1
|
Chotard V, Trapani F, Glaziou G, Sermet BS, Yger P, Marre O, Rebsam A. Altered Functional Responses of the Retina in B6 Albino Tyrc/c Mice. Invest Ophthalmol Vis Sci 2024; 65:39. [PMID: 39189994 PMCID: PMC11361382 DOI: 10.1167/iovs.65.10.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
Purpose Mammals with albinism present low visual discrimination ability and different proportions of certain retinal cell subtypes. As the spatial resolution of the retina depends on the visual field sampling by retinal ganglion cells (RGCs) based on the convergence of upstream cell inputs, it could be affected in albinism and thus modify the RGC function. Methods We used the Tyrc/c line, a mouse model of oculocutaneous albinism type 1 (OCA1), carrying a tyrosinase mutation, and previously characterized by a total absence of pigment and severe visual deficits. To assess their retinal function, we recorded the light responses of hundreds of RGCs ex vivo using multi-electrode array (MEA). We estimated the receptive field (RF)-center diameter of Tyr+/c and Tyrc/c RGCs using a checkerboard stimulation before simultaneously stimulating the center and surround of RGC RFs with full-field flashes. Results Following checkerboard stimulation, the RF-center diameters of RGCs were indistinguishable between Tyrc/c and Tyr+/c retinas. Nevertheless, RGCs from Tyrc/c retinas presented more OFF responses to full-field flashes than RGCs from Tyr+/c retinas. Unlike Tyr+/c retinas, very few OFF-center RGCs switched polarity to ON or ON-OFF responses after full-field flashes in Tyrc/c retinas, suggesting a different surround suppression in these retinas. Conclusions The retinal output signal is affected in Tyrc/c retinas, despite intact RF-center diameters of their RGCs. Adaptive mechanisms during development are probably responsible for this change in RGC responses, related to the absence of ocular pigments.
Collapse
Affiliation(s)
- Virginie Chotard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Francesco Trapani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Guilhem Glaziou
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Pierre Yger
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Alexandra Rebsam
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
2
|
Neveu MM, Padhy SK, Ramamurthy S, Takkar B, Jalali S, CP D, Padhi TR, Robson AG. Ophthalmological Manifestations of Oculocutaneous and Ocular Albinism: Current Perspectives. Clin Ophthalmol 2022; 16:1569-1587. [PMID: 35637898 PMCID: PMC9148211 DOI: 10.2147/opth.s329282] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Albinism describes a heterogeneous group of genetically determined disorders characterized by disrupted synthesis of melanin and a range of developmental ocular abnormalities. The main ocular features common to both oculocutaneous albinism (OCA), and ocular albinism (OA) include reduced visual acuity, refractive errors, foveal hypoplasia, congenital nystagmus, iris and fundus hypopigmentation and visual pathway misrouting, but clinical signs vary and there is phenotypic overlap with other pathologies. This study reviews the prevalence, genetics and ocular manifestations of OCA and OA, including abnormal development of the optic chiasm. The role of visual electrophysiology in the detection of chiasmal dysfunction and visual pathway misrouting is emphasized, highlighting how age-associated changes in visual evoked potential (VEP) test results must be considered to enable accurate diagnosis, and illustrated further by the inclusion of novel VEP data in genetically confirmed cases. Differential diagnosis is considered in the context of suspected retinal and other disorders, including rare syndromes that may masquerade as albinism.
