1
|
Bordia T, Zahr NM. The Inferior Colliculus in Alcoholism and Beyond. Front Syst Neurosci 2020; 14:606345. [PMID: 33362482 PMCID: PMC7759542 DOI: 10.3389/fnsys.2020.606345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Post-mortem neuropathological and in vivo neuroimaging methods have demonstrated the vulnerability of the inferior colliculus to the sequelae of thiamine deficiency as occurs in Wernicke-Korsakoff Syndrome (WKS). A rich literature in animal models ranging from mice to monkeys-including our neuroimaging studies in rats-has shown involvement of the inferior colliculi in the neural response to thiamine depletion, frequently accomplished with pyrithiamine, an inhibitor of thiamine metabolism. In uncomplicated alcoholism (i.e., absent diagnosable neurological concomitants), the literature citing involvement of the inferior colliculus is scarce, has nearly all been accomplished in preclinical models, and is predominately discussed in the context of ethanol withdrawal. Our recent work using novel, voxel-based analysis of structural Magnetic Resonance Imaging (MRI) has demonstrated significant, persistent shrinkage of the inferior colliculus using acute and chronic ethanol exposure paradigms in two strains of rats. We speculate that these consistent findings should be considered from the perspective of the inferior colliculi having a relatively high CNS metabolic rate. As such, they are especially vulnerable to hypoxic injury and may be provide a common anatomical link among a variety of disparate insults. An argument will be made that the inferior colliculi have functions, possibly related to auditory gating, necessary for awareness of the external environment. Multimodal imaging including diffusion methods to provide more accurate in vivo visualization and quantification of the inferior colliculi may clarify the roles of brain stem nuclei such as the inferior colliculi in alcoholism and other neuropathologies marked by altered metabolism.
Collapse
Affiliation(s)
- Tanuja Bordia
- Neuroscience Program, SRI International, Menlo Park, CA, United States
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
2
|
Beebe NL, Noftz WA, Schofield BR. Perineuronal nets and subtypes of GABAergic cells differentiate auditory and multisensory nuclei in the intercollicular area of the midbrain. J Comp Neurol 2020; 528:2695-2707. [PMID: 32304096 DOI: 10.1002/cne.24926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/10/2022]
Abstract
The intercollicular region, which lies between the inferior and superior colliculi in the midbrain, contains neurons that respond to auditory, visual, and somatosensory stimuli. Golgi studies have been used to parse this region into three distinct nuclei: the intercollicular tegmentum (ICt), the rostral pole of the inferior colliculus (ICrp), and the nucleus of the brachium of the IC (NBIC). Few reports have focused on these nuclei, especially the ICt and the ICrp, possibly due to lack of a marker that distinguishes these areas and is compatible with modern methods. Here, we found that staining for GABAergic cells and perineuronal nets differentiates these intercollicular nuclei in guinea pigs. Further, we found that the proportions of four subtypes of GABAergic cells differentiate intercollicular nuclei from each other and from adjacent inferior collicular subdivisions. Our results support earlier studies that suggest distinct morphology and functions for intercollicular nuclei, and provide staining methods that differentiate intercollicular nuclei and are compatible with most modern techniques. We hope that this will help future studies to further characterize the intercollicular region.
