1
|
Behrends W, Ahrens D, Bankstahl JP, Esser KH, Paasche G, Lenarz T, Scheper V. Refinement of systemic guinea pig deafening in hearing research: Sensorineural hearing loss induced by co-administration of kanamycin and furosemide via the leg veins. Lab Anim 2023; 57:631-641. [PMID: 37070340 DOI: 10.1177/00236772231167679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Auditory disabilities have a large impact on the human population worldwide. Research into understanding and treating hearing disabilities has increased significantly in recent years. One of the most relevant animal species in this context is the guinea pig, which has to be deafened to study several of the hearing pathologies and develop novel therapies. Applying kanamycin subcutaneously and furosemide intravenously is a long-established method in hearing research, leading to permanent hearing loss without surgical intervention at the ear. The intravenous application of furosemide requires invasive surgery in the cervical area of the animals to expose the jugular vein, since a relatively large volume (1 ml per 500 g body weight) must be injected over a period of about 2.5 min. We have established a gentler alternative by applying the furosemide by puncture of the leg veins. For this, custom-made cannula-needle devices were built to allow the vein puncture and subsequent slow injection of the furosemide. This approach was tested in 11 guinea pigs through the foreleg via the cephalic antebrachial vein and through the hind leg via the saphenous vein. Frequency-specific hearing thresholds were measured before and after the procedure to verify normal hearing and successful deafening, respectively. The novel approach of systemic deafening was successfully implemented in 10 out of 11 animals. The Vena saphena was best suited to the application. Since the animals' condition, post leg vein application, was better in comparison to animals deafened by exposure of the Vena jugularis, the postulated refinement that reduced animal stress was deemed successful.
Collapse
Affiliation(s)
- Wiebke Behrends
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Auditory Neuroethology and Neurobiology, Institute of Zoology, University of Veterinary Medicine Hannover Foundation, Germany
| | - Daniel Ahrens
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Karl-Heinz Esser
- Auditory Neuroethology and Neurobiology, Institute of Zoology, University of Veterinary Medicine Hannover Foundation, Germany
| | - Gerrit Paasche
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Germany
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Germany
| |
Collapse
|
2
|
Vink HA, Ramekers D, Foster AC, Versnel H. The efficacy of a TrkB monoclonal antibody agonist in preserving the auditory nerve in deafened guinea pigs. Hear Res 2023; 439:108895. [PMID: 37837701 DOI: 10.1016/j.heares.2023.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The auditory nerve typically degenerates following loss of cochlear hair cells or synapses. In the case of hair cell loss neural degeneration hinders restoration of hearing through a cochlear implant, and in the case of synaptopathy suprathreshold hearing is affected, potentially degrading speech perception in noise. It has been established that neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) can mitigate auditory nerve degeneration. Several potential BDNF mimetics have also been investigated for neurotrophic effects in the cochlea. A recent in vitro study showed favorable effects of M3, a TrkB monoclonal antibody agonist, when compared with BDNF. In the present study we set out to examine the effect of M3 on auditory nerve preservation in vivo. Thirty-one guinea pigs were bilaterally deafened, and unilaterally treated with a single 3-µl dose of 7 mg/ml, 0.7 mg/ml M3 or vehicle-only by means of a small gelatin sponge two weeks later. During the experiment and analyses the experimenters were blinded to the three treatment groups. Four weeks after treatment, we assessed the treatment effect (1) histologically, by quantifying survival of SGCs and their peripheral processes (PPs); and (2) electrophysiologically, with two different paradigms of electrically evoked compound action potential (eCAP) recordings shown to be indicative of neural health: single-pulse stimulation with varying inter-phase gap (IPG), and pulse-train stimulation with varying inter-pulse interval. We observed a consistent and significant preservative effect of M3 on SGC survival in the lower basal turn (approximately 40% more survival than in the untreated contralateral cochlea), but also in the upper middle and lower apical turn of the cochlea. This effect was similar for the two treatment groups. Survival of PPs showed a trend similar to that of the SGCs, but was only significantly higher for the highest dose of M3. The protective effect of M3 on SGCs was not reflected in any of the eCAP measures: no statistically significant differences were observed between groups in IPG effect nor between the M3 treatment groups and the control group using the pulse-train stimulation paradigm. In short, while a clear effect of M3 was observed on SGC survival, this was not clearly translated into functional preservation.
Collapse
Affiliation(s)
- Henk A Vink
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Dyan Ramekers
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | | | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Pisani A, Paciello F, Del Vecchio V, Malesci R, De Corso E, Cantone E, Fetoni AR. The Role of BDNF as a Biomarker in Cognitive and Sensory Neurodegeneration. J Pers Med 2023; 13:jpm13040652. [PMID: 37109038 PMCID: PMC10140880 DOI: 10.3390/jpm13040652] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a crucial function in the central nervous system and in sensory structures including olfactory and auditory systems. Many studies have highlighted the protective effects of BDNF in the brain, showing how it can promote neuronal growth and survival and modulate synaptic plasticity. On the other hand, conflicting data about BDNF expression and functions in the cochlear and in olfactory structures have been reported. Several clinical and experimental research studies showed alterations in BDNF levels in neurodegenerative diseases affecting the central and peripheral nervous system, suggesting that BDNF can be a promising biomarker in most neurodegenerative conditions, including Alzheimer's disease, shearing loss, or olfactory impairment. Here, we summarize current research concerning BDNF functions in brain and in sensory domains (olfaction and hearing), focusing on the effects of the BDNF/TrkB signalling pathway activation in both physiological and pathological conditions. Finally, we review significant studies highlighting the possibility to target BDNF as a biomarker in early diagnosis of sensory and cognitive neurodegeneration, opening new opportunities to develop effective therapeutic strategies aimed to counteract neurodegeneration.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Del Vecchio
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Rita Malesci
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Eugenio De Corso
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elena Cantone
- Department of Neuroscience, Reproductive Sciences and Dentistry-ENT Section, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
4
|
Abstract
INTRODUCTION More than 5% of the world's population have a disabling hearing loss which can be managed by hearing aids or implanted electrical devices. However, outcomes are highly variable, and the sound perceived by recipients is far from perfect. Sparked by the discovery of progenitor cells in the cochlea and rapid progress in drug delivery to the cochlea, biological and pharmaceutical therapies are currently in development to improve the function of the cochlear implant or eliminate the need for it altogether. AREAS COVERED This review highlights progress in emerging regenerative strategies to restore hearing and adjunct therapies to augment the cochlear implant. Novel approaches include the reprogramming of progenitor cells to restore the sensory hair cell population in the cochlea, gene therapy and gene editing to treat hereditary and acquired hearing loss. A detailed review of optogenetics is also presented as a technique that could enable optical stimulation of the spiral ganglion neurons, replacing or complementing electrical stimulation. EXPERT OPINION Increasing evidence of substantial reversal of hearing loss in animal models, alongside rapid advances in delivery strategies to the cochlea and learnings from clinical trials will amalgamate into a biological or pharmaceutical therapy to replace or complement the cochlear implant.
Collapse
Affiliation(s)
- Elise Ajay
- Bionics Institute, East Melbourne, Victoria, Australia.,University of Melbourne, Department of Engineering
| | | | - Rachael Richardson
- Bionics Institute, East Melbourne, Victoria, Australia.,University of Melbourne, Medical Bionics Department, Parkville, Victoria, Australia.,University of Melbourne, Department of Surgery (Otolaryngology), East Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Aragona M, Porcino C, Guerrera MC, Montalbano G, Laurà R, Cometa M, Levanti M, Abbate F, Cobo T, Capitelli G, Vega JA, Germanà A. The BDNF/TrkB Neurotrophin System in the Sensory Organs of Zebrafish. Int J Mol Sci 2022; 23:ijms23052621. [PMID: 35269763 PMCID: PMC8910639 DOI: 10.3390/ijms23052621] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) was discovered in the last century, and identified as a member of the neurotrophin family. BDNF shares approximately 50% of its amino acid with other neurotrophins such as NGF, NT-3 and NT-4/5, and its linear amino acid sequences in zebrafish (Danio rerio) and human are 91% identical. BDNF functions can be mediated by two categories of receptors: p75NTR and Trk. Intriguingly, BDNF receptors were highly conserved in the process of evolution, as were the other NTs’ receptors. In this review, we update current knowledge about the distribution and functions of the BDNF-TrkB system in the sensory organs of zebrafish. In fish, particularly in zebrafish, the distribution and functions of BDNF and TrkB in the brain have been widely studied. Both components of the system, associated or segregated, are also present outside the central nervous system, especially in sensory organs including the inner ear, lateral line system, retina, taste buds and olfactory epithelium.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Gabriel Capitelli
- Faculty of Medical Sciences, University of Buenos Aires, Viamonte 1053, CABA, Buenos Aires 1056, Argentina;
| | - José A. Vega
- Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain;
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
- Correspondence:
| |
Collapse
|
6
|
Bako P, Gerlinger I, Wolpert S, Müller M, Löwenheim H. The ototoxic effect of locally applied kanamycin and furosemide in guinea pigs. J Neurosci Methods 2022; 372:109527. [PMID: 35182603 DOI: 10.1016/j.jneumeth.2022.109527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Hearing impairment is a growing social and economic issue. New technical or biological approaches aiming hearing rehabilitation or regeneration require animal testing. Therefore, a reproducible and safe model for hearing-impaired animals is essential. NEW METHOD Intratympanic injection of kanamycin and furosemide was administered for BFA bunt pigmented guinea pigs for either 1 or 2hours. Hearing loss was regularly measured with compound action potential response to click and tone burst stimuli for up to 26 weeks. Hair cell loss and the density of spiral ganglion neurons were histologically analyzed. RESULTS One week after the exposure, complete hearing loss was observed in 34 ears from the 36 ears treated for 2hours and remained stable during the follow-up. Histology revealed near complete hair cell loss and secondary degeneration of spiral ganglion neurons. COMPARISON WITH EXISTING METHODS Animal deafening is usually achieved by systemic application of aminoglycoside antibiotics or chemotherapy drugs, although side effects such as nephrotoxicity may occur which can be avoided by local application. With our procedure, unilateral hearing loss model can also be established. CONCLUSIONS The single intratympanic application of a solution of 200mg/ml kanamycin and 50mg/ml furosemide is a stable and reliable deafening method.