Collapse
Affiliation(s)
- Magella M Neveu
- Department Electrophysiology, Moorfields Eye Hospital, London, EC1V 2PD, UK
- Institute of Ophthalmology, University College London, London, UK
| | | | | | - Brijesh Takkar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, India
| | - Subhadra Jalali
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, India
| | - Deepika CP
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, India
| | - Tapas Ranjan Padhi
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Bhubaneswar, India
| | - Anthony G Robson
- Department Electrophysiology, Moorfields Eye Hospital, London, EC1V 2PD, UK
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
3
|
Seruggia D, Josa S, Fernández A, Montoliu L. The structure and function of the mouse tyrosinase locus. Pigment Cell Melanoma Res 2020; 34:212-221. [DOI: 10.1111/pcmr.12942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Davide Seruggia
- Department of Molecular and Cellular Biology National Centre for Biotechnology (CNB‐CSIC) Madrid Madrid Spain
- CIBERER‐ISCIII Madrid Spain
- Division of Hematology/Oncology Boston Children's HospitalHarvard Medical School Boston MA USA
| | - Santiago Josa
- Department of Molecular and Cellular Biology National Centre for Biotechnology (CNB‐CSIC) Madrid Madrid Spain
- CIBERER‐ISCIII Madrid Spain
| | - Almudena Fernández
- Department of Molecular and Cellular Biology National Centre for Biotechnology (CNB‐CSIC) Madrid Madrid Spain
- CIBERER‐ISCIII Madrid Spain
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology National Centre for Biotechnology (CNB‐CSIC) Madrid Madrid Spain
- CIBERER‐ISCIII Madrid Spain
| |
Collapse
|
4
|
Guidance of retinal axons in mammals. Semin Cell Dev Biol 2017; 85:48-59. [PMID: 29174916 DOI: 10.1016/j.semcdb.2017.11.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022]
Abstract
In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision.
Collapse
|
5
|
Marcucci F, Murcia-Belmonte V, Wang Q, Coca Y, Ferreiro-Galve S, Kuwajima T, Khalid S, Ross ME, Mason C, Herrera E. The Ciliary Margin Zone of the Mammalian Retina Generates Retinal Ganglion Cells. Cell Rep 2017; 17:3153-3164. [PMID: 28009286 DOI: 10.1016/j.celrep.2016.11.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/23/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022] Open
Abstract
The retina of lower vertebrates grows continuously by integrating new neurons generated from progenitors in the ciliary margin zone (CMZ). Whether the mammalian CMZ provides the neural retina with retinal cells is controversial. Live imaging of embryonic retina expressing eGFP in the CMZ shows that cells migrate laterally from the CMZ to the neural retina where differentiated retinal ganglion cells (RGCs) reside. Because Cyclin D2, a cell-cycle regulator, is enriched in ventral CMZ, we analyzed Cyclin D2-/- mice to test whether the CMZ is a source of retinal cells. Neurogenesis is diminished in Cyclin D2 mutants, leading to a reduction of RGCs in the ventral retina. In line with these findings, in the albino retina, the decreased production of ipsilateral RGCs is correlated with fewer Cyclin D2+ cells. Together, these results implicate the mammalian CMZ as a neurogenic site that produces RGCs and whose proper generation depends on Cyclin D2 activity.
Collapse
Affiliation(s)
- Florencia Marcucci
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Veronica Murcia-Belmonte
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández), 03550 Sant Joan d'Alacant, Spain
| | - Qing Wang
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yaiza Coca
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández), 03550 Sant Joan d'Alacant, Spain
| | - Susana Ferreiro-Galve
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández), 03550 Sant Joan d'Alacant, Spain
| | - Takaaki Kuwajima
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sania Khalid
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Carol Mason
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Eloisa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández), 03550 Sant Joan d'Alacant, Spain.
