1
|
Jeczmien-Lazur JS, Sanetra AM, Pradel K, Izowit G, Chrobok L, Palus-Chramiec K, Piggins HD, Lewandowski MH. Metabolic cues impact non-oscillatory intergeniculate leaflet and ventral lateral geniculate nucleus: standard versus high-fat diet comparative study. J Physiol 2023; 601:979-1016. [PMID: 36661095 DOI: 10.1113/jp283757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) are subcortical structures involved in entrainment of the brain's circadian system to photic and non-photic (e.g. metabolic and arousal) cues. Both receive information about environmental light from photoreceptors, exhibit infra-slow oscillations (ISO) in vivo, and connect to the master circadian clock. Although current evidence demonstrates that the IGL/VLG communicate metabolic information and are crucial for entrainment of circadian rhythms to time-restricted feeding, their sensitivity to food intake-related peptides has not been investigated yet. We examined the effect of metabolically relevant peptides on the spontaneous activity of IGL/VLG neurons. Using ex vivo and in vivo electrophysiological recordings as well as in situ hybridisation, we tested potential sensitivity of the IGL/VLG to anorexigenic and orexigenic peptides, such as cholecystokinin, glucagon-like peptide 1, oxyntomodulin, peptide YY, orexin A and ghrelin. We explored neuronal responses to these drugs during day and night, and in standard vs. high-fat diet conditions. We found that IGL/VLG neurons responded to all the substances tested, except peptide YY. Moreover, more neurons responded to anorexigenic drugs at night, while a high-fat diet affected the IGL/VLG sensitivity to orexigenic peptides. Interestingly, ISO neurons responded to light and orexin A, but did not respond to the other food intake-related peptides. In contrast, non-ISO cells were activated by metabolic peptides, with only some being responsive to light. Our results show for the first time that peptides involved in the body's energy homeostasis stimulate the thalamus and suggest functional separation of the IGL/VLG cells. KEY POINTS: The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) of the rodent thalamus process various signals and participate in circadian entrainment. In both structures, cells exhibiting infra-slow oscillatory activity as well as non-rhythmically firing neurons being observed. Here, we reveal that only one of these two groups of cells responds to anorexigenic (cholecystokinin, glucagon-like peptide 1 and oxyntomodulin) and orexigenic (ghrelin and orexin A) peptides. Neuronal responses vary depending on the time of day (day vs. night) and on the diet (standard vs. high-fat diet). Additionally, we visualised receptors to the tested peptides in the IGL/VLG using in situ hybridisation. Our results suggest that two electrophysiologically different subpopulations of IGL/VLG neurons are involved in two separate functions: one related to the body's energy homeostasis and one associated with the subcortical visual system.
Collapse
Affiliation(s)
- Jagoda S Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anna M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Gabriela Izowit
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.,School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
2
|
Brock O, Gelegen C, Sully P, Salgarella I, Jager P, Menage L, Mehta I, Jęczmień-Łazur J, Djama D, Strother L, Coculla A, Vernon AC, Brickley S, Holland P, Cooke SF, Delogu A. A Role for Thalamic Projection GABAergic Neurons in Circadian Responses to Light. J Neurosci 2022; 42:9158-9179. [PMID: 36280260 PMCID: PMC9761691 DOI: 10.1523/jneurosci.0112-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022] Open
Abstract
The thalamus is an important hub for sensory information and participates in sensory perception, regulation of attention, arousal and sleep. These functions are executed primarily by glutamatergic thalamocortical neurons that extend axons to the cortex and initiate cortico-thalamocortical connectional loops. However, the thalamus also contains projection GABAergic neurons that do not extend axons toward the cortex. Here, we have harnessed recent insight into the development of the intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (LGv) to specifically target and manipulate thalamic projection GABAergic neurons in female and male mice. Our results show that thalamic GABAergic neurons of the IGL and LGv receive retinal input from diverse classes of retinal ganglion cells (RGCs) but not from the M1 intrinsically photosensitive retinal ganglion cell (ipRGC) type. We describe the synergistic role of the photoreceptor melanopsin and the thalamic neurons of the IGL/LGv in circadian entrainment to dim light. We identify a requirement for the thalamic IGL/LGv neurons in the rapid changes in vigilance states associated with circadian light transitions.SIGNIFICANCE STATEMENT The intergeniculate leaflet (IGL) and ventral lateral geniculate nucleus (LGv) are part of the extended circadian system and mediate some nonimage-forming visual functions. Here, we show that each of these structures has a thalamic (dorsal) as well as prethalamic (ventral) developmental origin. We map the retinal input to thalamus-derived cells in the IGL/LGv complex and discover that while RGC input is dominant, this is not likely to originate from M1ipRGCs. We implicate thalamic cells in the IGL/LGv in vigilance state transitions at circadian light changes and in overt behavioral entrainment to dim light, the latter exacerbated by concomitant loss of melanopsin expression.
Collapse
Affiliation(s)
- Olivier Brock
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Cigdem Gelegen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Peter Sully
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Irene Salgarella
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Polona Jager
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Lucy Menage
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Ishita Mehta
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Jagoda Jęczmień-Łazur
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Deyl Djama
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- Department of Life Sciences and Centre for Neurotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lauren Strother
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Angelica Coculla
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Stephen Brickley
- Department of Life Sciences and Centre for Neurotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philip Holland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- Wolfson Centre for Age Related Disease, King's College London, London SE1 1UL, United Kingdom
| | - Samuel F Cooke
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| |
Collapse
|
3
|
Govek KW, Chen S, Sgourdou P, Yao Y, Woodhouse S, Chen T, Fuccillo MV, Epstein DJ, Camara PG. Developmental trajectories of thalamic progenitors revealed by single-cell transcriptome profiling and Shh perturbation. Cell Rep 2022; 41:111768. [PMID: 36476860 PMCID: PMC9880597 DOI: 10.1016/j.celrep.2022.111768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
The thalamus is the principal information hub of the vertebrate brain, with essential roles in sensory and motor information processing, attention, and memory. The complex array of thalamic nuclei develops from a restricted pool of neural progenitors. We apply longitudinal single-cell RNA sequencing and regional abrogation of Sonic hedgehog (Shh) to map the developmental trajectories of thalamic progenitors, intermediate progenitors, and post-mitotic neurons as they coalesce into distinct thalamic nuclei. These data reveal that the complex architecture of the thalamus is established early during embryonic brain development through the coordinated action of four cell differentiation lineages derived from Shh-dependent and -independent progenitors. We systematically characterize the gene expression programs that define these thalamic lineages across time and demonstrate how their disruption upon Shh depletion causes pronounced locomotor impairment resembling infantile Parkinson's disease. These results reveal key principles of thalamic development and provide mechanistic insights into neurodevelopmental disorders resulting from thalamic dysfunction.