Collapse
Affiliation(s)
- Nichole L Beebe
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - William A Noftz
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Biomedical Sciences Program, Kent State University, Kent, Ohio, USA
| | - Brett R Schofield
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Biomedical Sciences Program, Kent State University, Kent, Ohio, USA
| |
Collapse
|
3
|
Zurita H, Rock C, Perkins J, Apicella AJ. A Layer-specific Corticofugal Input to the Mouse Superior Colliculus. Cereb Cortex 2019; 28:2817-2833. [PMID: 29077796 DOI: 10.1093/cercor/bhx161] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
In the auditory cortex (AC), corticofugal projections arise from each level of the auditory system and are considered to provide feedback "loops" important to modulate the flow of ascending information. It is well established that the cortex can influence the response of neurons in the superior colliculus (SC) via descending corticofugal projections. However, little is known about the relative contribution of different pyramidal neurons to these projections in the SC. We addressed this question by taking advantage of anterograde and retrograde neuronal tracing to directly examine the laminar distribution, long-range projections, and electrophysiological properties of pyramidal neurons projecting from the AC to the SC of the mouse brain. Here we show that layer 5 cortico-superior-collicular pyramidal neurons act as bandpass filters, resonating with a broad peak at ∼3 Hz, whereas layer 6 neurons act as low-pass filters. The dissimilar subthreshold properties of layer 5 and layer 6 cortico-superior-collicular pyramidal neurons can be described by differences in the hyperpolarization-activated cyclic nucleotide-gated cation h-current (Ih). Ih also reduced the summation of short trains of artificial excitatory postsynaptic potentials injected at the soma of layer 5, but not layer 6, cortico-superior-collicular pyramidal neurons, indicating a differential dampening effect of Ih on these neurons.
Collapse
Affiliation(s)
- Hector Zurita
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Crystal Rock
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jessica Perkins
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Alfonso Junior Apicella
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Mellott JG, Beebe NL, Schofield BR. GABAergic and non-GABAergic projections to the superior colliculus from the auditory brainstem. Brain Struct Funct 2018; 223:1923-1936. [PMID: 29302743 DOI: 10.1007/s00429-017-1599-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/22/2017] [Indexed: 02/02/2023]
Abstract
The superior colliculus (SC) contains an auditory space map that is shaped by projections from several subcortical auditory nuclei. Both GABAergic (inhibitory) and excitatory cells contribute to these inputs, but there are contradictory reports regarding the sources of these inputs. We used retrograde tracing techniques in guinea pigs to identify cells in the auditory brainstem that project to the SC. We combined retrograde tracing with immunohistochemistry for glutamic acid decarboxylase (GAD) to identify putative GABAergic cells that participate in this pathway. Following a tracer injection in the SC, the nucleus of the brachium of the inferior colliculus (NBIC) contained the most labeled cells, followed by the inferior colliculus (IC). Smaller populations were observed in the sagulum, paralemniscal area, periolivary nuclei and ventrolateral tegmental nucleus. Overall, only 10% of the retrogradely labeled cells were GAD immunopositive. The presumptive inhibitory cells were observed in the NBIC, IC, superior paraolivary nucleus, sagulum and paralemniscal area. We conclude that the guinea pig SC receives input from a diverse set of auditory brainstem nuclei, some of which provide GABAergic input. These diverse origins of input to the SC likely represent a variety of functions. Inputs from the NBIC and IC likely provide spatial information for guiding orienting behaviors. Inputs from subcollicular nuclei are less likely to provide spatial information; rather, they may provide a shorter route for auditory information to reach the SC, and could generate avoidance or escape responses to an external threat.
Collapse
Affiliation(s)
- Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, USA
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, USA
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, USA.