Collapse
Affiliation(s)
- Peter Bako
- Dept. of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Elfriede-Aulhorn Str 5, Tübingen 72076, Germany; Dept. of Otorhinolaryngology and Head and Neck Surgery, Medical School, University of Pécs, Munkácsy Str 2, Pécs 7621, Hungary; Regenerative Science, Sport and Medicine Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság Str 20, Pécs 7624, Hungary.
| | - Imre Gerlinger
- Dept. of Otorhinolaryngology and Head and Neck Surgery, Medical School, University of Pécs, Munkácsy Str 2, Pécs 7621, Hungary.
| | - Stephan Wolpert
- Dept. of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Elfriede-Aulhorn Str 5, Tübingen 72076, Germany.
| | - Marcus Müller
- Dept. of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Elfriede-Aulhorn Str 5, Tübingen 72076, Germany
| | - Hubert Löwenheim
- Dept. of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Elfriede-Aulhorn Str 5, Tübingen 72076, Germany.
| |
Collapse
|
7
|
Zhang L, Chen S, Sun Y. Mechanism and Prevention of Spiral Ganglion Neuron Degeneration in the Cochlea. Front Cell Neurosci 2022; 15:814891. [PMID: 35069120 PMCID: PMC8766678 DOI: 10.3389/fncel.2021.814891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most prevalent sensory deficits in humans, and approximately 360 million people worldwide are affected. The current treatment option for severe to profound hearing loss is cochlear implantation (CI), but its treatment efficacy is related to the survival of spiral ganglion neurons (SGNs). SGNs are the primary sensory neurons, transmitting complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus. In mammals, SGNs have very limited regeneration ability, and SGN loss causes irreversible hearing loss. In most cases of SNHL, SGN damage is the dominant pathogenesis, and it could be caused by noise exposure, ototoxic drugs, hereditary defects, presbycusis, etc. Tremendous efforts have been made to identify novel treatments to prevent or reverse the damage to SGNs, including gene therapy and stem cell therapy. This review summarizes the major causes and the corresponding mechanisms of SGN loss and the current protection strategies, especially gene therapy and stem cell therapy, to promote the development of new therapeutic methods.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Radeloff A, Nada N, El Mahallawi T, Kolkaila E, Vollmer M, Rak K, Hagen R, Schendzielorz P. Transplantation of adipose-derived stromal cells protects functional and morphological auditory nerve integrity in a model of cochlear implantation. Neuroreport 2021; 32:776-782. [PMID: 33994529 DOI: 10.1097/wnr.0000000000001651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cochlear implants are considered the gold standard therapy for subjects with severe hearing loss and deafness. Cochlear implants bypass the damaged hair cells and directly stimulate spiral ganglion neurons (SGNs) of the auditory nerve. Hence, the presence of functional SGNs is crucial for speech perception in electric hearing with a cochlear implant. In deaf individuals, SGNs progressively degenerate due to the lack of neurotrophic support, normally provided by sensory cells of the inner ear. Adipose-derived stromal cells (ASCs) are known to produce neurotrophic factors. In a guinea pig model of sensory hearing loss and cochlear implantation, ASCs were autologously transplanted into the scala tympani prior to insertion of a cochlear implant on one side. Electrically evoked auditory brain stem responses (eABR) were recorded 8 weeks after cochlear implantation. At conclusion of the experiment, the cochleae were histologically evaluated. Compared to untreated control animals, transplantation of ASCs resulted in an increased number of SGNs and their peripheral neurites. In ASC-transplanted animals, mean eABR thresholds were lower and suprathreshold amplitudes larger, suggesting a larger population of intact auditory nerve fibers. Moreover, when compared to controls, amplitude-level functions of eABRs in ASC transplanted animals demonstrated steeper slopes in response to increasing interphase gaps (IPGs), indicative of better functionality of the auditory nerve. In summary, results suggest that transplantation of autologous ASCs into the deaf inner ear may have protective effects on the survival of SGNs and their peripheral processes and may thus contribute to long-term benefits in speech discrimination performance in cochlear implant subjects.
Collapse
Affiliation(s)
- Andreas Radeloff
- Division of Oto-Rhino-Laryngology, Head and Neck Surgery, Carl von Ossietzky-University
- Cluster of excellence "Hearing 4 All"
- Research Center Neurosensory Science, Oldenburg, Germany
| | - Nashwa Nada
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Tanta University Hospitals, Tanta, Egypt
| | - Trandil El Mahallawi
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Tanta University Hospitals, Tanta, Egypt
| | - Enaas Kolkaila
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Tanta University Hospitals, Tanta, Egypt
| | - Maike Vollmer
- Department of Otol-Rhino-Laryngology, Head and Neck Surgery, University Magdeburg and Leibniz Institute for Neurobiology, Magdeburg
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Würzburg, Germany
| | - Philipp Schendzielorz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Würzburg, Germany
| |
Collapse
|
9
|
Gärtner L, Klötzer K, Lenarz T, Scheper V. Correlation of Electrically Evoked Compound Action Potential Amplitude Growth Function Slope and Anamnestic Parameters in Cochlear Implant Patients-Identification of Predictors for the Neuronal Health Status. Life (Basel) 2021; 11:life11030203. [PMID: 33807687 PMCID: PMC7999542 DOI: 10.3390/life11030203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/04/2023] Open
Abstract
Cochlear implants (CI) are the treatment of choice in profoundly deaf patients. Measuring the electrically evoked compound action potential (ECAP) has become an important tool for verifying the function of the spiral ganglion neurons (SGN), which are the target cells of the CI stimulation. ECAP measurement is only possible after electrode insertion. No information about the neuronal health status is available before cochlear implantation. We investigated possible correlations between the ECAP amplitude growth function (AGF) slope and anamnestic parameters to identify possible predictors for SGN health status and therefore for CI outcome. The study included patients being implanted with various electrode array lengths. Correlation analysis was performed for the mean AGF slope of the whole array, for separate electrodes as well as for grouped electrodes of the apical, medial, and basal region, with duration of deafness, age at implantation, residual hearing (grouped for electrode length), and etiology. The mean ECAP AGF slopes decreased from apical to basal. They were not correlated to the length of the electrode array or any etiology. For the mean of the full array or when grouped for the apical, middle, and basal part, the ECAP AGF slope was negatively correlated to the duration of hearing loss and the age at implantation. Since a significant negative correlation of the ECAP AGF slope and age at cochlear implantation and duration of deafness was observed, this study supports the statement that early implantation of a CI is recommended for sensorineural hearing loss. Additional factors such as the cochlear coverage and insertion angle influence the ECAP AGF slope and performance of the patient and should be included in future multifactorial analysis to study predictive parameters for the CI outcome.
Collapse
Affiliation(s)
- Lutz Gärtner
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (L.G.); (K.K.); (T.L.)
| | - Katharina Klötzer
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (L.G.); (K.K.); (T.L.)
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (L.G.); (K.K.); (T.L.)
- Cluster of Excellence “Hearing4All”, 30625 Hannover, Germany
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (L.G.); (K.K.); (T.L.)
- Cluster of Excellence “Hearing4All”, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-4369
| |
Collapse
|
10
|
Fernandez KA, Watabe T, Tong M, Meng X, Tani K, Kujawa SG, Edge AS. Trk agonist drugs rescue noise-induced hidden hearing loss. JCI Insight 2021; 6:142572. [PMID: 33373328 PMCID: PMC7934864 DOI: 10.1172/jci.insight.142572] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
TrkB agonist drugs are shown here to have a significant effect on the regeneration of afferent cochlear synapses after noise-induced synaptopathy. The effects were consistent with regeneration of cochlear synapses that we observed in vitro after synaptic loss due to kainic acid-induced glutamate toxicity and were elicited by administration of TrkB agonists, amitriptyline, and 7,8-dihydroxyflavone, directly into the cochlea via the posterior semicircular canal 48 hours after exposure to noise. Synaptic counts at the inner hair cell and wave 1 amplitudes in the auditory brainstem response (ABR) were partially restored 2 weeks after drug treatment. Effects of amitriptyline on wave 1 amplitude and afferent auditory synapse numbers in noise-exposed ears after systemic (as opposed to local) delivery were profound and long-lasting; synapses in the treated animals remained intact 1 year after the treatment. However, the effect of systemically delivered amitriptyline on synaptic rescue was dependent on dose and the time window of administration: it was only effective when given before noise exposure at the highest injected dose. The long-lasting effect and the efficacy of postexposure treatment indicate a potential broad application for the treatment of synaptopathy, which often goes undetected until well after the original damaging exposures.
Collapse
Affiliation(s)
- Katharine A Fernandez
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Takahisa Watabe
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Mingjie Tong
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Xiankai Meng
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Kohsuke Tani
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Sharon G Kujawa
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Albert Sb Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Vink HA, Versnel H, Kroon S, Klis SFL, Ramekers D. BDNF-mediated preservation of spiral ganglion cell peripheral processes and axons in comparison to that of their cell bodies. Hear Res 2020; 400:108114. [PMID: 33271438 DOI: 10.1016/j.heares.2020.108114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023]
Abstract
Treatment with neurotrophins prevents degeneration of spiral ganglion cells (SGCs) after severe hair cell loss. In a previous study we demonstrated a long-lasting effect with brain-derived neurotrophic factor (BDNF) after cessation of treatment. In that study the survival of the SGC cell bodies was examined. Here we address the question whether their peripheral processes and central processes (axons) were protected by this treatment as well in the cochleas of the aforementioned study. Guinea pigs were deafened by co-administration of kanamycin and furosemide. Two weeks after deafening the right cochleas were implanted with an intracochlear electrode array combined with a cannula connected to an osmotic pump filled with BDNF solution. Four weeks later the treatment was stopped by surgically removing the osmotic pump. At that point, or another four or eight weeks later, the animals were sacrificed for histological analysis. Control groups consisted of normal-hearing animals, and three groups of deafened animals: two-weeks-deaf untreated animals, and six- and fourteen-weeks-deaf sham-treated animals. Cochleas were processed for analysis of: (1) the myelinated portion of peripheral processes in the osseous spiral lamina, (2) the cell bodies in Rosenthal's canal, and (3) axons in the internal acoustic meatus. Packing densities and cross-sectional areas were determined using light microscopy. Up to eight weeks after treatment cessation the numbers of peripheral processes and axons were significantly higher than in untreated cochleas of control animals. Whereas the numbers of cell bodies and axons were similar to those at the start of treatment, the peripheral processes were significantly less well preserved. This smaller protective effect was found mainly in the apical turns. Strategies to prevent SGC degeneration after hair cell loss should consider the differential effects on the various neural elements.