Collapse
Affiliation(s)
- Kiya W. Govek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Sixing Chen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Paraskevi Sgourdou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Yao Yao
- Department of Animal and Dairy Science, Regenerative Bioscience Center, University of Georgia, 425 River Road, Athens, GA 30602, USA
| | - Steven Woodhouse
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Tingfang Chen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Marc V. Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas J. Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Correspondence: (D.J.E.), (P.G.C.)
| | - Pablo G. Camara
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Lead contact,Correspondence: (D.J.E.), (P.G.C.)
| |
Collapse
|
4
|
Morona R, Bandín S, López JM, Moreno N, González A. Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis. J Comp Neurol 2020; 528:2361-2403. [PMID: 32162311 DOI: 10.1002/cne.24899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
The early patterning of the thalamus during embryonic development defines rostral and caudal progenitor domains, which are conserved from fishes to mammals. However, the subsequent developmental mechanisms that lead to the adult thalamic configuration have only been investigated for mammals and other amniotes. In this study, we have analyzed in the anuran amphibian Xenopus laevis (an anamniote vertebrate), through larval and postmetamorphic development, the progressive regional expression of specific markers for the rostral (GABA, GAD67, Lhx1, and Nkx2.2) and caudal (Gbx2, VGlut2, Lhx2, Lhx9, and Sox2) domains. In addition, the regional distributions at different developmental stages of other markers such as calcium binding proteins and neuropeptides, helped the identification of thalamic nuclei. It was observed that the two embryonic domains were progressively specified and compartmentalized during premetamorphosis, and cell subpopulations characterized by particular gene expression combinations were located in periventricular, intermediate and superficial strata. During prometamorphosis, three dorsoventral tiers formed from the caudal domain and most pronuclei were defined, which were modified into the definitive nuclear configuration through the metamorphic climax. Mixed cell populations originated from the rostral and caudal domains constitute most of the final nuclei and allowed us to propose additional subdivisions in the adult thalamus, whose main afferent and efferent connections were assessed by tracing techniques under in vitro conditions. This study corroborates shared features of early gene expression patterns in the thalamus between Xenopus and mouse, however, the dynamic changes in gene expression observed at later stages in the amphibian support mechanisms different from those of mammals.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Sandra Bandín
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
5
|
Pienaar A, Walmsley L, Hayter E, Howarth M, Brown TM. Commissural communication allows mouse intergeniculate leaflet and ventral lateral geniculate neurons to encode interocular differences in irradiance. J Physiol 2018; 596:5461-5481. [PMID: 30240498 PMCID: PMC6235944 DOI: 10.1113/jp276917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/19/2018] [Indexed: 01/09/2023] Open
Abstract
Key points Unlike other visual thalamic regions, the intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/vLGN) possess extensive reciprocal commissural connections, the functions of which are unknown. Using electrophysiological approaches, it is shown that commissural projecting IGL/vLGN cells are primarily activated by light increments to the contralateral eye while cells receiving commissural input typically exhibit antagonistic binocular responses. Across antagonistic cells, the nature of the commissural input (excitatory or inhibitory) corresponds to the presence of ipsilateral ON or OFF visual responses and in both cases antagonistic responses disappear following inactivation of the contralateral thalamus. The steady state firing rates of antagonistic cells uniquely encode interocular differences in irradiance. There is a pivotal role for IGL/vLGN commissural signalling in generating new sensory properties that are potentially useful for the proposed contributions of these nuclei to visuomotor/vestibular and circadian control.
Abstract The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/vLGN) are portions of the visual thalamus implicated in circadian and visuomotor/vestibular control. A defining feature of IGL/vLGN organisation is the presence of extensive reciprocal commissural connections, the functions of which are at present unknown. Here we use a combination of multielectrode recording, electrical microstimulation, thalamic inactivation and a range of visual stimuli in mice to address this deficit. Our data indicate that, like most IGL/vLGN cells, those that project commissurally primarily convey contralateral ON visual signals while most IGL/vLGN neurons that receive this input exhibit antagonistic binocular responses (i.e. excitatory responses driven by one eye and inhibitory responses driven by the other), enabling them to encode interocular differences in irradiance. We also confirm that this property derives from commissural input since, following inactivation of the contralateral visual thalamus, these cells instead display monocular contralateral‐driven ON responses. Our data thereby reveal a fundamental role for commissural signalling in generating new visual response properties at the level of the visual thalamus. Unlike other visual thalamic regions, the intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/vLGN) possess extensive reciprocal commissural connections, the functions of which are unknown. Using electrophysiological approaches, it is shown that commissural projecting IGL/vLGN cells are primarily activated by light increments to the contralateral eye while cells receiving commissural input typically exhibit antagonistic binocular responses. Across antagonistic cells, the nature of the commissural input (excitatory or inhibitory) corresponds to the presence of ipsilateral ON or OFF visual responses and in both cases antagonistic responses disappear following inactivation of the contralateral thalamus. The steady state firing rates of antagonistic cells uniquely encode interocular differences in irradiance. There is a pivotal role for IGL/vLGN commissural signalling in generating new sensory properties that are potentially useful for the proposed contributions of these nuclei to visuomotor/vestibular and circadian control.