| |
Collapse
|
5
|
Brace LR, Kraev I, Rostron CL, Stewart MG, Overton PG, Dommett EJ. Auditory responses in a rodent model of Attention Deficit Hyperactivity Disorder. Brain Res 2015; 1629:10-25. [PMID: 26453290 DOI: 10.1016/j.brainres.2015.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 01/30/2023]
Abstract
A central component of Attention Deficit Hyperactivity Disorder (ADHD) is increased distractibility in response to visual and auditory stimuli, which is linked to the superior colliculus (SC). Furthermore, there is now mounting evidence of altered collicular functioning in ADHD and it is proposed that a hyper-responsive SC could mediate symptoms of ADHD, including distractibility. In the present study we conducted a systematic characterisation of the intermediate and deep layers of the SC in the most commonly used and well-validated model of ADHD, the spontaneously hypertensive rat (SHR), building on prior work showing increased distractible behaviour in this strain using visual distractors. We examined collicular-dependent orienting behaviour, local field potential (LFP) and multiunit activity (MUA) in response to auditory stimuli in the anaesthetised rat, and morphological measures, in the SHR in comparison to the Wistar Kyoto (WKY) and Wistar (WIS). We found no evidence of increased distractibility in the behavioural data but suggest that this may arise due to cochlear hearing loss in the SHR. Furthermore, the electrophysiology data indicate that the SC in the SHR may still be hyper-responsive, normalising the amplitude of auditory responses that would otherwise be reduced due to the hearing impairment. The morphological measures of collicular volume, cell density and ratios did not indicate this potential hyper-responsiveness had a basis at the structural level examined. These findings have implications for future use of the SHR in auditory processing studies and may represent a limitation to the validity of this animal model.
Collapse
Affiliation(s)
- Louise R Brace
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Igor Kraev
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Claire L Rostron
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Michael G Stewart
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Paul G Overton
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Eleanor J Dommett
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King׳s College London, London SE1 3QD, UK.
| |
Collapse
|
6
|
Yao JD, Bremen P, Middlebrooks JC. Transformation of spatial sensitivity along the ascending auditory pathway. J Neurophysiol 2015; 113:3098-111. [PMID: 25744891 DOI: 10.1152/jn.01029.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/27/2015] [Indexed: 11/22/2022] Open
Abstract
Locations of sounds are computed in the central auditory pathway based primarily on differences in sound level and timing at the two ears. In rats, the results of that computation appear in the primary auditory cortex (A1) as exclusively contralateral hemifield spatial sensitivity, with strong responses to sounds contralateral to the recording site, sharp cutoffs across the midline, and weak, sound-level-tolerant responses to ipsilateral sounds. We surveyed the auditory pathway in anesthetized rats to identify the brain level(s) at which level-tolerant spatial sensitivity arises. Noise-burst stimuli were varied in horizontal sound location and in sound level. Neurons in the central nucleus of the inferior colliculus (ICc) displayed contralateral tuning at low sound levels, but tuning was degraded at successively higher sound levels. In contrast, neurons in the nucleus of the brachium of the inferior colliculus (BIN) showed sharp, level-tolerant spatial sensitivity. The ventral division of the medial geniculate body (MGBv) contained two discrete neural populations, one showing broad sensitivity like the ICc and one showing sharp sensitivity like A1. Dorsal, medial, and shell regions of the MGB showed fairly sharp spatial sensitivity, likely reflecting inputs from A1 and/or the BIN. The results demonstrate two parallel brainstem pathways for spatial hearing. The tectal pathway, in which sharp, level-tolerant spatial sensitivity arises between ICc and BIN, projects to the superior colliculus and could support reflexive orientation to sounds. The lemniscal pathway, in which such sensitivity arises between ICc and the MGBv, projects to the forebrain to support perception of sound location.