Collapse
Affiliation(s)
- Henk A Vink
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - Steven Kroon
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands
| | - Sjaak F L Klis
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - Dyan Ramekers
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
12
|
BDNF Outperforms TrkB Agonist 7,8,3'-THF in Preserving the Auditory Nerve in Deafened Guinea Pigs. Brain Sci 2020; 10:brainsci10110787. [PMID: 33126525 PMCID: PMC7692073 DOI: 10.3390/brainsci10110787] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
In deaf subjects using a cochlear implant (CI) for hearing restoration, the auditory nerve is subject to degeneration, which may negatively impact CI effectiveness. This nerve degeneration can be reduced by neurotrophic treatment. Here, we compare the preservative effects of the naturally occurring tyrosine receptor kinase B (TrkB) agonist brain-derived neurotrophic factor (BDNF) and the small-molecule TrkB agonist 7,8,3′-trihydroxyflavone (THF) on the auditory nerve in deafened guinea pigs. THF may be more effective than BDNF throughout the cochlea because of better pharmacokinetic properties. The neurotrophic compounds were delivered by placement of a gelatin sponge on the perforated round window membrane. To complement the histology of spiral ganglion cells (SGCs), electrically evoked compound action potential (eCAP) recordings were performed four weeks after treatment initiation. We analyzed the eCAP inter-phase gap (IPG) effect and measures derived from pulse-train evoked eCAPs, both indicative of SGC healthiness. BDNF but not THF yielded a significantly higher survival of SGCs in the basal cochlear turn than untreated controls. Regarding IPG effect and pulse-train responses, the BDNF-treated animals exhibited more normal responses than both untreated and THF-treated animals. We have thus confirmed the protective effect of BDNF, but we have not confirmed previously reported protective effects of THF with our clinically applicable delivery method.
Collapse
|
13
|
Shepherd RK, Carter PM, Enke YL, Thompson A, Flynn B, Trang EP, Dalrymple AN, Fallon JB. Chronic intracochlear electrical stimulation at high charge densities: reducing platinum dissolution. J Neural Eng 2020; 17:056009. [DOI: 10.1088/1741-2552/abb7a6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Consecutive Treatment with Brain-Derived Neurotrophic Factor and Electrical Stimulation Has a Protective Effect on Primary Auditory Neurons. Brain Sci 2020; 10:brainsci10080559. [PMID: 32824176 PMCID: PMC7464901 DOI: 10.3390/brainsci10080559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/27/2023] Open
Abstract
Degeneration of neurons, such as the inner ear spiral ganglion neurons (SGN), may be decelerated or even stopped by neurotrophic factor treatment, such as brain-derived neurotrophic factor (BDNF), as well as electrical stimulation (ES). In a clinical setting, drug treatment of the SGN could start directly during implantation of a cochlear implant, whereas electrical stimulation begins days to weeks later. The present study was conducted to determine the effects of consecutive BDNF and ES treatments on SGN density and electrical responsiveness. An electrode drug delivery device was implanted in guinea pigs 3 weeks after deafening and five experimental groups were established: two groups received intracochlear infusion of artificial perilymph (AP) or BDNF; two groups were treated with AP respectively BDNF in addition to ES (AP + ES, BDNF + ES); and one group received BDNF from the day of implantation until day 34 followed by ES (BDNF ⇨ ES). Electrically evoked auditory brainstem responses were recorded. After one month of treatment, the tissue was harvested and the SGN density was assessed. The results show that consecutive treatment with BDNF and ES was as successful as the simultaneous combined treatment in terms of enhanced SGN density compared to the untreated contralateral side but not in regard to the numbers of protected cells.
Collapse
|
15
|
Germanà A, Guerrera MC, Laurà R, Levanti M, Aragona M, Mhalhel K, Germanà G, Montalbano G, Abbate F. Expression and Localization of BDNF/TrkB System in the Zebrafish Inner Ear. Int J Mol Sci 2020; 21:ijms21165787. [PMID: 32806650 PMCID: PMC7460859 DOI: 10.3390/ijms21165787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is involved in multiple and fundamental functions of the central and peripheral nervous systems including sensory organs. Despite recent advances in knowledge on the functional significance of BDNF and TrkB in the regulation of the acoustic system of mammals, the localization of BDNF/TrkB system in the inner ear of zebrafish during development, is not well known. Therefore, the goal of the present study is to analyze the age-dependent changes using RT-PCR, Western Blot and single and double immunofluorescence of the BDNF and its specific receptor in the zebrafish inner ear. The results showed the mRNA expression and the cell localization of BDNF and TrkB in the hair cells of the crista ampullaris and in the neuroepithelium of the utricle, saccule and macula lagena, analyzed at different ages. Our results demonstrate that the BDNF/TrkB system is present in the sensory cells of the inner ear, during whole life. Therefore, this system might play a key role in the development and maintenance of the hair cells in adults, suggesting that the zebrafish inner ear represents an interesting model to study the involvement of the neurotrophins in the biology of sensory cells
Collapse
|
16
|
Blakley BW, Seaman M, Alenezi A. Brain-derived nerve growth factor in the cochlea - a reproducibility study. J Otolaryngol Head Neck Surg 2020; 49:37. [PMID: 32503640 PMCID: PMC7275362 DOI: 10.1186/s40463-020-00432-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/24/2020] [Indexed: 11/14/2022] Open
Abstract
Objective Brain-derived nerve growth factor (BDNF) plays an important role in cochlear development so it is plausible that it could restore hearing loss if delivered directly into the cochlea. We wished to confirm our previous report that a single intracochlear injection of brain-derived nerve growth factor (BDNF) was beneficial for hearing in guinea pigs. We wished to assess the reproducibility of our results and assess possible improved methods with a view to developing a clinical treatment for sensorineural hearing loss. Methods CDDP was used to create partial hearing loss in 25 guinea pigs. After 30 days the animals underwent ABR testing and unilateral BDNF injection through the round window in one ear and saline injection into the other ear. After allowing possible effects to stabilize, thirty days later, ABR threshold testing was repeated to assess change in threshold. Results Final ABR thresholds were 60–70 dB and were about 11 dB better in the ears treated with BDNF. Conclusion Our original finding that Intracochlear BDNF can improve hearing in guinea pigs was confirmed, but the improvement demonstrated by the methods in this paper is too small for clinical application.
Collapse
Affiliation(s)
- Brian W Blakley
- Department of Otolaryngology, University of Manitoba, Winnipeg, Manitoba, R3A 1R9, Canada.
| | - Michael Seaman
- Department of Otolaryngology, University of Manitoba, Winnipeg, Manitoba, R3A 1R9, Canada
| | - Abdulrahman Alenezi
- Department of Otolaryngology, University of Manitoba, Winnipeg, Manitoba, R3A 1R9, Canada
| |
Collapse
|
17
|
Leake PA, Akil O, Lang H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res 2020; 394:107955. [PMID: 32331858 DOI: 10.1016/j.heares.2020.107955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Hearing impairment is a major health and economic concern worldwide. Currently, the cochlear implant (CI) is the standard of care for remediation of severe to profound hearing loss, and in general, contemporary CIs are highly successful. But there is great variability in outcomes among individuals, especially in children, with many CI users deriving much less or even marginal benefit. Much of this variability is related to differences in auditory nerve survival, and there has been substantial interest in recent years in exploring potential therapies to improve survival of the cochlear spiral ganglion neurons (SGN) after deafness. Preclinical studies using osmotic pumps and other approaches in deafened animal models to deliver neurotrophic factors (NTs) directly to the cochlea have shown promising results, especially with Brain-Derived Neurotrophic Factor (BDNF). More recent studies have focused on the use of NT gene therapy to force expression of NTs by target cells within the cochlea. This could provide the means for a one-time treatment to promote long-term NT expression and improve neural survival after deafness. This review summarizes the evidence for the efficacy of exogenous NTs in preventing SGN degeneration after hearing loss and reviews the animal research to date suggesting that NT gene therapy can elicit long-term NT expression in the cochlea, resulting in significantly improved SGN and radial nerve fiber survival after deafness. In addition, we discuss NT gene therapy in other non-auditory applications and consider some of the remaining issues with regard to selecting optimal vectors, timing of treatment, and place/method of delivery, etc. that must be resolved prior to considering clinical application.
Collapse
Affiliation(s)
- Patricia A Leake
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA.
| | - Omar Akil
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA
| | - Hainan Lang
- Dept. of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Room RS613, Charleston, SC, 29414, USA
| |
Collapse
|
18
|
Tomaskovic-Crook E, Gu Q, Rahim SNA, Wallace GG, Crook JM. Conducting Polymer Mediated Electrical Stimulation Induces Multilineage Differentiation with Robust Neuronal Fate Determination of Human Induced Pluripotent Stem Cells. Cells 2020; 9:cells9030658. [PMID: 32182797 PMCID: PMC7140718 DOI: 10.3390/cells9030658] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Electrical stimulation is increasingly being used to modulate human cell behaviour for biotechnological research and therapeutics. Electrically conductive polymers (CPs) such as polypyrrole (PPy) are amenable to in vitro and in vivo cell stimulation, being easy to synthesise with different counter ions (dopants) to augment biocompatibility and cell-effects. Extending our earlier work, which showed that CP-mediated electrical stimulation promotes human neural stem cell differentiation, here we report using electroactive PPy containing the anionic dopant dodecylbenzenesulfonate (DBS) to modulate the fate determination of human induced pluripotent stem cells (iPSCs). Remarkably, the stimulation without conventional chemical inducers resulted in the iPSCs differentiating to cells of the three germ lineages-endoderm, ectoderm, and mesoderm. The unstimulated iPSC controls remained undifferentiated. Phenotypic characterisation further showed a robust induction to neuronal fate with electrical stimulation, again without customary chemical inducers. Our findings add to the growing body of evidence supporting the use of electrical stimulation to augment stem cell differentiation, more specifically, pluripotent stem cell differentiation, and especially neuronal induction. Moreover, we have shown the versatility of electroactive PPy as a cell-compatible platform for advanced stem cell research and translation, including identifying novel mechanisms of fate regulation, tissue development, electroceuticals, and regenerative medicine.
Collapse
Affiliation(s)
- Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500 Wollongong, Australia; (E.T.-C.); (Q.G.); (S.N.A.R.)
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 Wollongong, Australia
| | - Qi Gu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500 Wollongong, Australia; (E.T.-C.); (Q.G.); (S.N.A.R.)