Collapse
Affiliation(s)
- A Pienaar
- Faculty of Biology, Medicine and Health, School of Medicine, University of Manchester, Manchester, UK
| | - L Walmsley
- Faculty of Biology, Medicine and Health, School of Medicine, University of Manchester, Manchester, UK
| | - E Hayter
- Faculty of Biology, Medicine and Health, School of Medicine, University of Manchester, Manchester, UK
| | - M Howarth
- Faculty of Biology, Medicine and Health, School of Medicine, University of Manchester, Manchester, UK
| | - T M Brown
- Faculty of Biology, Medicine and Health, School of Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Lee B, Lee M, Song S, Loi LD, Lam DT, Yoon J, Baek K, Curtis DJ, Jeong Y. Specification of neurotransmitter identity by Tal1 in thalamic nuclei. Dev Dyn 2017; 246:749-758. [PMID: 28685891 DOI: 10.1002/dvdy.24546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/20/2017] [Accepted: 07/04/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The neurons contributing to thalamic nuclei are derived from at least two distinct progenitor domains: the caudal (cTH) and rostral (rTH) populations of thalamic progenitors. These neural compartments exhibit unique neurogenic patterns, and the molecular mechanisms underlying the acquisition of neurotransmitter identity remain largely unclear. RESULTS T-cell acute lymphocytic leukemia protein 1 (Tal1) was expressed in the early postmitotic cells in the rTH domain, and its expression was maintained in mature thalamic neurons in the ventrolateral geniculate nucleus (vLG) and the intergeniculate leaflet (IGL). To investigate a role of Tal1 in thalamic development, we used a newly generated mouse line driving Cre-mediated recombination in the rTH domain. Conditional deletion of Tal1 did not alter regional patterning in the developing diencephalon. However, in the absence of Tal1, rTH-derived thalamic neurons failed to maintain their postmitotic neuronal features, including neurotransmitter profile. Tal1-deficient thalamic neurons lost their GABAergic markers such as Gad1, Npy, and Penk in IGL/vLG. These defects may be associated at least in part with down-regulation of Nkx2.2, which is known as a critical regulator of rTH-derived GABAergic neurons. CONCLUSIONS Our results demonstrate that Tal1 plays an essential role in regulating neurotransmitter phenotype in the developing thalamic nuclei. Developmental Dynamics 246:749-758, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bumwhee Lee
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Myungsin Lee
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Somang Song
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Linh Duc Loi
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Duc Tri Lam
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Jaeseung Yoon
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Kwanghee Baek
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - David J Curtis
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Australia
| | - Yongsu Jeong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| |
Collapse
|
7
|
Nakamura H. Cerebellar projections to the ventral lateral geniculate nucleus and the thalamic reticular nucleus in the cat. J Neurosci Res 2017. [DOI: 10.1002/jnr.24105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroyuki Nakamura
- Department of Morphological Neuroscience; Gifu University Graduate School of Medicine; Gifu 501-1194 Japan
| |
Collapse
|
8
|
Enkephalin and neuropeptide-Y interaction in the intergeniculate leaflet network, a part of the mammalian biological clock. Neuroscience 2017; 343:10-20. [DOI: 10.1016/j.neuroscience.2016.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 11/20/2022]
|
9
|
Chrobok L, Palus K, Jeczmien-Lazur JS, Chrzanowska A, Kepczynski M, Lewandowski MH. Disinhibition of the intergeniculate leaflet network in the WAG/Rij rat model of absence epilepsy. Exp Neurol 2016; 289:103-116. [PMID: 28041911 DOI: 10.1016/j.expneurol.2016.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/21/2016] [Accepted: 12/25/2016] [Indexed: 01/18/2023]
Abstract
The intergeniculate leaflet (IGL) of the thalamus is a retinorecipient structure implicated in orchestrating circadian rhythmicity. The IGL network is highly GABAergic and consists mainly of neuropeptide Y-synthesising and enkephalinergic neurons. A high density of GFAP-immunoreactive astrocytes has been observed in the IGL, with a probable function in guarding neuronal inhibition. Interestingly, putatively enkephalinergic IGL neurons generate action potentials with an infra-slow oscillatory (ISO) pattern in vivo in urethane anesthetised Wistar rats, under light-on conditions only. Absence epilepsy (AE) is a disease characterised by spike-wave discharges present in the encephalogram, directly caused by hypersynchronous thalamo-cortical oscillations. Many pathologies connected with the arousal system, such as abnormalities in sleep architecture and an insufficient brain sleep-promoting system accompany the epileptic phenotype. We hypothesise that disturbances in the function of biological clock structures, controlling this rhythmic physiological process, may be responsible for the observed pathomechanism. To test this hypothesis, we performed an in vitro patch-clamp study on WAG/Rij rats, a well-validated genetic model of AE, in order to assess dampened GABAergic synaptic transmission in the IGL expressed as a lower IPSC amplitude and reduced sIPSC frequency. Moreover, our in vivo extracellular recordings showed higher firing rate of ISO IGL neurons with an abnormal reaction to a change in constant illumination (maintenance of rhythmic neuronal activity in darkness) in the AE model. Additional immunohistochemical experiments indicated astrogliosis in the area of the IGL, which may partially underlie the observed changes in inhibition. Altogether, the data presented here show for the first time the disinhibition of IGL neurons in a model of AE, thereby proposing the possible involvement of circadian-related brain structures in the epileptic phenotype.
Collapse
Affiliation(s)
- Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland.
| | - Katarzyna Palus
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland.
| | | | - Anna Chrzanowska
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland.
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland.