Collapse
Affiliation(s)
- Justin D Yao
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California; Center for Hearing Research, University of California at Irvine, Irvine, California
| | - Peter Bremen
- Department of Otolaryngology, University of California at Irvine, Irvine, California; Center for Hearing Research, University of California at Irvine, Irvine, California
| | - John C Middlebrooks
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California; Department of Otolaryngology, University of California at Irvine, Irvine, California; Center for Hearing Research, University of California at Irvine, Irvine, California; Department of Cognitive Sciences, University of California at Irvine, Irvine, California; Department of Biomedical Engineering, University of California at Irvine, Irvine, California
| |
Collapse
|
7
|
Slee SJ, Young ED. Alignment of sound localization cues in the nucleus of the brachium of the inferior colliculus. J Neurophysiol 2014; 111:2624-33. [PMID: 24671535 DOI: 10.1152/jn.00885.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accurate sound localization is based on three acoustic cues (interaural time and intensity difference and spectral cues from directional filtering by the pinna). In natural listening conditions, every spatial position of a sound source provides a unique combination of these three cues in "natural alignment." Although neurons in the central nucleus (ICC) of the inferior colliculus (IC) are sensitive to multiple cues, they do not favor their natural spatial alignment. We tested for sensitivity to cue alignment in the nucleus of the brachium of the IC (BIN) in unanesthetized marmoset monkeys. The BIN receives its predominant auditory input from ICC and projects to the topographic auditory space map in the superior colliculus. Sound localization cues measured in each monkey were used to synthesize broadband stimuli with aligned and misaligned cues; spike responses to these stimuli were recorded in the BIN. We computed mutual information (MI) between the set of spike rates and the stimuli containing either aligned or misaligned cues. The results can be summarized as follows: 1) BIN neurons encode more information about auditory space when cues are aligned compared with misaligned. 2) Significantly more units prefer aligned cues in the BIN than in ICC. 3) An additive model based on summing the responses to stimuli with the localization cues varying individually accurately predicts the alignment preference with all cues varying. Overall, the results suggest that the BIN is the first site in the ascending mammalian auditory system that is tuned to natural combinations of sound localization cues.
Collapse
Affiliation(s)
- Sean J Slee
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon; and Biomedical Engineering Department, Johns Hopkins University, Baltimore, Maryland
| | - Eric D Young
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
8
|
Dutta A, Gutfreund Y. Saliency mapping in the optic tectum and its relationship to habituation. Front Integr Neurosci 2014; 8:1. [PMID: 24474908 PMCID: PMC3893637 DOI: 10.3389/fnint.2014.00001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/02/2014] [Indexed: 12/02/2022] Open
Abstract
Habituation of the orienting response has long served as a model system for studying fundamental psychological phenomena such as learning, attention, decisions, and surprise. In this article, we review an emerging hypothesis that the evolutionary role of the superior colliculus (SC) in mammals or its homolog in birds, the optic tectum (OT), is to select the most salient target and send this information to the appropriate brain regions to control the body and brain orienting responses. Recent studies have begun to reveal mechanisms of how saliency is computed in the OT/SC, demonstrating a striking similarity between mammals and birds. The saliency of a target can be determined by how different it is from the surrounding objects, by how different it is from its history (that is habituation) and by how relevant it is for the task at hand. Here, we will first review evidence, mostly from primates and barn owls, that all three types of saliency computations are linked in the OT/SC. We will then focus more on neural adaptation in the OT and its possible link to temporal saliency and habituation.
Collapse
Affiliation(s)
- Arkadeb Dutta
- Rappaport Family Institute for Research in the Medical Sciences, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| | - Yoram Gutfreund
- Rappaport Family Institute for Research in the Medical Sciences, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| |
Collapse
|
9
|
Linear processing of interaural level difference underlies spatial tuning in the nucleus of the brachium of the inferior colliculus. J Neurosci 2013; 33:3891-904. [PMID: 23447600 DOI: 10.1523/jneurosci.3437-12.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The spatial location of sounds is an important aspect of auditory perception, but the ways in which space is represented are not fully understood. No space map has been found within the primary auditory pathway. However, a space map has been found in the nucleus of the brachium of the inferior colliculus (BIN), which provides a major auditory projection to the superior colliculus. We measured the spectral processing underlying auditory spatial tuning in the BIN of unanesthetized marmoset monkeys. Because neurons in the BIN respond poorly to tones and are broadly tuned, we used a broadband stimulus with random spectral shapes (RSSs) from which both spatial receptive fields and frequency sensitivity can be derived. Responses to virtual space (VS) stimuli, based on the animal's own ear acoustics, were compared with the predictions of a weight-function model of responses to the RSS stimuli. First-order (linear) weight functions had broad spectral tuning (approximately three octaves) and were excitatory in the contralateral ear, inhibitory in the ipsilateral ear, and biased toward high frequencies. Responses to interaural time differences and spectral cues were relatively weak. In cross-validation tests, the first-order RSS model accurately predicted the measured VS tuning curves in the majority of neurons, but was inaccurate in 25% of neurons. In some cases, second-order weighting functions led to significant improvements. Finally, we found a significant correlation between the degree of binaural weight asymmetry and the best azimuth. Overall, the results suggest that linear processing of interaural level difference underlies spatial tuning in the BIN.