| |
Collapse
|
6
|
Mohammad S, Gottlob I, Sheth V, Pilat A, Lee H, Pollheimer E, Proudlock FA. Characterization of Abnormal Optic Nerve Head Morphology in Albinism Using Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2015. [PMID: 26200501 DOI: 10.1167/iovs.15-16856] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize abnormalities in three-dimensional optic nerve head (ONH) morphology in people with albinism (PWA) using spectral-domain optical coherence tomography (SD-OCT) and to determine whether ONH abnormalities relate to other retinal and clinical abnormalities. METHODS Spectral-domain OCT was used to obtain three-dimensional images from 56 PWA and 60 age- and sex-matched control subjects. B-scans were corrected for nystagmus-associated motion artefacts. Disc, cup, and rim ONH dimensions and peripapillary retinal nerve fiber layer (ppRNFL) thickness were calculated using Copernicus and ImageJ software. RESULTS Median disc areas were similar in PWA (median = 1.65 mm2) and controls (1.71 mm2, P = 0.128), although discs were significantly elongated horizontally in PWA (P < 0.001). In contrast, median optic cup area in PWA (0.088 mm2) was 23.7% of that in controls (0.373 mm2, P < 0.001), with 39.4% of eyes in PWA not demonstrating a measurable optic cup. This led to significantly smaller cup to disc ratios in PWA (P < 0.001). Median rim volume in PWA (0.273 mm3) was 136.6% of that in controls (0.200 mm3). The ppRNFL was significantly thinner in PWA compared with controls (P < 0.001), especially in the temporal quadrant. In PWA, ppRNFL thickness was correlated to ganglion cell thickness at the central fovea (P = 0.007). Several ONH abnormalities, such as cup to disc ratio, were related to higher refractive errors in PWA. CONCLUSIONS In PWA, ocular maldevelopment is not just limited to the retina but also involves the ONH. Reduced ppRNFL thickness is consistent with previous reports of reduced ganglion cell numbers in PWA. The thicker rim volumes may be a result of incomplete maturation of the ONH.
Collapse
|
7
|
Karasawa K, Tanaka A, Jung K, Matsuda A, Okamoto N, Oida K, Ebihara N, Ohmori K, Matsuda H. Retinal degeneration and rd1 mutation in NC/Tnd mice-a human atopic dermatitis model. Curr Eye Res 2011; 36:350-7. [PMID: 21275519 DOI: 10.3109/02713683.2010.542268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE NC/Tnd mice, a spontaneous model for human atopic dermatitis, are also useful animal models for various corneal disorders accompanying allergic diseases. The purposes of the current study were to investigate the development of retinal degeneration in NC/Tnd mice. MATERIALS AND METHODS Histological examination was performed to determine time-dependent alterations of the retina in NC/Tnd from 8 to 28 days of age. Apoptotic cells were determined by TUNEL assay. Retinal function was examined by electroretinography. Fundoscopy was performed in NC/Tnd mice at 8 weeks of age. Melanin contents in whole-eye extracts were measured by spectrophotometry. Since the retinal degeneration 1 (rd1) mutation in the rod photoreceptor cyclic guanosine monophosphate phosphodiesterase 6 β-subunit (Pde6b(rd1)) has been identified in laboratory mice, the possible existence of the rd1 mutation was analyzed with PCR genotyping and gene sequencing. C57BL/6, WB, and C3H/HeN mice were used as controls. RESULTS Histological examination revealed rapid postnatal retinal degeneration in NC/Tnd mice. The number of apoptotic cells in the outer nuclear layer (ONL) increased with aging, and finally the ONL disappeared. Histological abnormality was not obvious in the inner nuclear layer or the ganglion cell layer. Electroretinography shows no response in adult NC/Tnd mice. Fundoscopic observation revealed hypopigmentation in the retina, and melanin contents in the eye were significantly reduced when compared with other inbred strains. Insertion in the rd1 allele was confirmed and a nonsense mutation of Pde6b(rd1) gene was determined in NC/Tnd mice. CONCLUSIONS NC/Tnd mice also preserve the Pde6b(rd1) gene mutation resulting in the rapid postnatal retinal degeneration similar to that in C3H/HeN mice. Unlike C3H/HeN mice, since melanin contents of the retina in NC/Tnd mice was decreased, unknown defects may be present in the process of melanin composition in retinal pigment epithelial cells during fetal development of NC/Tnd mice.