| | - Marian Henryk Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
10
|
Ma S, Smith CM, Blasiak A, Gundlach AL. Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 2016; 174:1034-1048. [PMID: 27774604 DOI: 10.1111/bph.13659] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 01/29/2023] Open
Abstract
Relaxin-3 is a member of a superfamily of structurally-related peptides that includes relaxin and insulin-like peptide hormones. Soon after the discovery of the relaxin-3 gene, relaxin-3 was identified as an abundant neuropeptide in brain with a distinctive topographical distribution within a small number of GABAergic neuron populations that is well conserved across species. Relaxin-3 is thought to exert its biological actions through a single class-A GPCR - relaxin-family peptide receptor 3 (RXFP3). Class-A comprises GPCRs for relaxin-3 and insulin-like peptide-5 and other peptides such as orexin and the monoamine transmitters. The RXFP3 receptor is selectively activated by relaxin-3, whereas insulin-like peptide-5 is the cognate ligand for the related RXFP4 receptor. Anatomical and pharmacological evidence obtained over the last decade supports a function of relaxin-3/RXFP3 systems in modulating responses to stress, anxiety-related and motivated behaviours, circadian rhythms, and learning and memory. Electrophysiological studies have identified the ability of RXFP3 agonists to directly hyperpolarise thalamic neurons in vitro, but there are no reports of direct cell signalling effects in vivo. This article provides an overview of earlier studies and highlights more recent research that implicates relaxin-3/RXFP3 neural network signalling in the integration of arousal, motivation, emotion and related cognition, and that has begun to identify the associated neural substrates and mechanisms. Future research directions to better elucidate the connectivity and function of different relaxin-3 neuron populations and their RXFP3-positive target neurons in major experimental species and humans are also identified. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Chrobok L, Palus K, Lewandowski MH. Two distinct subpopulations of neurons in the thalamic intergeniculate leaflet identified by subthreshold currents. Neuroscience 2016; 329:306-17. [DOI: 10.1016/j.neuroscience.2016.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
|
12
|
Bilella A, Alvarez-Bolado G, Celio MR. TheFoxb1-expressing neurons of the ventrolateral hypothalamic parvafox nucleus project to defensive circuits. J Comp Neurol 2016; 524:2955-81. [DOI: 10.1002/cne.24057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/03/2016] [Accepted: 06/09/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Alessandro Bilella
- Anatomy Unit and Program in Neuroscience, Department of Medicine, Faculty of Sciences, University of Fribourg; CH-1700 Fribourg Switzerland
| | - Gonzalo Alvarez-Bolado
- Institute of Anatomy and Cell Biology, University of Heidelberg; 69120 Heidelberg Germany
| | - Marco R. Celio
- Anatomy Unit and Program in Neuroscience, Department of Medicine, Faculty of Sciences, University of Fribourg; CH-1700 Fribourg Switzerland
| |
Collapse
|
13
|
Orexins excite ventrolateral geniculate nucleus neurons predominantly via OX2 receptors. Neuropharmacology 2016; 103:236-46. [DOI: 10.1016/j.neuropharm.2015.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/12/2015] [Accepted: 12/09/2015] [Indexed: 11/22/2022]
|
14
|
Palus K, Chrobok L, Lewandowski M. Orexins/hypocretins modulate the activity of NPY-positive and -negative neurons in the rat intergeniculate leaflet via OX1 and OX2 receptors. Neuroscience 2015; 300:370-80. [DOI: 10.1016/j.neuroscience.2015.05.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 01/11/2023]
|
15
|
Abstract
Sleep is expressed as a circadian rhythm and the two phenomena exist in a poorly understood relationship. Light affects each, simultaneously influencing rhythm phase and rapidly inducing sleep. Light has long been known to modulate sleep, but recent discoveries support its use as an effective nocturnal stimulus for eliciting sleep in certain rodents. “Photosomnolence” is mediated by classical and ganglion cell photoreceptors and occurs despite the ongoing high levels of locomotion at the time of stimulus onset. Brief photic stimuli trigger rapid locomotor suppression, sleep, and a large drop in core body temperature (Tc; Phase 1), followed by a relatively fixed duration interval of sleep (Phase 2) and recovery (Phase 3) to pre-sleep activity levels. Additional light can lengthen Phase 2. Potential retinal pathways through which the sleep system might be light-activated are described and the potential roles of orexin (hypocretin) and melanin-concentrating hormone are discussed. The visual input route is a practical avenue to follow in pursuit of the neural circuitry and mechanisms governing sleep and arousal in small nocturnal mammals and the organizational principles may be similar in diurnal humans. Photosomnolence studies are likely to be particularly advantageous because the timing of sleep is largely under experimenter control. Sleep can now be effectively studied using uncomplicated, nonintrusive methods with behavior evaluation software tools; surgery for EEG electrode placement is avoidable. The research protocol for light-induced sleep is easily implemented and useful for assessing the effects of experimental manipulations on the sleep induction pathway. Moreover, the experimental designs and associated results benefit from a substantial amount of existing neuroanatomical and pharmacological literature that provides a solid framework guiding the conduct and interpretation of future investigations.
Collapse
|
16
|
Morin LP, Studholme KM. Retinofugal projections in the mouse. J Comp Neurol 2014; 522:3733-53. [PMID: 24889098 PMCID: PMC4142087 DOI: 10.1002/cne.23635] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/24/2022]
Abstract
The laboratory mouse is increasingly a subject for visual system investigation, but there has been no comprehensive evaluation of this species' visual projections. Here, projections were visualized and mapped following intraocular injection of cholera toxin B subunit. Tissue was processed using standard procedures applied to 30 μm free-floating sections with diaminobenzidine as the chromogen. The mouse retina projects to ~46 brain regions, including 14 not previously described in this species. These include two amygdaloid nuclei, the horizontal limb of the diagonal band, the paraventricular hypothalamic nucleus, several visual thalamic nuclei, the paranigral nucleus, several pretectal nuclei, and the dorsal cortex of the inferior colliculus. Dense retinal patches were also observed in a narrow portion of the ipsilateral intermediate layer of the superior colliculus. The superior fasciculus of the accessory optic tract, which innervates the medial terminal nucleus, was also determined to be a terminal zone throughout its length. The results are compared with previous descriptions of projections from mouse intrinsically photoreceptive retinal ganglion cells, and with data from the hamster, Nile grass rat, and laboratory rat. The retinal projection patterns are similar in all four species, although there are many differences with respect to the details. The specific visual functions of most retinorecipient areas are unknown, but there is substantial convergence of retinal projections onto regions concerned with olfaction and audition.
Collapse
Affiliation(s)
- Lawrence P Morin
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, NY, 11794-8101; Graduate Program in Neuroscience, Stony Brook University Medical Center, Stony Brook, NY, 11794-8101
| | | |
Collapse
|
17
|
Vyazovskiy VV, Delogu A. NREM and REM Sleep: Complementary Roles in Recovery after Wakefulness. Neuroscientist 2014; 20:203-19. [PMID: 24598308 DOI: 10.1177/1073858413518152] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The overall function of sleep is hypothesized to provide "recovery" after preceding waking activities, thereby ensuring optimal functioning during subsequent wakefulness. However, the functional significance of the temporal dynamics of sleep, manifested in the slow homeostatic process and the alternation between non-rapid eye movement (NREM) and REM sleep remains unclear. We propose that NREM and REM sleep have distinct and complementary contributions to the overall function of sleep. Specifically, we suggest that cortical slow oscillations, occurring within specific functionally interconnected neuronal networks during NREM sleep, enable information processing, synaptic plasticity, and prophylactic cellular maintenance ("recovery process"). In turn, periodic excursions into an activated brain state-REM sleep-appear to be ideally placed to perform "selection" of brain networks, which have benefited from the process of "recovery," based on their offline performance. Such two-stage modus operandi of the sleep process would ensure that its functions are fulfilled according to the current need and in the shortest time possible. Our hypothesis accounts for the overall architecture of normal sleep and opens up new perspectives for understanding pathological conditions associated with abnormal sleep patterns.