Collapse
|
10
|
Chabot N, Mellott JG, Hall AJ, Tichenoff EL, Lomber SG. Cerebral origins of the auditory projection to the superior colliculus of the cat. Hear Res 2013; 300:33-45. [PMID: 23500650 DOI: 10.1016/j.heares.2013.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/08/2013] [Accepted: 02/21/2013] [Indexed: 01/24/2023]
Abstract
The superior colliculus (SC) is critical for directing accurate head and eye movements to visual and acoustic targets. In visual cortex, areas involved in orienting of the head and eyes to a visual stimulus have direct projections to the SC. In auditory cortex of the cat, four areas have been identified to be critical for the accurate orienting of the head and body to an acoustic stimulus. These areas include primary auditory cortex (A1), the posterior auditory field (PAF), the dorsal zone of auditory cortex (DZ), and the auditory field of the anterior ectosylvian sulcus (fAES). Therefore, we hypothesized that these four regions of auditory cortex would have direct projections to the SC. To test this hypothesis, deposits of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) were made into the superficial and deep layers of the SC to label, by means of retrograde transport, the auditory cortical origins of the corticotectal pathway. Bilateral examination of auditory cortex revealed that the vast majority of the labeled cells were located in the hemisphere ipsilateral to the SC injection. In ipsilateral auditory cortex, nearly all the labeled neurons were found in the infragranular layers, predominately in layer V. The largest population of labeled cells was located in the fAES. Few labeled neurons were identified in A1, PAF, or DZ. Thus, in contrast to the visual system, only one of the auditory cortical areas involved in orienting to an acoustic stimulus has a strong direct projection to the SC. Sound localization signals processed in primary (A1) and other non-primary (PAF and DZ) auditory cortices may be transmitted to the SC via a multi-synaptic corticotectal network.
Collapse
Affiliation(s)
- Nicole Chabot
- Cerebral Systems Laboratory, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | | | | | |
Collapse
|
11
|
Slee SJ, Young ED. Information conveyed by inferior colliculus neurons about stimuli with aligned and misaligned sound localization cues. J Neurophysiol 2011; 106:974-85. [PMID: 21653729 PMCID: PMC3154809 DOI: 10.1152/jn.00384.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/27/2011] [Indexed: 11/22/2022] Open
Abstract
Previous studies have demonstrated that single neurons in the central nucleus of the inferior colliculus (ICC) are sensitive to multiple sound localization cues. We investigated the hypothesis that ICC neurons are specialized to encode multiple sound localization cues that are aligned in space (as would naturally occur from a single broadband sound source). Sound localization cues including interaural time differences (ITDs), interaural level differences (ILDs), and spectral shapes (SSs) were measured in a marmoset monkey. Virtual space methods were used to generate stimuli with aligned and misaligned combinations of cues while recording in the ICC of the same monkey. Mutual information (MI) between spike rates and stimuli for aligned versus misaligned cues were compared. Neurons with best frequencies (BFs) less than ∼11 kHz mostly encoded information about a single sound localization cue, ITD or ILD depending on frequency, consistent with the dominance of ear acoustics by either ITD or ILD at those frequencies. Most neurons with BFs >11 kHz encoded information about multiple sound localization cues, usually ILD and SS, and were sensitive to their alignment. In some neurons MI between stimuli and spike responses was greater for aligned cues, while in others it was greater for misaligned cues. If SS cues were shifted to lower frequencies in the virtual space stimuli, a similar result was found for neurons with BFs <11 kHz, showing that the cue interaction reflects the spectra of the stimuli and not a specialization for representing SS cues. In general the results show that ICC neurons are sensitive to multiple localization cues if they are simultaneously present in the frequency response area of the neuron. However, the representation is diffuse in that there is not a specialization in the ICC for encoding aligned sound localization cues.