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100000 Beijing, China
| | - Siti N Abdul Rahim
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500 Wollongong, Australia; (E.T.-C.); (Q.G.); (S.N.A.R.)
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500 Wollongong, Australia; (E.T.-C.); (Q.G.); (S.N.A.R.)
- Correspondence: (G.G.W.); (J.M.C.); Tel.: +61-2-4221-3127 (G.G.W.); +61-2-4221-3011 (J.M.C.)
| | - Jeremy M Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500 Wollongong, Australia; (E.T.-C.); (Q.G.); (S.N.A.R.)
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 Wollongong, Australia
- Department of Surgery, St Vincent’s Hospital, The University of Melbourne, 3065 Fitzroy, Australia
- Correspondence: (G.G.W.); (J.M.C.); Tel.: +61-2-4221-3127 (G.G.W.); +61-2-4221-3011 (J.M.C.)
| |
Collapse
|
19
|
Hügl S, Scheper V, Gepp MM, Lenarz T, Rau TS, Schwieger J. Coating stability and insertion forces of an alginate-cell-based drug delivery implant system for the inner ear. J Mech Behav Biomed Mater 2019; 97:90-98. [DOI: 10.1016/j.jmbbm.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/01/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
|
20
|
AAV-Mediated Neurotrophin Gene Therapy Promotes Improved Survival of Cochlear Spiral Ganglion Neurons in Neonatally Deafened Cats: Comparison of AAV2-hBDNF and AAV5-hGDNF. J Assoc Res Otolaryngol 2019; 20:341-361. [PMID: 31222416 PMCID: PMC6646500 DOI: 10.1007/s10162-019-00723-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/15/2019] [Indexed: 01/22/2023] Open
Abstract
Outcomes with contemporary cochlear implants (CI) depend partly upon the survival and condition of the cochlear spiral ganglion (SG) neurons. Previous studies indicate that CI stimulation can ameliorate SG neural degeneration after deafness, and brain-derived neurotrophic factor (BDNF) delivered by an osmotic pump can further improve neural survival. However, direct infusion of BDNF elicits undesirable side effects, and osmotic pumps are impractical for clinical application. In this study, we explored the potential for two adeno-associated viral vectors (AAV) to elicit targeted neurotrophic factor expression in the cochlea and promote improved SG and radial nerve fiber survival. Juvenile cats were deafened prior to hearing onset by systemic aminoglycoside injections. Auditory brainstem responses showed profound hearing loss by 16-18 days postnatal. At ~ 4 weeks of age, AAV2-GFP (green fluorescent protein), AAV5-GFP, AAV2-hBDNF, or AAV5-hGDNF (glial-derived neurotrophic factor) was injected through the round window unilaterally. For GFP immunofluorescence, animals were studied ~ 4 weeks post-injection to assess cell types transfected and their distributions. AAV2-GFP immunofluorescence demonstrated strong expression of the GFP reporter gene in residual inner (IHCs), outer hair cells (OHCs), inner pillar cells, and in some SG neurons throughout the cochlea. AAV5-GFP elicited robust transduction of IHCs and some SG neurons, but few OHCs and supporting cells. After AAV-neurotrophic factor injections, animals were studied ~ 3 months post-injection to evaluate neural survival. AAV5-hGDNF elicited a modest neurotrophic effect, with 6 % higher SG density, but had no trophic effect on radial nerve fiber survival, and undesirable ectopic fiber sprouting occurred. AAV2-hBDNF elicited a similar 6 % increase in SG survival, but also resulted in greatly improved radial nerve fiber survival, with no ectopic fiber sprouting. A further study assessed whether AAV2-hBDNF neurotrophic effects would persist over longer post-injection periods. Animals examined 6 months after virus injection showed substantial neurotrophic effects, with 14 % higher SG density and greatly improved radial nerve fiber survival. Our results suggest that AAV-neurotrophin gene therapy can elicit expression of physiological concentrations of neurotrophins in the cochlea, supporting improved SG neuronal and radial nerve fiber survival while avoiding undesirable side effects. These studies also demonstrate the potential for application of cochlear gene therapy in a large mammalian cochlea comparable to the human cochlea and in an animal model of congenital/early acquired deafness.
Collapse
|
21
|
Ma Y, Wise AK, Shepherd RK, Richardson RT. New molecular therapies for the treatment of hearing loss. Pharmacol Ther 2019; 200:190-209. [PMID: 31075354 DOI: 10.1016/j.pharmthera.2019.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
An estimated 466 million people suffer from hearing loss worldwide. Sensorineural hearing loss is characterized by degeneration of key structures of the sensory pathway in the cochlea such as the sensory hair cells, the primary auditory neurons and their synaptic connection to the hair cells - the ribbon synapse. Various strategies to protect or regenerate these sensory cells and structures are the subject of intensive research. Yet despite recent advances in our understandings of the capacity of the cochlea for repair and regeneration there are currently no pharmacological or biological interventions for hearing loss. Current research focusses on localized cochlear drug, gene and cell-based therapies. One of the more promising drug-based therapies is based on neurotrophic factors for the repair of the ribbon synapse after noise exposure, as well as preventing loss of primary auditory neurons and regrowth of the auditory neuron fibers after severe hearing loss. Drug therapy delivery technologies are being employed to address the specific needs of neurotrophin and other therapies for hearing loss that include the need for high doses, long-term delivery, localised or cell-specific targeting and techniques for their safe and efficacious delivery to the cochlea. Novel biomaterials are enabling high payloads of drugs to be administered to the cochlea with subsequent slow-release properties that are proving to be beneficial for treating hearing loss. In parallel, new gene therapy technologies are addressing the need for cell specificity and high efficacy for the treatment of both genetic and acquired hearing loss with promising reports of hearing recovery. Some biomaterials and cell therapies are being used in conjunction with the cochlear implant ensuring therapeutic benefit to the primary neurons during electrical stimulation. This review will introduce the auditory system, hearing loss and the potential for repair and regeneration in the cochlea. Drug delivery to the cochlea will then be reviewed, with a focus on new biomaterials, gene therapy technologies, cell therapy and the use of the cochlear implant as a vehicle for drug delivery. With the current pre-clinical research effort into therapies for hearing loss, including clinical trials for gene therapy, the future for the treatment for hearing loss is looking bright.
Collapse
Affiliation(s)
- Yutian Ma
- Bionics Institute, East Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia; University of Melbourne, Department of Chemical Engineering, Parkville, Victoria, Australia
| | - Andrew K Wise
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia
| | - Robert K Shepherd
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia
| | - Rachael T Richardson
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia.
| |
Collapse
|
22
|
Shepherd RK, Carter PM, Enke YL, Wise AK, Fallon JB. Chronic intracochlear electrical stimulation at high charge densities results in platinum dissolution but not neural loss or functional changes in vivo. J Neural Eng 2019; 16:026009. [PMID: 30523828 PMCID: PMC8687872 DOI: 10.1088/1741-2552/aaf66b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Although there are useful guidelines defining the boundary between damaging and non-damaging electrical stimulation they were derived from acute studies using large surface area electrodes in direct contact with cortical neurons. These parameters are a small subset of the parameters used by neural stimulators. More recently, histological examination of cochleae from patients that were long-term cochlear implant users have shown evidence of particulate platinum (Pt). The pathophysiological effect of Pt within the cochlea is unknown. We examined the response of the cochlea to stimulus levels beyond those regarded as safe, and to evaluate the pathophysiological response of the cochlea following chronic stimulation at charge densities designed to induce Pt corrosion in vivo. APPROACH 19 guinea pigs were systemically deafened and implanted with a cochlear electrode array containing eight Pt electrodes of 0.05, 0.075 or 0.2 mm2 area. Animals were electrically stimulated continuously for 28 d using charge balanced current pulses at charge densities of 400, 267 or 100 µC/cm2/phase. Electrically-evoked auditory brainstem responses (EABRs) were recorded to monitor neural function. On completion of stimulation electrodes were examined using scanning electron microscopy (SEM) and cochleae examined histology. Finally, analysis of Pt was measured using energy dispersive x-ray spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS). MAIN RESULTS Compared with unstimulated control electrodes and electrodes stimulated at 100 µC/cm2/phase, stimulation at 267 or 400 µC/cm2/phase resulted in significant Pt corrosion. Cochleae stimulated at these high charge densities contained particulate Pt. The extent of the foreign body response depended on the level of stimulation; cochleae stimulated at 267 or 400 µC/cm2/phase exhibited an extensive tissue response that included a focal region of necrosis close to the electrode. Despite chronic stimulation at high charge densities there was no loss of auditory neurons (ANs) in stimulated cochleae compared with their contralateral controls. Indeed, we report a statistically significant increase in AN density proximal to electrodes stimulated at 267 or 400 µC/cm2/phase. Finally, there was no evidence of a reduction in AN function associated with chronic stimulation at 100, 267 or 400 µC/cm2/phase as evidenced by stable EABR thresholds over the stimulation program. SIGNIFICANCE Chronic electrical stimulation of Pt electrodes at 267 or 400 µC/cm2/phase evoked a vigorous tissue response and produced Pt corrosion products that were located close to the electrode. Despite these changes at the electrode/tissue interface there was no evidence of neural loss or a reduction in neural function.
Collapse
Affiliation(s)
- Robert K Shepherd
- Bionics Institute, St Vincent's Hospital, Melbourne, Australia. Medical Bionics Department, The University of Melbourne, Melbourne, Australia
| | | | | | | | | |
Collapse
|
23
|
Liu W, Wang X, Wang M, Wang H. Protection of Spiral Ganglion Neurons and Prevention of Auditory Neuropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1130:93-107. [DOI: 10.1007/978-981-13-6123-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
24
|
Pharmacokinetics and tissue distribution of neurotrophin 3 after intracochlear delivery. J Control Release 2019; 299:53-63. [PMID: 30790594 DOI: 10.1016/j.jconrel.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 01/22/2023]
Abstract
Neurotrophin therapy has potential to reverse some forms of hearing loss. However, cochlear pharmacokinetic studies are challenging due to small fluid volumes. Here a radioactive tracer was used to determine neurotrophin-3 retention, distribution and clearance after intracochlear administration. 125I-neurotrophin-3 was injected into guinea pig cochleae using a sealed injection technique comparing dosing volumes, rates and concentrations up to 750 μg/mL. Retention was measured by whole-cochlear gamma counts at five time points while distribution and clearance were assessed by autoradiography. Smaller injection volumes and higher concentrations correlated with higher retention of neurotrophin-3. Distribution of neurotrophin-3 was widespread throughout the cochlear tissue, decreasing in concentration from base to apex. Tissue distribution was non-uniform, with greatest density in cells lining the scala tympani and lower density in neural target tissue. The time constant for clearance of neurotrophin-3 from cochlear tissues was 38 h but neurotrophin-3 remained detectable for at least 2 weeks. Neurotrophin-3 was evident in the semi-circular canals with minor spread to the contralateral cochlea. This study is the first comprehensive evaluation of the disposition profile for a protein therapy in the cochlea. The findings and methods in this study will provide valuable guidance for the development of protein therapies for hearing loss.