Collapse
Affiliation(s)
| | - Alessio Delogu
- Department of Neuroscience, Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
18
|
Blasiak A, Blasiak T, Lewandowski MH, Hossain MA, Wade JD, Gundlach AL. Relaxin-3 innervation of the intergeniculate leaflet of the rat thalamus - neuronal tract-tracing and in vitro electrophysiological studies. Eur J Neurosci 2013; 37:1284-94. [PMID: 23432696 DOI: 10.1111/ejn.12155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/16/2013] [Indexed: 11/29/2022]
Abstract
Behavioural state is controlled by a range of neural systems that are sensitive to internal and external stimuli. The relaxin-3 and relaxin family peptide receptor 3 (RXFP3) system has emerged as a putative ascending arousal network with putative involvement in regulation of stress responses, neuroendocrine control, feeding and metabolism, circadian activity and cognition. Relaxin-3/γ-aminobutyric acid neuron populations have been identified in the nucleus incertus, pontine raphe nucleus, periaqueductal grey (PAG) and an area dorsal to the substantia nigra. Relaxin-3-positive fibres/terminals densely innervate arousal-related structures in the brainstem, hypothalamus and limbic forebrain, but the functional significance of the heterogeneous relaxin-3 neuron distribution and its inputs to specific brain areas are unclear. Therefore, in this study, we used neuronal tract-tracing and immunofluorescence staining to explore the source of the dense relaxin-3 innervation of the intergeniculate leaflet (IGL) of the thalamus, a component of the neural circadian timing system. Confocal microscopy analysis revealed that relaxin-3-positive neurons retrogradely labelled from the IGL were predominantly present in the PAG and these neurons expressed corticotropin-releasing factor receptor-like immunoreactivity. Subsequently, whole-cell patch-clamp recordings revealed heterogeneous effects of RXFP3 activation in the IGL by the RXFP3 agonist, relaxin-3 B-chain/insulin-like peptide-5 A-chain (R3/I5). Identified, neuropeptide Y-positive IGL neurons, known to influence suprachiasmatic nucleus activity, were excited by R3/I5, whereas neurons of unidentified neurotransmitter content were either depolarized or displayed a decrease in action potential firing and/or membrane potential hyperpolarization. Our data identify a PAG to IGL relaxin-3/RXFP3 pathway that might convey stress-related information to key elements of the circadian system and influence behavioural state rhythmicity.
Collapse
Affiliation(s)
- Anna Blasiak
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
19
|
Differential firing pattern and response to lighting conditions of rat intergeniculate leaflet neurons projecting to suprachiasmatic nucleus or contralateral intergeniculate leaflet. Neuroscience 2013; 228:315-24. [DOI: 10.1016/j.neuroscience.2012.10.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 11/21/2022]
|
20
|
Abstract
Temporal adaptation of behaviors is of crucial importance for every organism. In this issue of Neuron, while elegantly establishing the developmental program of the subcortical visual shell (SVS), a group of retinorecipient nuclei, Delogu et al. (2012) also implicate one of its structures, the IGL, as a potential important player in the regulation of daily activity pattern.
Collapse
Affiliation(s)
- Ludovic S Mure
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
21
|
Delogu A, Sellers K, Zagoraiou L, Bocianowska-Zbrog A, Mandal S, Guimera J, Rubenstein JLR, Sugden D, Jessell T, Lumsden A. Subcortical visual shell nuclei targeted by ipRGCs develop from a Sox14+-GABAergic progenitor and require Sox14 to regulate daily activity rhythms. Neuron 2012; 75:648-62. [PMID: 22920256 DOI: 10.1016/j.neuron.2012.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2012] [Indexed: 11/29/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) and their nuclear targets in the subcortical visual shell (SVS) are components of the non-image-forming visual system, which regulates important physiological processes, including photoentrainment of the circadian rhythm. While ipRGCs have been the subject of much recent research, less is known about their central targets and how they develop to support specific behavioral functions. We describe Sox14 as a marker to follow the ontogeny of the SVS and find that the complex forms from two narrow stripes of Dlx2-negative GABAergic progenitors in the early diencephalon through sequential waves of tangential migration. We characterize the requirement for Sox14 to orchestrate the correct distribution of neurons among the different nuclei of the network and describe how Sox14 expression is required both to ensure robustness in circadian entrainment and for masking of motor activity.
Collapse
Affiliation(s)
- Alessio Delogu
- MRC Centre for Developmental Neurobiology, School of Medicine, King's College London, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Morin LP. Neuroanatomy of the extended circadian rhythm system. Exp Neurol 2012; 243:4-20. [PMID: 22766204 DOI: 10.1016/j.expneurol.2012.06.026] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/19/2012] [Accepted: 06/24/2012] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN), site of the primary clock in the circadian rhythm system, has three major afferent connections. The most important consists of a retinohypothalamic projection through which photic information, received by classical rod/cone photoreceptors and intrinsically photoreceptive retinal ganglion cells, gains access to the clock. This information influences phase and period of circadian rhythms. The two other robust afferent projections are the median raphe serotonergic pathway and the geniculohypothalamic (GHT), NPY-containing pathway from the thalamic intergeniculate leaflet (IGL). Beyond this simple framework, the number of anatomical routes that could theoretically be involved in rhythm regulation is enormous, with the SCN projecting to 15 regions and being directly innervated by about 35. If multisynaptic afferents to the SCN are included, the number expands to approximately brain 85 areas providing input to the SCN. The IGL, a known contributor to circadian rhythm regulation, has a still greater level of complexity. This nucleus connects abundantly throughout the brain (to approximately 100 regions) by pathways that are largely bilateral and reciprocal. Few of these sites have been evaluated for their contributions to circadian rhythm regulation, although most have a theoretical possibility of doing so via the GHT. The anatomy of IGL connections suggests that one of its functions may be regulation of eye movements during sleep. Together, neural circuits of the SCN and IGL are complex and interconnected. As yet, few have been tested with respect to their involvement in rhythm regulation.