Collapse
Affiliation(s)
- Kaoru Karasawa
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Division of Animal Life Science, Graduate School, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ferreiro-Galve S, Rodríguez-Moldes I, Anadón R, Candal E. Patterns of cell proliferation and rod photoreceptor differentiation in shark retinas. J Chem Neuroanat 2010; 39:1-14. [PMID: 19822206 DOI: 10.1016/j.jchemneu.2009.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 11/27/2022]
Abstract
We studied the pattern of cell proliferation and its relation with photoreceptor differentiation in the embryonic and postembryonic retina of two elasmobranchs, the lesser spotted dogfish (Scyliorhinus canicula) and the brown shyshark (Haploblepharus fuscus). Cell proliferation was studied with antibodies raised against proliferating cell nuclear antigen (PCNA) and phospho-histone-H3, and early photoreceptor differentiation with an antibody raised against rod opsin. As regards the spatiotemporal distribution of PCNA-immunoreactive cells, our results reveal a gradual loss of PCNA that coincides in a spatiotemporal sequence with the gradient of layer maturation. The presence of a peripheral growth zone containing pure-proliferating retinal progenitors (the ciliary marginal zone) in the adult retina matches with the general pattern observed in other groups of gnathostomous fishes. However, in the shark retina the generation of new cells is not restricted to the ciliary marginal zone but also occurs in retinal areas that contain differentiated cells: (1) in a transition zone that lies between the pure-proliferating ciliary marginal zone and the central (layered) retina; (2) in the differentiating central area up to prehatching embryos where large amounts of PCNA-positive cells were observed even in the inner and outer nuclear layers; (3) and in the retinal pigment epithelium of prehatching embryos. Rod opsin immunoreactivity was observed in both species when the outer plexiform layer begins to be recognized in the central retina and, as we previously observed in trout, coincided temporally with the weakening in PCNA labelling.
Collapse
Affiliation(s)
- Susana Ferreiro-Galve
- Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
9
|
Murillo-Cuesta S, Contreras J, Zurita E, Cediel R, Cantero M, Varela-Nieto I, Montoliu L. Melanin precursors prevent premature age-related and noise-induced hearing loss in albino mice. Pigment Cell Melanoma Res 2009; 23:72-83. [PMID: 19843244 DOI: 10.1111/j.1755-148x.2009.00646.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Strial melanocytes are required for normal development and correct functioning of the cochlea. Hearing deficits have been reported in albino individuals from different species, although melanin appears to be not essential for normal auditory function. We have analyzed the auditory brainstem responses (ABR) of two transgenic mice: YRT2, carrying the entire mouse tyrosinase (Tyr) gene expression-domain and undistinguishable from wild-type pigmented animals; and TyrTH, non-pigmented but ectopically expressing tyrosine hydroxylase (Th) in melanocytes, which generate the precursor metabolite, L-DOPA, but not melanin. We show that young albino mice present a higher prevalence of profound sensorineural deafness and a poorer recovery of auditory thresholds after noise-exposure than transgenic mice. Hearing loss was associated with absence of cochlear melanin or its precursor metabolites and latencies of the central auditory pathway were unaltered. In summary, albino mice show impaired hearing responses during ageing and after noise damage when compared to YRT2 and TyrTH transgenic mice, which do not show the albino-associated ABR alterations. These results demonstrate that melanin precursors, such as L-DOPA, have a protective role in the mammalian cochlea in age-related and noise-induced hearing loss.
Collapse
Affiliation(s)
- Silvia Murillo-Cuesta
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Zareen N, Khan MY, Ali Minhas L. Derangement of chick embryo retinal differentiation caused by radiofrequency electromagnetic fields. Congenit Anom (Kyoto) 2009; 49:15-9. [PMID: 19243412 DOI: 10.1111/j.1741-4520.2008.00214.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The possible adverse effects of radiofrequency electromagnetic fields (EMF) emitted from mobile phones present a major public concern. Biological electrical activities of the human body are vulnerable to interference from oscillatory aspects of EMF, which affect fundamental cellular activities, in particular, the highly active development process of embryos. Some studies highlight the possible health hazards of EMF, while others contest the hypothesis of biological impact of EMF. The present study was designed to observe the histomorphological effects of EMF emitted by a mobile phone on the retinae of developing chicken embryos. Fertilized chicken eggs were exposed to a ringing mobile set on silent tone placed in the incubator at different ages of development. After exposure for the scheduled duration the retinae of the embryos were dissected out and processed for histological examination. The control and experimental embryos were statistically compared for retinal thickness and epithelial pigmentation grades. Contrasting effects of EMF on the retinal histomorphology were noticed, depending on the duration of exposure. The embryos exposed for 10 post-incubation days exhibited decreased retinal growth and mild pigmentation of the epithelium. Growth retardation reallocated to growth enhancement on increasing EMF exposure for 15 post-incubation days, with a shift of pigmentation grade from mild to intense. We conclude that EMF emitted by a mobile phone cause derangement of chicken embryo retinal differentiation.