Collapse
|
25
|
Pinyon JL, Klugmann M, Lovell NH, Housley GD. Dual-Plasmid Bionic Array-Directed Gene Electrotransfer in HEK293 Cells and Cochlear Mesenchymal Cells Probes Transgene Expression and Cell Fate. Hum Gene Ther 2019; 30:211-224. [DOI: 10.1089/hum.2018.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Jeremy L. Pinyon
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, and UNSW Sydney, Sydney, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, and UNSW Sydney, Sydney, Australia
| | - Nigel H. Lovell
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, Australia
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, and UNSW Sydney, Sydney, Australia
| |
Collapse
|
26
|
Abstract
Cochlear implants (CI) restore functional hearing in the majority of deaf patients. Despite the tremendous success of these devices, some limitations remain. The bottleneck for optimal electrical stimulation with CI is caused by the anatomical gap between the electrode array and the auditory neurons in the inner ear. As a consequence, current devices are limited through 1) low frequency resolution, hence sub-optimal sound quality and 2), large stimulation currents, hence high energy consumption (responsible for significant battery costs and for impeding the development of fully implantable systems). A recently completed, multinational and interdisciplinary project called NANOCI aimed at overcoming current limitations by creating a gapless interface between auditory nerve fibers and the cochlear implant electrode array. This ambitious goal was achieved in vivo by neurotrophin-induced attraction of neurites through an intracochlear gel-nanomatrix onto a modified nanoCI electrode array located in the scala tympani of deafened guinea pigs. Functionally, the gapless interface led to lower stimulation thresholds and a larger dynamic range in vivo, and to reduced stimulation energy requirement (up to fivefold) in an in vitro model using auditory neurons cultured on multi-electrode arrays. In conclusion, the NANOCI project yielded proof of concept that a gapless interface between auditory neurons and cochlear implant electrode arrays is feasible. These findings may be of relevance for the development of future CI systems with better sound quality and performance and lower energy consumption. The present overview/review paper summarizes the NANOCI project history and highlights achievements of the individual work packages.
Collapse
|
27
|
Schmidt N, Schulze J, Warwas DP, Ehlert N, Lenarz T, Warnecke A, Behrens P. Long-term delivery of brain-derived neurotrophic factor (BDNF) from nanoporous silica nanoparticles improves the survival of spiral ganglion neurons in vitro. PLoS One 2018; 13:e0194778. [PMID: 29584754 PMCID: PMC5870973 DOI: 10.1371/journal.pone.0194778] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/11/2018] [Indexed: 11/18/2022] Open
Abstract
Sensorineural hearing loss (SNHL) can be overcome by electrical stimulation of spiral ganglion neurons (SGNs) via a cochlear implant (CI). Restricted CI performance results from the spatial gap between the SGNs and the electrode, but the efficacy of CI is also limited by the degeneration of SGNs as one consequence of SHNL. In the healthy cochlea, the survival of SGNs is assured by endogenous neurotrophic support. Several applications of exogenous neurotrophic supply have been shown to reduce SGN degeneration in vitro and in vivo. In the present study, nanoporous silica nanoparticles (NPSNPs), with an approximate diameter of <100 nm, were loaded with the brain-derived neurotrophic factor (BDNF) to test their efficacy as long-term delivery system for neurotrophins. The neurotrophic factor was released constantly from the NPSNPs over a release period of 80 days when the surface of the nanoparticles had been modified with amino groups. Cell culture investigations with NIH3T3 fibroblasts attest a good general cytocompatibility of the NPSNPs. In vitro experiments with SGNs indicate a significantly higher survival rate of SGNs in cell cultures that contained BDNF-loaded nanoparticles compared to the control culture with unloaded NPSNPs (p<0.001). Importantly, also the amounts of BDNF released up to a time period of 39 days increased the survival rate of SGNs. Thus, NPSNPs carrying BDNF are suitable for the treatment of inner ear disease and for the protection and the support of SGNs. Their nanoscale nature and the fact that a direct contact of the nanoparticles and the SGNs is not necessary for neuroprotective effects, should allow for the facile preparation of nanocomposites, e.g., with biocompatible polymers, to install coatings on implants for the realization of implant-based growth factor delivery systems.
Collapse
Affiliation(s)
- Nadeschda Schmidt
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Jennifer Schulze
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Dawid P. Warwas
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
| | - Nina Ehlert
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Thomas Lenarz
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Peter Behrens
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
- * E-mail:
| |
Collapse
|
28
|
Zhong C, Jiang Z, Guo Q, Zhang X. Protective effect of adenovirus-mediated erythropoietin expression on the spiral ganglion neurons in the rat inner ear. Int J Mol Med 2018; 41:2669-2677. [PMID: 29436578 PMCID: PMC5846647 DOI: 10.3892/ijmm.2018.3455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/11/2018] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to evaluate the expression of erythropoietin (Epo) and the Epo receptor (Epo-R) in the spiral ganglion neurons (SGNs) of the rat inner ear, and to assess the effect of Epo adenovirus vector (Ad-Epo) on the spontaneous apoptosis of SGNs. A total of 60 ears from 30 healthy neonatal (2-3 days postnatal) Sprague-Dawley rats were used to examine the expression of Epo in the SGNs. The rats were divided into three groups: The negative control group, the vector control group [infected with a green fluorescent protein expression vector (Ad-GFP)] and the Ad-Epo group (infected with Ad-Epo). The expression of Epo and Epo-R was detected by immunohistochemistry and dual immunofluorescence staining using polyclonal antibodies directed against Epo and Epo-R, followed by confocal laser-scanning microscopy. An adenovirus vector was constructed and used to transfect the cultured SGNs. Following adenovirus infection, apoptosis of the SGNs was evaluated and Epo protein expression was assessed. Epo and Epo-R were widely expressed in the plasma membrane and the cytoplasm of the SGNs, as well as in the organ of Corti and the stria vascularis within the inner ear. Epo protein expression was upregulated in the Ad-Epo group compared with that in the other two groups (P<0.05). Apoptotic cells were seldom observed at day 4 of SGN culture in the negative control group. At day 7, marked apoptotic cells were detected in the negative control group and the vector control group. The apoptosis level in the Ad-Epo group was significantly decreased compared with that in the negative control group or the vector control group at day 7 (P<0.05). In conclusion, Epo and Epo-R are expressed in the SGNs of the inner ear of the rat, and Ad-Epo can decrease the spontaneous apoptosis of SGNs, which may provide a basis for the prevention or alleviation of sensorineural hearing loss.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Otolaryngology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhendong Jiang
- Department of Otolaryngology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Qiang Guo
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Xueyuan Zhang
- Department of Otolaryngology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
29
|
Alemi R, Motassadi Zarandy M, Joghataei MT, Eftekharian A, Zarrindast MR, Vousooghi N. Plasticity after pediatric cochlear implantation: Implication from changes in peripheral plasma level of BDNF and auditory nerve responses. Int J Pediatr Otorhinolaryngol 2018; 105:103-110. [PMID: 29447794 DOI: 10.1016/j.ijporl.2017.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Sensory neural hearing loss could lead to some structural and physiological changes in the auditory pathways, such as alteration in the expression of neurotrophins. These factors, especially Brain-Derived Neurotrophic Factor (BDNF), play an important role in synaptic functions and experience-related plasticity. Restoring cochlear function after hearing loss is possible through cochlear implantation (CI). Evaluation of the blood concentration changes of neurotrophins as prerequisites of plasticity could help scientists to determine the prognosis of CI as in the candidacy procedure or enhancing prosthesis function by adding the exact needed amount of BDNF to the electrode array. METHODS Here we have studied the plasma BDNF concentration before CI surgery and 6 months after using CI device in 15 pediatric CI recipients and compared this level with changes of BDNF concentration in 10 children who were using hearing aid (H.A). In addition, we searched for a possible correlation between post-surgery plasma BDNF concentration and electrical compound action potential (ECAP) and comfort-level (C-level) thresholds. RESULTS Plasma BDNF concentration in children with CI increased significantly after CI surgery, while this difference in H.A group was not significant. Analysis of repeated measures of ECAP and C-level thresholds in CI group showed that there were some kinds of steadiness during follow- up sessions for ECAP thresholds in basal and E16 of middle electrodes, whereas C-level thresholds for all selected electrodes increased significantly up to six months follow-up. Interestingly, we did not find any significant correlation between post-surgery plasma BDNF concentration and ECAP or C-level threshold changes. CONCLUSION It is concluded that changes in C-level threshold and steady state of ECAP thresholds and significant changes in BDNF concentration could be regarded as an indicator of experienced-related plasticity after CI stimulation.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cochlear Implant Center and Department of Otorhinolaryngology, Amir Aalam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Motassadi Zarandy
- Cochlear Implant Center and Department of Otorhinolaryngology, Amir Aalam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Eftekharian
- Department of Otorhinolaryngology, Loghman Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran; Genomic Center, School of Advanced Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Fransson A, Tornøe J, Wahlberg LU, Ulfendahl M. The feasibility of an encapsulated cell approach in an animal deafness model. J Control Release 2017; 270:275-281. [PMID: 29269144 PMCID: PMC5819869 DOI: 10.1016/j.jconrel.2017.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 01/18/2023]
Abstract
For patients with profound hearing loss a cochlear implant (CI) is the only treatment today. The function of a CI depends in part of the function and survival of the remaining spiral ganglion neurons (SGN). It is well known from animal models that inner ear infusion of neurotrophic factors prevents SGN degeneration and maintains electrical responsiveness in deafened animals. The purpose with this study was to investigate the effects of a novel encapsulated cell (EC) device releasing neurotrophic factors in the deafened guinea pig. The results showed that an EC device releasing glial cell line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF) implanted for four weeks in deafened guinea pigs significantly preserved the SGNs and maintained their electrical responsiveness. There was a significant difference between BDNF and GDNF in favour of GDNF. This study, demonstrating positive structural and functional effects in the deafened inner ear, suggests that an implanted EC device releasing biologically protective substances offers a feasible approach for treating progressive hearing impairment.
