in the upper dermis, well above the opening of the sebaceous glands into the hair follicles. These results show that considerable changes occur in the innervation patterns of parasympathetic fibers following mental nerve lesions.
Collapse
Affiliation(s)
- Michele Ramien
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|