Collapse
Affiliation(s)
- Lawrence P Morin
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, NY 11794-8101, USA.
| |
Collapse
|
23
|
Epstein DJ. Regulation of thalamic development by sonic hedgehog. Front Neurosci 2012; 6:57. [PMID: 22529771 PMCID: PMC3328779 DOI: 10.3389/fnins.2012.00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/30/2012] [Indexed: 12/28/2022] Open
Abstract
The thalamus is strategically positioned within the caudal diencephalic area of the forebrain, between the mesencephalon and telencephalon. This location is important for unique aspects of thalamic function, to process and relay sensory and motor information to and from the cerebral cortex. How the thalamus comes to reside within this region of the central nervous system has been the subject of much investigation. Extracellular signals secreted from key locations both extrinsic and intrinsic to the thalamic primordium have recently been identified and shown to play important roles in the growth, regionalization, and specification of thalamic progenitors. One factor in particular, the secreted morphogen Sonic hedgehog (Shh), has been implicated in spatiotemporal and threshold models of thalamic development that differ from other areas of the CNS due, in large part, to its expression within two signaling centers, the basal plate and the zona limitans intrathalamica, a dorsally projecting spike that separates the thalamus from the subthalamic region. Shh signaling from these dual sources exhibit unique and overlapping functions in the control of thalamic progenitor identity and nuclei specification. This review will highlight recent advances in our understanding of Shh function during thalamic development, revealing similarities, and differences that exist between species.
Collapse
Affiliation(s)
- Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
24
|
Jeong Y, Dolson DK, Waclaw RR, Matise MP, Sussel L, Campbell K, Kaestner KH, Epstein DJ. Spatial and temporal requirements for sonic hedgehog in the regulation of thalamic interneuron identity. Development 2011; 138:531-41. [PMID: 21205797 DOI: 10.1242/dev.058917] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In caudal regions of the diencephalon, sonic hedgehog (Shh) is expressed in the ventral midline of prosomeres 1-3 (p1-p3), which underlie the pretectum, thalamus and prethalamus, respectively. Shh is also expressed in the zona limitans intrathalamica (zli), a dorsally projecting spike that forms at the p2-p3 boundary. The presence of two Shh signaling centers in the thalamus has made it difficult to determine the specific roles of either one in regional patterning and neuronal fate specification. To investigate the requirement of Shh from a focal source of expression in the ventral midline of the diencephalon, we used a newly generated mouse line carrying a targeted deletion of the 525 bp intronic sequence mediating Shh brain enhancer-1 (SBE1) activity. In SBE1 mutant mice, Shh transcription was initiated but not maintained in the ventral midline of the rostral midbrain and caudal diencephalon, yet expression in the zli was unaffected. In the absence of ventral midline Shh, rostral thalamic progenitors (pTH-R) adopted the molecular profile of a more caudal thalamic subtype (pTH-C). Surprisingly, despite their early mis-specification, neurons derived from the pTH-R domain continued to migrate to their proper thalamic nucleus, extended axons along their normal trajectory and expressed some, but not all, of their terminal differentiation markers. Our results, and those of others, suggest a model whereby Shh signaling from distinct spatial and temporal domains in the diencephalon exhibits unique and overlapping functions in the development of discrete classes of thalamic interneurons.
Collapse
Affiliation(s)
- Yongsu Jeong
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Glass JD, Guinn J, Kaur G, Francl JM. On the intrinsic regulation of neuropeptide Y release in the mammalian suprachiasmatic nucleus circadian clock. Eur J Neurosci 2010; 31:1117-26. [PMID: 20377624 DOI: 10.1111/j.1460-9568.2010.07139.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Timing of the circadian clock of the suprachiasmatic nucleus (SCN) is regulated by photic and non-photic inputs. Of these, neuropeptide Y (NPY) signaling from the intergeniculate leaflet (IGL) to the SCN plays a prominent role. Although NPY is critical to clock regulation, neither the mechanisms modulating IGL NPY neuronal activity nor the nature of regulatory NPY signaling in the SCN clock are understood, as NPY release in the SCN has never been measured. Here, microdialysis procedures for in vivo measurement of NPY were used in complementary experiments to address these questions. First, neuronal release of NPY in the hamster SCN was rhythmic under a 14L : 10D photocycle, with the acrophase soon after lights-on and the nadir at midday. No rhythmic fluctuation in NPY occurred under constant darkness. Second, a behavioral phase-resetting stimulus (wheel-running at midday that induces IGL serotonin release) acutely stimulated SCN NPY release. Third, bilateral IGL microinjection of the serotonin agonist, (+/-)-2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahydronapthalene (8-OH-DPAT) (another non-photic phase-resetting stimulant), at midday enhanced SCN NPY release. Conversely, similar application of the serotonin antagonist, metergoline, abolished wheel-running-induced SCN NPY release. IGL microinjection of the GABA agonist, muscimol, suppressed SCN NPY release. These results support an intra-IGL mechanism whereby behavior-induced serotonergic activity suppresses inhibitory GABAergic transmission, promoting NPY activity and subsequent phase resetting. Collectively, these results confirm IGL-mediated NPY release in the SCN and verify that its daily rhythm of release is dependent upon the 14L : 10D photocycle, and that it is modulated by appropriately-timed phase-resetting behavior, probably mediated by serotonergic activation of NPY units in the IGL.