Collapse
Affiliation(s)
- Anette Fransson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | - Mats Ulfendahl
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Sale PJP, Uschakov A, Saief T, Rowe DP, Abbott CJ, Luu CD, Hampson AJ, O'Leary SJ, Sly DJ. Cannula-based drug delivery to the guinea pig round window causes a lasting hearing loss that may be temporarily mitigated by BDNF. Hear Res 2017; 356:104-115. [PMID: 29089185 DOI: 10.1016/j.heares.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 09/22/2017] [Accepted: 10/11/2017] [Indexed: 01/30/2023]
Abstract
Sustained local delivery of drugs to the inner ear may be required for future regenerative and protective strategies. The round window is surgically accessible and a promising delivery route. To be viable, a delivery system should not cause hearing loss. This study determined the effect on hearing of placing a drug-delivery microcatheter on to the round window, and delivering either artificial perilymph (AP) or brain-derived neurotrophic factor (BDNF) via this catheter with a mini-osmotic pump. Auditory brainstem responses (ABRs) were monitored for 4 months after surgery, while the AP or BDNF was administered for the first month. The presence of the microcatheter - whether dry or when delivering AP or BDNF for 4 weeks - was associated with an increase in ABR thresholds of up to 15 dB, 16 weeks after implantation. This threshold shift was, in part, delayed by the delivery of BDNF. We conclude that the chronic presence of a microcatheter in the round window niche causes hearing loss, and that this is exacerbated by delivery of AP, and ameliorated temporarily by delivery of BDNF.
Collapse
Affiliation(s)
- Phillip J P Sale
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - Aaron Uschakov
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - Tasfia Saief
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - David P Rowe
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - Carla J Abbott
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Amy J Hampson
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - Stephen J O'Leary
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia.
| | - David J Sly
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia; Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn 3122, Australia
| |
Collapse
|
32
|
Pfingst BE, Colesa DJ, Swiderski DL, Hughes AP, Strahl SB, Sinan M, Raphael Y. Neurotrophin Gene Therapy in Deafened Ears with Cochlear Implants: Long-term Effects on Nerve Survival and Functional Measures. J Assoc Res Otolaryngol 2017; 18:731-750. [PMID: 28776202 DOI: 10.1007/s10162-017-0633-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 07/04/2017] [Indexed: 01/05/2023] Open
Abstract
Because cochlear implants function by stimulating the auditory nerve, it is assumed that the condition of the nerve plays an important role in the efficacy of the prosthesis. Thus, considerable research has been devoted to methods of preserving the nerve following deafness. Neurotrophins have been identified as a potential contributor to neural health, but most of the research to date has been done in young animals and for short periods (less than 3 to 6 months) after the onset of treatment. The first objective of the current experiment was to examine the effects of a neurotrophin gene therapy delivery method on spiral ganglion neuron (SGN) preservation and function in the long term (5 to 14 months) in mature guinea pigs with cochlear implants. The second objective was to examine several potential non-invasive monitors of auditory nerve health following the neurotrophin gene therapy procedure. Eighteen mature adult male guinea pigs were deafened by cochlear perfusion of neomycin and then one ear was inoculated with an adeno-associated viral vector with an Nft3-gene insert (AAV.Ntf3) and implanted with a cochlear implant electrode array. Five control animals were deafened and inoculated with an empty AAV and implanted. Data from 43 other guinea pig ears from this and previous experiments were used for comparison: 24 animals implanted in a hearing ear, nine animals deafened and implanted with no inoculation, and ten normal-hearing non-implanted ears. After 4 to 21 months of psychophysical and electrophysiological testing, the animals were prepared for histological examination of SGN densities and inner hair cell (IHC) survival. Seventy-eight percent of the ears deafened and inoculated with AAV.Ntf3 showed better SGN survival than the 14 deafened-control ears. The degree of SGN preservation following the gene therapy procedure was variable across animals and across cochlear turns. Slopes of psychophysical multipulse integration (MPI) functions were predictive of SGN density, but only in animals with preserved IHCs. MPI was not affected by the AAV.Ntf3 treatment, but there was a minor improvement in temporal integration (TI). AAV.Ntf3 treatment had significant effects on ECAP and EABR amplitude growth func-tion (AGF) slopes; the reduction in slope in deafened ears was ameliorated by the AAV.Ntf3 treatment. Slopes of the ECAP and EABR AGFs were predictive of SGN density in a broad area near and just apical to the implant. The highest ensemble spontaneous activity (ESA) values were seen in animals with surviving IHCs, but AAV.Ntf3 treatment in deafened ears resulted in slightly higher ESA values compared to deafened untreated ears. Overall, a combination of the psychophysical and electrophysiological measures can be useful for monitoring the health of the implanted cochlea in guinea pigs. These measures should be applicable for assessing cochlear health in human subjects.
Collapse
Affiliation(s)
- Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA.
| | - Deborah J Colesa
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Aaron P Hughes
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | | | - Moaz Sinan
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| |
Collapse
|
33
|
Stolle M, Schulze J, Roemer A, Lenarz T, Durisin M, Warnecke A. Human Plasma Rich in Growth Factors Improves Survival and Neurite Outgrowth of Spiral Ganglion Neurons In Vitro. Tissue Eng Part A 2017; 24:493-501. [PMID: 28610547 DOI: 10.1089/ten.tea.2017.0120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Platelet-rich and platelet-poor plasma (PRP and PPP) are autologous preparations from peripheral blood and contain several growth factors and cytokines involved in tissue repair. Although their neuroprotective and neuroregenerative properties have been already described, little is known about their effects in the inner ear. We, therefore, examined the effects of PRP and PPP on spiral ganglion neurons (SGN) in vitro. RESULTS For all experiments, spiral ganglia were isolated from neonatal rats and were cultured in serum-free medium. PRP from human venous blood was added to dissociated SGN. Treatment with PRP (1:10, 1:50) significantly increased the neuronal survival and the neuronal outgrowth of SGN. This effect was completely reversed by the addition of Bay 11 (nuclear factor kappa B-inhibitor) and SB203580 (p38 mitogen-activated protein kinase [p38MAPK]-inhibitor). Furthermore, PPP was used as a cell-free matrix for the attachment of spiral ganglion explants. Coating with activated PPP improved the adhesion and neurite outgrowth of spiral ganglia explants. Therefore, activated PPP is a promising alternative for poly d/l-ornithine and laminin coating due to the gelatinous composition through the activation of PPP with calcium gluconate. PRP promotes neuroprotective and neuroregenerative effects on SGN when administered in adequate concentrations. These beneficial effects seem to be depending on NF-κB and the p38MAPK pathways. CONCLUSION Preparations from autologous whole blood (PRP and PPP, respectively) present an interesting alternative for pharmacological intervention to the inner ear since they contain a balanced and natural composition of trophic factors.
Collapse
Affiliation(s)
- Michael Stolle
- 1 Department of Otolaryngology, Hannover Medical School , Hannover, Germany
| | - Jennifer Schulze
- 1 Department of Otolaryngology, Hannover Medical School , Hannover, Germany .,2 Cluster of Excellence of the German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft") "Hearing4all", Hannover, Germany
| | - Ariane Roemer
- 1 Department of Otolaryngology, Hannover Medical School , Hannover, Germany
| | - Thomas Lenarz
- 1 Department of Otolaryngology, Hannover Medical School , Hannover, Germany .,2 Cluster of Excellence of the German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft") "Hearing4all", Hannover, Germany
| | - Martin Durisin
- 1 Department of Otolaryngology, Hannover Medical School , Hannover, Germany
| | - Athanasia Warnecke
- 1 Department of Otolaryngology, Hannover Medical School , Hannover, Germany .,2 Cluster of Excellence of the German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft") "Hearing4all", Hannover, Germany
| |
Collapse
|
34
|
Wise AK, Pujol R, Landry TG, Fallon JB, Shepherd RK. Structural and Ultrastructural Changes to Type I Spiral Ganglion Neurons and Schwann Cells in the Deafened Guinea Pig Cochlea. J Assoc Res Otolaryngol 2017; 18:751-769. [PMID: 28717876 DOI: 10.1007/s10162-017-0631-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/21/2017] [Indexed: 01/03/2023] Open
Abstract
Sensorineural hearing loss is commonly caused by damage to cochlear sensory hair cells. Coinciding with hair cell degeneration, the peripheral fibres of type I spiral ganglion neurons (SGNs) that normally form synaptic connections with the inner hair cell gradually degenerate. We examined the time course of these degenerative changes in type I SGNs and their satellite Schwann cells at the ultrastructural level in guinea pigs at 2, 6, and 12 weeks following aminoglycoside-induced hearing loss. Degeneration of the peripheral fibres occurred prior to the degeneration of the type I SGN soma and was characterised by shrinkage of the fibre followed by retraction of the axoplasm, often leaving a normal myelin lumen devoid of axoplasmic content. A statistically significant reduction in the cross-sectional area of peripheral fibres was evident as early as 2 weeks following deafening (p < 0.001, ANOVA). This was followed by a decrease in type I SGN density within Rosenthal's canal that was statistically significant 6 weeks following deafening (p < 0.001, ANOVA). At any time point examined, few type I SGN soma were observed undergoing degeneration, implying that once initiated, soma degeneration was rapid. While there was a significant reduction in soma area as well as changes to the morphology of the soma, the ultrastructure of surviving type I SGN soma appeared relatively normal over the 12-week period following deafening. Satellite Schwann cells exhibited greater survival traits than their type I SGN; however, on loss of neural contact, they reverted to a non-myelinating phenotype, exhibiting an astrocyte-like morphology with the formation of processes that appeared to be searching for new neural targets. In 6- and 12-week deafened cochlea, we observed cellular interaction between Schwann cell processes and residual SGNs that distorted the morphology of the SGN soma. Understanding the response of SGNs, Schwann cells, and the complex relationship between them following aminoglycoside deafening is important if we are to develop effective therapeutic techniques designed to rescue SGNs.
Collapse
Affiliation(s)
- Andrew K Wise
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia.
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia.