Collapse
Affiliation(s)
- Sean J Slee
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | |
Collapse
|
12
|
Bajo VM, Nodal FR, Bizley JK, King AJ. The non-lemniscal auditory cortex in ferrets: convergence of corticotectal inputs in the superior colliculus. Front Neuroanat 2010; 4:18. [PMID: 20640247 PMCID: PMC2904598 DOI: 10.3389/fnana.2010.00018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/23/2010] [Indexed: 11/19/2022] Open
Abstract
Descending cortical inputs to the superior colliculus (SC) contribute to the unisensory response properties of the neurons found there and are critical for multisensory integration. However, little is known about the relative contribution of different auditory cortical areas to this projection or the distribution of their terminals in the SC. We characterized this projection in the ferret by injecting tracers in the SC and auditory cortex. Large pyramidal neurons were labeled in layer V of different parts of the ectosylvian gyrus after tracer injections in the SC. Those cells were most numerous in the anterior ectosylvian gyrus (AEG), and particularly in the anterior ventral field, which receives both auditory and visual inputs. Labeling was also found in the posterior ectosylvian gyrus (PEG), predominantly in the tonotopically organized posterior suprasylvian field. Profuse anterograde labeling was present in the SC following tracer injections at the site of acoustically responsive neurons in the AEG or PEG, with terminal fields being both more prominent and clustered for inputs originating from the AEG. Terminals from both cortical areas were located throughout the intermediate and deep layers, but were most concentrated in the posterior half of the SC, where peripheral stimulus locations are represented. No inputs were identified from primary auditory cortical areas, although some labeling was found in the surrounding sulci. Our findings suggest that higher level auditory cortical areas, including those involved in multisensory processing, may modulate SC function via their projections into its deeper layers.
Collapse
Affiliation(s)
- Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | | | | | | |
Collapse
|
13
|
Hamada S, Houtani T, Trifonov S, Kase M, Maruyama M, Shimizu JI, Yamashita T, Tomoda K, Sugimoto T. Histological Determination of the Areas Enriched in Cholinergic Terminals and m2 and m3 Muscarinic Receptors in the Mouse Central Auditory System. Anat Rec (Hoboken) 2010; 293:1393-9. [DOI: 10.1002/ar.21186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Virtual adult ears reveal the roles of acoustical factors and experience in auditory space map development. J Neurosci 2008; 28:11557-70. [PMID: 18987192 DOI: 10.1523/jneurosci.0545-08.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Auditory neurons in the superior colliculus (SC) respond preferentially to sounds from restricted directions to form a map of auditory space. The development of this representation is shaped by sensory experience, but little is known about the relative contribution of peripheral and central factors to the emergence of adult responses. By recording from the SC of anesthetized ferrets at different age points, we show that the map matures gradually after birth; the spatial receptive fields (SRFs) become more sharply tuned and topographic order emerges by the end of the second postnatal month. Principal components analysis of the head-related transfer function revealed that the time course of map development is mirrored by the maturation of the spatial cues generated by the growing head and external ears. However, using virtual acoustic space stimuli, we show that these acoustical changes are not by themselves responsible for the emergence of SC map topography. Presenting stimuli to infant ferrets through virtual adult ears did not improve the order in the representation of sound azimuth in the SC. But by using linear discriminant analysis to compare different response properties across age, we found that the SRFs of infant neurons nevertheless became more adult-like when stimuli were delivered through virtual adult ears. Hence, although the emergence of auditory topography is likely to depend on refinements in neural circuitry, maturation of the structure of the SRFs (particularly their spatial extent) can be largely accounted for by changes in the acoustics associated with growth of the head and ears.