Collapse
Affiliation(s)
- J David Glass
- Department of Biological Sciences, Kent State University, Kent, OH 44242-0001, USA.
| | | | | | | |
Collapse
|
26
|
Pinato L, Frazão R, Cruz-Rizzolo R, Cavalcante J, Nogueira M. Immunocytochemical characterization of the pregeniculate nucleus and distribution of retinal and neuropeptide Y terminals in the suprachiasmatic nucleus of the Cebus monkey. J Chem Neuroanat 2009; 37:207-13. [DOI: 10.1016/j.jchemneu.2009.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/18/2008] [Accepted: 01/30/2009] [Indexed: 11/16/2022]
|
27
|
Pekala D, Blasiak A, Lewandowski MH. The influence of carbachol on glutamate-induced activity of the intergeniculate leaflet neurons—In vitro studies. Brain Res 2007; 1186:95-101. [DOI: 10.1016/j.brainres.2007.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 10/11/2007] [Accepted: 10/13/2007] [Indexed: 11/16/2022]
|
28
|
Szkudlarek H, Raastad M. Electrical properties of morphologically characterized neurons in the intergeniculate leaflet of the rat thalamus. Neuroscience 2007; 150:309-18. [DOI: 10.1016/j.neuroscience.2007.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/21/2007] [Accepted: 09/11/2007] [Indexed: 11/25/2022]
|
29
|
Vandewalle G, Schmidt C, Albouy G, Sterpenich V, Darsaud A, Rauchs G, Berken PY, Balteau E, Degueldre C, Luxen A, Maquet P, Dijk DJ. Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem. PLoS One 2007; 2:e1247. [PMID: 18043754 PMCID: PMC2082413 DOI: 10.1371/journal.pone.0001247] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Accepted: 11/03/2007] [Indexed: 11/25/2022] Open
Abstract
Background Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by melanopsin-expressing retinal ganglion cells which are more sensitive to blue light than violet or green light. The contribution of the melanopsin system and the brain mechanisms involved in the establishment of such responses to light remain to be established. Methodology/Principal Findings We exposed 15 participants to short duration (50 s) monochromatic violet (430 nm), blue (473 nm), and green (527 nm) light exposures of equal photon flux (1013ph/cm2/s) while they were performing a working memory task in fMRI. At light onset, blue light, as compared to green light, increased activity in the left hippocampus, left thalamus, and right amygdala. During the task, blue light, as compared to violet light, increased activity in the left middle frontal gyrus, left thalamus and a bilateral area of the brainstem consistent with activation of the locus coeruleus. Conclusion/Significance These results support a prominent contribution of melanopsin-expressing retinal ganglion cells to brain responses to light within the very first seconds of an exposure. The results also demonstrate the implication of the brainstem in mediating these responses in humans and speak for a broad involvement of light in the regulation of brain function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Evelyne Balteau
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | | | - André Luxen
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - Pierre Maquet
- Cyclotron Research Centre, University of Liège, Liège, Belgium
- Department of Neurology, Centre Hospitalier Universitaire de Liège (CHU), Liège, Belgium
- * To whom correspondence should be addressed. E-mail:
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
30
|
Carbachol injections into the intergeniculate leaflet induce nonphotic phase shifts. Brain Res 2007; 1177:59-65. [DOI: 10.1016/j.brainres.2007.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 07/12/2007] [Accepted: 07/31/2007] [Indexed: 12/29/2022]
|
31
|
Samuels RE, Tavernier RJ, Castillo MR, Bult-Ito A, Piggins HD. Substance P and neurokinin-1 immunoreactivities in the neural circadian system of the Alaskan northern red-backed vole, Clethrionomys rutilus. Peptides 2006; 27:2976-92. [PMID: 16930773 DOI: 10.1016/j.peptides.2006.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/09/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus houses the main mammalian circadian clock. This clock is reset by light-dark cues and stimuli that evoke arousal. Photic information is relayed directly to the SCN via the retinohypothalamic tract (RHT) and indirectly via the geniculohypothalamic tract, which originates from retinally innervated cells of the thalamic intergeniculate leaflet (IGL). In addition, pathways from the dorsal and median raphe (DR and MR) convey arousal state information to the IGL and SCN, respectively. The SCN regulates many physiological events in the body via a network of efferent connections to areas of the brain such as the habenula (Hb) in the epithalamus, subparaventricular zone (SPVZ) of the hypothalamus and locus coeruleus of the brainstem-areas of the brain associated with arousal and behavioral activation. Substance P (SP) and the neurokinin-1 (NK-1) receptor are present in the rat SCN and IGL, and SP acting via the NK-1 receptor alters SCN neuronal activity and resets the circadian clock in this species. However, the distribution and role of SP and NK-1 in the circadian system of other rodent species are largely unknown. Here we use immunohistochemical techniques to map the novel distribution of SP and NK-1 in the hypothalamus, thalamus and brainstem of the Alaskan northern red-backed vole, Clethrionomys rutilus, a species of rodent currently being used in circadian biology research. Interestingly, the pattern of immunoreactivity for SP in the red-backed vole SCN was very different from that seen in many other nocturnal and diurnal rodents.
Collapse
Affiliation(s)
- Rayna E Samuels
- Faculty of Life Sciences, University of Manchester, 3.614 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
32
|
Blasiak T, Siejka S, Raison S, Pevet P, Lewandowski MH. The serotonergic inhibition of slowly bursting cells in the intergeniculate leaflet of the rat. Eur J Neurosci 2006; 24:2769-80. [PMID: 17156203 DOI: 10.1111/j.1460-9568.2006.05162.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Electrophysiological studies combined with local neurotoxic lesions were conducted on anaesthetized rats in order to determine whether the dorsal raphe nucleus (DRN) inhibits the intergeniculate leaflet (IGL) of the lateral geniculate nucleus by means of innervation by serotonin-containing fibres. In the control animals, electrical stimulation of the DRN induced the long-latency and long-lasting inhibition of the neuronal firing of the IGL cells that are characterized by rhythmic, slow-bursting activity in light conditions. The electrical destruction of the DRN resulted in an increase in the firing rate of the recorded IGL cells, whilst at the same time not affecting the rhythmic, bursting pattern of the activity. In the second group of animals, local neurotoxic lesion of serotonergic fibres was performed by injection of the toxin 5,7-dihydroxytryptamine into the IGL. After 10 days of postoperative recovery, electrophysiological experiments were performed on the toxin-treated rats. In these animals, electrical stimulation as well as electrical lesion of the DRN did not induce any change in the firing of the slowly bursting cells in the 5,7-dihydroxytryptamine-injected IGL. The results obtained provide evidence that inhibition of the IGL slowly bursting cells, by innervation from the dorsal raphe, is mediated by the release of serotonin. Furthermore, the observed serotonergic inhibition of the light-dependent activity of slowly bursting cells can contribute to the neuronal mechanism gating the information that flows through this nucleus to the vestibular, visuomotor, circadian and sleep/arousal systems, with which the IGL is strongly interconnected.