- Department of Otolaryngology, University of Melbourne, Melbourne, Australia.
| | - Remy Pujol
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia
- INSERM Unit 1051, INM, Montpellier, France
| | - Thomas G Landry
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia
| | - James B Fallon
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- Department of Otolaryngology, University of Melbourne, Melbourne, Australia
| | - Robert K Shepherd
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
35
|
Encapsulated cell device approach for combined electrical stimulation and neurotrophic treatment of the deaf cochlea. Hear Res 2017; 350:110-121. [PMID: 28463804 DOI: 10.1016/j.heares.2017.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/15/2017] [Accepted: 04/23/2017] [Indexed: 12/21/2022]
Abstract
Profound hearing impairment can be overcome by electrical stimulation (ES) of spiral ganglion neurons (SGNs) via a cochlear implant (CI). Thus, SGN survival is critical for CI efficacy. Application of glial cell line-derived neurotrophic factor (GDNF) has been shown to reduce SGN degeneration following deafness. We tested a novel method for local, continuous GDNF-delivery in combination with ES via a CI. The encapsulated cell (EC) device contained a human ARPE-19 cell-line, genetically engineered for secretion of GDNF. In vitro, GDNF delivery was stable during ES delivered via a CI. In the chronic in vivo part, cats were systemically deafened and unilaterally implanted into the scala tympani with a CI and an EC device, which they wore for six months. The implantation of control devices (same cell-line not producing GDNF) had no negative effect on SGN survival. GDNF application without ES led to an unexpected reduction in SGN survival, however, the combination of GDNF with initial, short-term ES resulted in a significant protection of SGNs. A tight fibrous tissue formation in the scala tympani of the GDNF-only group is thought to be responsible for the increased SGN degeneration, due to mechanisms related to an aggravated foreign body response. Furthermore, the fibrotic encapsulation of the EC device led to cell death or cessation of GDNF release within the EC device during the six months in vivo. In both in vitro and in vivo, fibrosis was reduced by CI stimulation, enabling the neuroprotective effect of the combined treatment. Thus, fibrous tissue growth limits treatment possibilities with an EC device. For a stable and successful long-term neurotrophic treatment of the SGN via EC devices in human CI users, it would be necessary to make changes in the treatment approach (provision of anti-inflammatories), the EC device surface (reduced cell adhesion) and the ES (initiation prior to fibrosis formation).
Collapse
|
36
|
Hu H, Ye B, Zhang L, Wang Q, Liu Z, Ji S, Liu Q, Lv J, Ma Y, Xu Y, Wu H, Huang F, Xiang M. Efr3a Insufficiency Attenuates the Degeneration of Spiral Ganglion Neurons after Hair Cell Loss. Front Mol Neurosci 2017; 10:86. [PMID: 28424585 PMCID: PMC5372784 DOI: 10.3389/fnmol.2017.00086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/10/2017] [Indexed: 01/19/2023] Open
Abstract
Sensorineural hearing loss (SNHL) is caused by an irreversible impairment of cochlear hair cells and subsequent progressive degeneration of spiral ganglion neurons (SGNs). Eighty-five requiring 3 (Efr3) is a plasma membrane protein conserved from yeast to human, and knockout of Efr3a was reported to facilitate the survival of hippocampal newborn neurons in adult mice. Previously, we found Efr3a expression in the auditory neural pathway is upregulated soon after the destruction of hair cells. Here we conducted a time-course analysis of drug-caused damage to hearing ability, hair cells and SGNs in Efr3a knocking down mice (Efr3a−/+, Efr3a KD) and their wild type littermates. Functional examination showed that both groups of mice suffered from serious hearing loss with a higher level of severity in wild type (WT) mice. Morphologic observation following drugs administration showed that both WT and Efr3a KD mice went through progressive loss of hair cells and SGNs, in association with degenerative changes in the perikarya, intracellular organelles, cell body conformation in SGNs, and the changes of SGNs in WT mice were more severe than in Efr3a KD mice. These beneficial effects of Efr3a KD could be ascribed to an increase in the expression of some neurotrophic factors and their receptors in Efr3a KD mice. Our results indicate that Efr3a insufficiency suppresses drug-caused SNHL neurodegeneration in association with an increase in the expression of some neurotrophic factors and their receptors, which may be targeted in the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Haixia Hu
- Department of Otolaryngology and Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China.,Ear Institute, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Bin Ye
- Department of Otolaryngology and Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China.,Ear Institute, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Le Zhang
- Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| | - Quan Wang
- Department of Otolaryngology and Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China.,Ear Institute, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Zhiwei Liu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Suying Ji
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Institute of Biological Science, Chinese Academy of SciencesShanghai, China
| | - Qiuju Liu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Institute of Biological Science, Chinese Academy of SciencesShanghai, China
| | - Jingrong Lv
- Department of Otolaryngology and Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yan Ma
- Department of Otolaryngology and Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Ying Xu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Hao Wu
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China.,Ear Institute, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Fude Huang
- Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China.,Institute of Neuroscience and State Key Laboratory of Neuroscience, Institute of Biological Science, Chinese Academy of SciencesShanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology and Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China.,Ear Institute, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
37
|
Degeneration of auditory nerve fibers in guinea pigs with severe sensorineural hearing loss. Hear Res 2017; 345:79-87. [DOI: 10.1016/j.heares.2017.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/07/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
|
38
|
Ramku E, Ramku R, Spanca D, Zhjeqi V. Functional Pattern of Increasing Concentrations of Brain-Derived Neurotrophic Factor in Spiral Ganglion: Implications for Research on Cochlear Implants. Open Access Maced J Med Sci 2017; 5:121-125. [PMID: 28507614 PMCID: PMC5420760 DOI: 10.3889/oamjms.2017.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND: As previously various studies have suggested application of brain-derived neurotrophic factor (BDNF) may be considered as a promising future therapy for hearing deficits, in particular for the improvement of cochlear neurone loss during cochlear implantation. AIM: The present study’s aim was to establish the upper threshold of the concentration of BDNF in Naval Medical Research Institute (NMRI) mice spiral ganglion outgrowth. METHODS: Spiral ganglion explants were prepared from post-natal day 4 (p4) (NMRI) mice of both sexes under the approval and guidelines of the regional council of Hearing Research Institute Tubingen. RESULTS: Spiral ganglion explants were cultured at postnatal days 4 in the presence of different concentrations of BDNF as described under methods. We chose an age of postnatal day (P4) and concentrations of BDNF 0; 6; 12.5; 25 and 50 ƞg/ml. Averaged neurite outgrowth is measured in 4 different cultures that were treated with different concentrations. Results show that with increasing concentrations of BDNF, the neurite density increases. CONCLUSION: The present finding show evidence that BDNF has a clear incremental effect on the number of neurites of spiral ganglia in the prehearing organ, but less on the neurite length. The upper threshold of exogenous BNDF concentration on spiral ganglion explant is 25 ƞg/ml. This means that concentration beyond this level has no further incremental impact. Therefore our suggestion for hydrogel concentration in NMRA mice in future research should be 25 ƞg/ml.
Collapse
Affiliation(s)
- Emina Ramku
- University Clinical Center, Prishtina, Kosovo
| | - Refik Ramku
- Private Polyclinic OTOKIRURGJIA, Prishtina, Kosovo
| | | | | |
Collapse
|
39
|
Wise AK, Tan J, Wang Y, Caruso F, Shepherd RK. Improved Auditory Nerve Survival with Nanoengineered Supraparticles for Neurotrophin Delivery into the Deafened Cochlea. PLoS One 2016; 11:e0164867. [PMID: 27788219 PMCID: PMC5082918 DOI: 10.1371/journal.pone.0164867] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 10/03/2016] [Indexed: 11/23/2022] Open
Abstract
Cochlear implants electrically stimulate spiral ganglion neurons (SGNs) in order to provide speech cues to severe-profoundly deaf patients. In normal hearing cochleae the SGNs depend on endogenous neurotrophins secreted by sensory cells in the organ of Corti for survival. SGNs gradually degenerate following deafness and consequently there is considerable interest in developing clinically relevant strategies to provide exogenous neurotrophins to preserve SGN survival. The present study investigated the safety and efficacy of a drug delivery system for the cochlea using nanoengineered silica supraparticles. In the present study we delivered Brain-derived neurotrophic factor (BDNF) over a period of four weeks and evaluated SGN survival as a measure of efficacy. Supraparticles were bilaterally implanted into the basal turn of cochleae in profoundly deafened guinea pigs. One ear received BDNF-loaded supraparticles and the other ear control (unloaded) supraparticles. After one month of treatment the cochleae were examined histologically. There was significantly greater survival of SGNs in cochleae that received BDNF supraparticles compared to the contralateral control cochleae (repeated measures ANOVA, p = 0.009). SGN survival was observed over a wide extent of the cochlea. The supraparticles were well tolerated within the cochlea with a tissue response that was localised to the site of implantation in the cochlear base. Although mild, the tissue response was significantly greater in cochleae treated with BDNF supraparticles compared to the controls (repeated measures ANOVA, p = 0.003). These data support the clinical potential of this technology particularly as the supraparticles can be loaded with a variety of therapeutic drugs.
Collapse
Affiliation(s)
- Andrew K. Wise
- The Bionics Institute, 384–388 Albert Street, East Melbourne, Melbourne, Australia
- The Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- Department of Otolaryngology, University of Melbourne, Melbourne, Australia
- * E-mail:
| | - Justin Tan
- Department of Otolaryngology, University of Melbourne, Melbourne, Australia
| | - Yajun Wang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, the University of Melbourne, Melbourne, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, the University of Melbourne, Melbourne, Australia
| | - Robert K. Shepherd
- The Bionics Institute, 384–388 Albert Street, East Melbourne, Melbourne, Australia
- The Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- Department of Otolaryngology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
40
|
Effects of brain-derived neurotrophic factor (BDNF) on the cochlear nucleus in cats deafened as neonates. Hear Res 2016; 342:134-143. [PMID: 27773647 DOI: 10.1016/j.heares.2016.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/23/2016] [Accepted: 10/15/2016] [Indexed: 01/11/2023]
Abstract
Many previous studies have shown significant neurotrophic effects of intracochlear delivery of BDNF in preventing degeneration of cochlear spiral ganglion (SG) neurons after deafness in rodents and our laboratory has shown similar results in developing cats deafened prior to hearing onset. This study examined the morphology of the cochlear nucleus (CN) in a group of neonatally deafened cats from a previous study in which infusion of BDNF elicited a significant improvement in survival of the SG neurons. Five cats were deafened by systemic injections of neomycin sulfate (60 mg/kg, SQ, SID) starting one day after birth, and continuing for 16-18 days until auditory brainstem response (ABR) testing demonstrated profound bilateral hearing loss. The animals were implanted unilaterally at about 1 month of age using custom-designed electrodes with a drug-delivery cannula connected to an osmotic pump. BDNF (94 μg/ml; 0.25 μl/hr) was delivered for 10 weeks. The animals were euthanized and studied at 14-23 weeks of age. Consistent with the neurotrophic effects of BDNF on SG survival, the total CN volume in these animals was significantly larger on the BDNF-treated side than on the contralateral side. However, total CN volume, both ipsi- and contralateral to the implants in these deafened juvenile animals, was markedly smaller than the CN in normal adult animals, reflecting the severe effects of deafness on the central auditory system during development. Data from the individual major CN subdivisions (DCN, Dorsal Cochlear Nucleus; PVCN, Posteroventral Cochlear Nucleus; AVCN, Anteroventral Cochlear Nucleus) also were analyzed. A significant difference was observed between the BDNF-treated and control sides only in the AVCN. Measurements of the cross-sectional areas of spherical cells showed that cells were significantly larger in the AVCN ipsilateral to the implant than on the contralateral side. Further, the numerical density of spherical cells was significantly lower in the AVCN ipsilateral to the implant than on the contralateral side, consistent with the larger AVCN volume observed with BDNF treatment. Together, findings indicate significant neurotrophic effects of intracochlear BDNF infusion on the developing CN.