Collapse
|
15
|
Aparicio MA, Saldaña E. Tectotectal neurons and projections: a proposal to establish a consistent nomenclature. Anat Rec (Hoboken) 2008; 292:175-7. [PMID: 19089893 DOI: 10.1002/ar.20837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- María Auxiliadora Aparicio
- Laboratory for the Neurobiology of Hearing, Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain
| | | |
Collapse
|
16
|
Nodal FR, Bajo VM, Parsons CH, Schnupp JW, King AJ. Sound localization behavior in ferrets: comparison of acoustic orientation and approach-to-target responses. Neuroscience 2007; 154:397-408. [PMID: 18281159 DOI: 10.1016/j.neuroscience.2007.12.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/06/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
Auditory localization experiments typically either require subjects to judge the location of a sound source from a discrete set of response alternatives or involve measurements of the accuracy of orienting responses made toward the source location. To compare the results obtained by both methods, we trained ferrets by positive conditioning to stand on a platform at the center of a circular arena prior to stimulus presentation and then approach the source of a broadband noise burst delivered from 1 of 12 loudspeakers arranged at 30 degrees intervals in the horizontal plane. Animals were rewarded for making a correct choice. We also obtained a non-categorized measure of localization accuracy by recording head-orienting movements made during the first second following stimulus onset. The accuracy of the approach-to-target responses declined as the stimulus duration was reduced, particularly for lateral and posterior locations, although responses to sounds presented in the frontal region of space and directly behind the animal remained quite accurate. Head movements had a latency of approximately 200 ms and varied systematically in amplitude with stimulus direction. However, the final head bearing progressively undershot the target with increasing eccentricity and rarely exceeded 60 degrees to each side of the midline. In contrast to the approach-to-target responses, the accuracy of the head orienting responses did not change much with stimulus duration, suggesting that the improvement in percent correct scores with longer stimuli was due, at least in part, to re-sampling of the acoustical stimulus after the initial head turn had been made. Nevertheless, for incorrect trials, head orienting responses were more closely correlated with the direction approached by the animals than with the actual target direction, implying that at least part of the neural circuitry for translating sensory spatial signals into motor commands is shared by these two behaviors.
Collapse
Affiliation(s)
- F R Nodal
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | | | | | | | | |
Collapse
|
17
|
Pincherli Castellanos TA, Aitoubah J, Molotchnikoff S, Lepore F, Guillemot JP. Responses of inferior collicular cells to species-specific vocalizations in normal and enucleated rats. Exp Brain Res 2007; 183:341-50. [PMID: 17763846 DOI: 10.1007/s00221-007-1049-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 06/24/2007] [Indexed: 12/21/2022]
Abstract
The inferior colliculus (IC) is an obligatory relay for the ascending and descending auditory pathways. Cells in this brainstem structure not only analyze auditory stimuli but they also play a major role in multi-modal integration of auditory and visual information. The aim of the present study was to determine whether cells in the central nucleus of the inferior colliculus (CNIC) of normal rats respond selectively to complex auditory signals, such as species-specific vocalizations, and compare their responses to those obtained in neonatal bilateral enucleated (P2-P3) adult rats. Extra-cellular recordings were carried out in anesthetized normal and enucleated rats using auditory stimuli (pure tones, broadband noise and vocalizations) presented in free field in a semi-anechoic chamber. The results indicate that most cells in the CNIC of both groups respond selectively to species-specific vocalizations better than to the same but inverted sounds. No significant differences were found between the normal and enucleated rat groups in their responses to broadband noise and pure tones.
Collapse
Affiliation(s)
- T A Pincherli Castellanos
- Département de Psychologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, Canada, H3C 3J7
| | | | | | | | | |
Collapse
|