Collapse
Affiliation(s)
- T Blasiak
- Department of Animal Physiology, Laboratory of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland
| | | | | | | | | |
Collapse
|
33
|
Fleming MD, Benca RM, Behan M. Retinal projections to the subcortical visual system in congenic albino and pigmented rats. Neuroscience 2006; 143:895-904. [PMID: 16996223 PMCID: PMC1876705 DOI: 10.1016/j.neuroscience.2006.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 08/06/2006] [Accepted: 08/08/2006] [Indexed: 11/21/2022]
Abstract
The primary visual pathway in albino mammals is characterized by an increased decussation of retinal ganglion cell axons at the optic chiasm and an enhanced contralateral projection to the dorsal lateral geniculate nucleus. In contrast to the primary visual pathway, little is known about the organization of retinal input to most nuclei of the subcortical visual system in albino mammals. The subcortical visual system is a large group of retinorecipient nuclei in the diencephalon and mesencephalon. These areas mediate a range of behaviors that include both circadian and acute responses to light. We used a congenic strain of albino and pigmented rats with a mutation at the c locus for albinism (Fischer 344-c/+; LaVail MM, Lawson NR (1986) Development of a congenic strain of pigmented and albino rats for light damage studies. Exp Eye Res 43:867-869) to quantitatively assess the effects of albinism on retinal projections to a number of subcortical visual nuclei including the ventral lateral hypothalamus (VLH), ventral lateral preoptic area (VLPO), olivary pretectal nucleus (OPN), posterior limitans (PLi), commissural pretectal area (CPA), intergeniculate leaflet (IGL), ventral lateral geniculate nucleus (vLGN) and superior colliculus (SC). Following eye injections of the neuroanatomical tracer cholera toxin-beta, the distribution of anterogradely transported label was measured. The retinal projection to the contralateral VLH, PLi, CPA and IGL was enhanced in albino rats. No significant differences were found between albino and pigmented rats in retinal input to the VLPO, OPN and vLGN. These findings raise the possibility that enhanced retinofugal projections to subcortical visual nuclei in albinos may underlie some light-mediated behaviors that differ between albino and pigmented mammals.
Collapse
Affiliation(s)
- M D Fleming
- Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706-1102, USA
| | | | | |
Collapse
|
34
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
35
|
Muscat L, Morin LP. Intergeniculate leaflet: contributions to photic and non-photic responsiveness of the hamster circadian system. Neuroscience 2006; 140:305-20. [PMID: 16549274 DOI: 10.1016/j.neuroscience.2006.01.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 01/27/2006] [Accepted: 01/27/2006] [Indexed: 10/24/2022]
Abstract
The circadian visual system is able to integrate light energy over time, enabling phase response and Fos induction in the suprachiasmatic nucleus to increase in proportion to the total energy of the photic stimulus. In the present studies, the contribution of the intergeniculate leaflet to light energy integration by the hamster circadian rhythm system was evaluated. Fos protein is induced in intergeniculate leaflet neurons at much lower irradiance levels than seen in suprachiasmatic nucleus neurons. Bilateral N-methyl-d-aspartate lesions of the intergeniculate leaflet decreased phase response of the circadian locomotor rhythm to high irradiance and, in animals exposed to long duration light stimuli, reduced Fos induction in the suprachiasmatic nucleus. Normal photon integration, as indicated by attenuated rhythm phase shifts and Fos induction in suprachiasmatic nucleus cells in response to the energy in light stimuli, does not occur in the absence of the intergeniculate leaflet and is likely to be a property of the circadian rhythm system, rather than solely of the suprachiasmatic nucleus. Anatomical analysis showed that virtually no intergeniculate leaflet neurons projecting to the suprachiasmatic nucleus contain Fos induced by either light or locomotion in a novel wheel. However, cells projecting to the pretectum were found to contain novel-wheel induced Fos. The intergeniculate leaflet is implicated in the normal assessment of light by the circadian rhythm system, but the circuitry by which either photic or non-photic information gains access to the suprachiasmatic nucleus may be more complex than previously thought.
Collapse
Affiliation(s)
- L Muscat
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 10016, USA
| | | |
Collapse
|
36
|
Thankachan S, Rusak B. Juxtacellular recording/labeling analysis of physiological and anatomical characteristics of rat intergeniculate leaflet neurons. J Neurosci 2005; 25:9195-204. [PMID: 16207879 PMCID: PMC6725760 DOI: 10.1523/jneurosci.2672-05.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The thalamic intergeniculate leaflet (IGL) is involved in mediating effects of both photic and nonphotic stimuli on mammalian circadian rhythms. IGL neurons containing neuropeptide Y (NPY) have been implicated in mediating nonphotic effects, but little is known about those involved in photic entrainment. We used juxtacellular recording/labeling in rats to characterize both photic responses and neurochemical phenotypes of neurons in the lateral geniculate area, focusing on the IGL and ventral lateral geniculate (VLG). Single neurons were recorded to characterize photic responsiveness and were labeled with Neurobiotin (Nb); tissue was stained for Nb, NPY, and in some cases for orexin A. Three classes of neurons were identified in the IGL/VLG. Type I neurons lacked NPY and showed sustained activations during retinal illumination and moderate firing rates in darkness. Type II neurons contained large amounts of NPY throughout the soma and showed varied responses to illumination: suppression, complex responses, or no response. Type III neurons had patches of NPY both on the external soma surface and within the soma, apparently representing internalization of NPY. Type III neurons resembled type I cells in their sustained activation by illumination but were virtually silent during the intervening dark period. These neurons appear to receive NPY input, presumably from other IGL cells, which may suppress their activity during darkness. These results demonstrate the presence of several classes of neurons in the IGL defined by their functional and anatomical features and reinforce the role of the IGL/VLG complex in integrating photic and nonphotic inputs to the circadian system.
Collapse
Affiliation(s)
- Stephen Thankachan
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, B3H 4J1, Canada
| | | |
Collapse
|