Collapse
Affiliation(s)
- Nusrat Zareen
- College of Physicians and Surgeons, Regional Centre, Islamabad, Pakistan.
| | | | | |
Collapse
|
11
|
Lavado A, Jeffery G, Tovar V, de la Villa P, Montoliu L. Ectopic expression of tyrosine hydroxylase in the pigmented epithelium rescues the retinal abnormalities and visual function common in albinos in the absence of melanin. J Neurochem 2006; 96:1201-11. [PMID: 16445854 DOI: 10.1111/j.1471-4159.2006.03657.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Albino mammals have profound retinal abnormalities, including photoreceptor deficits and misrouted hemispheric pathways into the brain, demonstrating that melanin or its precursors are required for normal retinal development. Tyrosinase, the primary enzyme in melanin synthesis commonly mutated in albinism, oxidizes l-tyrosine to l-dopaquinone using l-3,4-dihydroxyphenylalanine (L-DOPA) as an intermediate product. L-DOPA is known to signal cell cycle exit during retinal development and plays an important role in the regulation of retinal development. Here, we have mimicked L-DOPA production by ectopically expressing tyrosine hydroxylase in mouse albino retinal pigment epithelium cells. Tyrosine hydroxylase can only oxidize l-tyrosine to L-DOPA without further progression towards melanin. The resulting transgenic animals remain phenotypically albino, but their visual abnormalities are corrected, with normal photoreceptor numbers and hemispheric pathways and improved visual function, assessed by an increase of spatial acuity. Our results demonstrate definitively that only early melanin precursors, L-DOPA or its metabolic derivatives, are vital in the appropriate development of mammalian retinae. They further highlight the value of substituting independent but biochemically related enzymes to overcome developmental abnormalities.
Collapse
Affiliation(s)
- Alfonso Lavado
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Molecular and Cellular Biology, Campus de Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
12
|
Tibber MS, Whitmore AV, Jeffery G. Cell division and cleavage orientation in the developing retina are regulated by L-DOPA. J Comp Neurol 2006; 496:369-81. [PMID: 16566005 DOI: 10.1002/cne.20920] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent studies have highlighted a potential link between the cleavage orientation of a dividing neuroblast and the regulation of daughter cell fate in the developing vertebrate retina. There is evidence to suggest that this process is at least partially regulated by the presence of the retinal pigment epithelium (RPE) and/or RPE-derived factors. In addition to a lack of melanin in the RPE, the albino retina is characterized by abnormal patterns of cell proliferation and cellular organization during development as well as cell-type specific deficits in the adult. We examined mitotic spindle orientation in vivo in developing pigmented and albino rat retinae along with other parameters of cell division to determine whether RPE abnormalities in the albino influence these aspects of retinal development. In the albino, mitotic indices were elevated, an excess of cells remained in the cell cycle, dividing cells were not so tightly apposed to the ventricular margin, and an excessive proportion of divisions was vertically oriented (i.e., with the mitotic spindle aligned perpendicular to the plane of the neuroepithelium). Administration of L-DOPA (a melanin precursor found at reduced concentrations in the hypopigmented eye) regulated the distribution of spindle orientations and reduced levels of mitosis in a manner consistent with an endogenous role in the control of these processes. These findings highlight the multiple roles that L-DOPA plays in the regulation of retinal development and cast light on the diversity of anatomical abnormalities found in the albino visual system. J. Comp. Neurol. 496:369-381, 2006. (c) 2006 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Marc S Tibber
- Institute of Ophthalmology, University College London, UK
| | | | | |
Collapse
|