Collapse
|
41
|
Wiegner A, Wright CG, Vollmer M. Multichannel cochlear implant for selective neuronal activation and chronic use in the free-moving Mongolian gerbil. J Neurosci Methods 2016; 273:40-54. [PMID: 27519925 DOI: 10.1016/j.jneumeth.2016.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Animal models for chronic multichannel cochlear implant stimulation and selective neuronal activation contribute to a better understanding of auditory signal processing and central neural plasticity. NEW METHOD This paper describes the design and surgical implantation of a multichannel cochlear implant (CI) system for chronic use in the free-moving gerbil. For chronic stimulation, adult-deafened gerbils were connected to a multichannel commutator that allowed low resistance cable rotation and stable electric connectivity to the current source. RESULTS Despite the small scale of the gerbil cochlea and auditory brain regions, final electrophysiological mapping experiments revealed selective and tonotopically organized neuronal activation in the auditory cortex. Contact impedances and electrically evoked auditory brainstem responses were stable over several weeks demonstrating the long-term integrity of the implant and the efficacy of the stimulation. COMPARISON WITH EXISTING METHODS Most animal models on multichannel signal processing and stimulation-induced plasticity are limited to larger animals such as ferrets, cats and primates. Multichannel CI stimulation in the free-moving rodent and evidence for selective neuronal activation in gerbil auditory cortex have not been previously reported. CONCLUSIONS Overall, our results show that the gerbil is a robust rodent model for selective and tonotopically organized multichannel CI stimulation. We anticipate that this model provides a useful tool to develop and test both passive stimulation and behavioral training strategies for plastic reorganization and restoration of degraded unilateral and bilateral central auditory signal processing in the hearing impaired and deaf central auditory system.
Collapse
Affiliation(s)
- Armin Wiegner
- Comprehensive Hearing Center, University Hospital Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany.
| | - Charles G Wright
- Department of Otolaryngology-Head and Neck Surgery, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, United States.
| | - Maike Vollmer
- Comprehensive Hearing Center, University Hospital Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany.
| |
Collapse
|
42
|
Smith FL, Davis RL. Organ of Corti explants direct tonotopically graded morphology of spiral ganglion neurons in vitro. J Comp Neurol 2016; 524:2182-207. [PMID: 26663318 DOI: 10.1002/cne.23940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 11/12/2015] [Accepted: 11/30/2015] [Indexed: 01/25/2023]
Abstract
The spiral ganglion is a compelling model system to examine how morphological form contributes to sensory function. While the ganglion is composed mainly of a single class of type I neurons that make simple one-to-one connections with inner hair cell sensory receptors, it has an elaborate overall morphological design. Specific features, such as soma size and axon outgrowth, are graded along the spiral contour of the cochlea. To begin to understand the interplay between different regulators of neuronal morphology, we cocultured neuron explants with peripheral target tissues removed from distinct cochlear locations. Interestingly, these "hair cell microisolates" were capable of both increasing and decreasing neuronal somata size, without adversely affecting survival. Moreover, axon characteristics elaborated de novo by the primary afferents in culture were systematically regulated by the sensory endorgan. Apparent peripheral nervous system (PNS)-like and central nervous system (CNS)-like axonal profiles were established in our cocultures allowing an analysis of putative PNS/CNS axon length ratios. As predicted from the in vivo organization, PNS-like axon bundles elaborated by apical cocultures were longer than their basal counterparts and this phenotype was methodically altered when neuron explants were cocultured with microisolates from disparate cochlear regions. Thus, location-dependent signals within the organ of Corti may set the "address" of neurons within the spiral ganglion, allowing them to elaborate the appropriate tonotopically associated morphological features in order to carry out their signaling function. J. Comp. Neurol. 524:2182-2207, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Felicia L Smith
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
43
|
Fransson A, Ulfendahl M. Structural changes in the inner ear over time studied in the experimentally deafened guinea pig. J Neurosci Res 2016; 95:869-875. [PMID: 27400677 PMCID: PMC5297876 DOI: 10.1002/jnr.23824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/03/2016] [Accepted: 06/17/2016] [Indexed: 11/24/2022]
Abstract
Today a cochlear implant (CI) may significantly restore auditory function, even for people with a profound hearing loss. Because the efficacy of a CI is believed to depend mainly on the remaining population of spiral ganglion neurons (SGNs), it is important to understand the timeline of the degenerative process of the auditory neurons following deafness. Guinea pigs were transtympanically deafened with neomycin, verified by recording auditory brainstem responses (ABRs), and then sacrificed at different time points. Loss of SGNs as well as changes in cell body and nuclear volume were estimated. To study the effect of delayed treatment, a group of animals that had been deaf for 12 weeks was implanted with a stimulus electrode mimicking a CI, after which they received a 4‐week treatment with glial cell‐derived neurotrophic factor (GDNF). The electrical responsiveness of the SGNs was measured by recording electrically evoked ABRs. There was a rapid degeneration during the first 7 weeks, shown as a significant reduction of the SGN population. The degenerative process then slowed, and there was no difference in the amount of remaining neurons between weeks 7 and 18. © 2016 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anette Fransson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mats Ulfendahl
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Jin Y, Lyu AR, Park SJ, Xu J, Cui J, Sohn KC, Hur GM, Jin Y, Park YH. Early Postnatal NT-3 Gene Delivery Enhances Hearing Acquisition in the Developmental Period. Laryngoscope 2016; 126:E379-E385. [DOI: 10.1002/lary.26130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Yongde Jin
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
| | - Ah-Ra Lyu
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
- Department of Medical Science; Chungnam National University; Daejeon Republic of Korea
| | - Sung-Jae Park
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Jun Xu
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Jie Cui
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
| | - Kyung-Cheol Sohn
- Department of Dermatology , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Yulian Jin
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
- Brain Research Institute , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| |
Collapse
|
45
|
Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons. Neurosci Lett 2016; 624:92-9. [DOI: 10.1016/j.neulet.2016.04.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 11/23/2022]
|
46
|
Sensor JD, Suydam R, George JC, Liberman MC, Lovano D, Rhaganti MA, Usip S, Vinyard CJ, Thewissen JGM. The spiral ganglion and Rosenthal's canal in beluga whales. J Morphol 2016; 276:1455-66. [PMID: 26769322 DOI: 10.1002/jmor.20434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/03/2015] [Accepted: 07/05/2015] [Indexed: 12/20/2022]
Abstract
With the increase of human activity and corresponding increase in anthropogenic sounds in marine waters of the Arctic, it is necessary to understand its effect on the hearing of marine wildlife. We have conducted a baseline study on the spiral ganglion and Rosenthal's canal of the cochlea in beluga whales (Delphinapterus leucas) as an initial assessment of auditory anatomy and health. We present morphometric data on the length of the cochlea, number of whorls, neuron densities along its length, Rosenthal's canal length, and cross-sectional area, and show some histological results. In belugas, Rosenthal's canal is not a cylinder of equal cross-sectional area, but its cross-section is greatest near the apex of the basal whorl. We found systematic variation in the numbers of neurons along the length of the spiral ganglion, indicating that neurons are not dispersed evenly in Rosenthal's canal. These results provide data on functionally important structural parameters of the beluga ear. We observed no signs of acoustic trauma in our sample of beluga whales.
Collapse
Affiliation(s)
- Jennifer D Sensor
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44240
| | - Robert Suydam
- Department of Wildlife Management, North Slope Borough, Barrow, Alaska, 99723
| | - John C George
- Department of Wildlife Management, North Slope Borough, Barrow, Alaska, 99723
| | - M C Liberman
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, 02115.,Eaton-Peabody Laboratories Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114
| | - Denise Lovano
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44240
| | - Mary Ann Rhaganti
- Department of Anthropology, Kent State University, Kent, Ohio, 44240
| | - Sharon Usip
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44240
| | - Christopher J Vinyard
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44240
| | - J G M Thewissen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44240
| |
Collapse
|
47
|
Temporary Neurotrophin Treatment Prevents Deafness-Induced Auditory Nerve Degeneration and Preserves Function. J Neurosci 2015; 35:12331-45. [PMID: 26354903 DOI: 10.1523/jneurosci.0096-15.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
After substantial loss of cochlear hair cells, exogenous neurotrophins prevent degeneration of the auditory nerve. Because cochlear implantation, the current therapy for profound sensorineural hearing loss, depends on a functional nerve, application of neurotrophins is being investigated. We addressed two questions important for fundamental insight into the effects of exogenous neurotrophins on a degenerating neural system, and for translation to the clinic. First, does temporary treatment with brain-derived neurotrophic factor (BDNF) prevent nerve degeneration on the long term? Second, how does a BDNF-treated nerve respond to electrical stimulation? Deafened guinea pigs received a cochlear implant, and their cochleas were infused with BDNF for 4 weeks. Up to 8 weeks after treatment, their cochleas were analyzed histologically. Electrically evoked compound action potentials (eCAPs) were recorded using stimulation paradigms that are informative of neural survival. Spiral ganglion cell (SGC) degeneration was prevented during BDNF treatment, resulting in 1.9 times more SGCs than in deafened untreated cochleas. Importantly, SGC survival was almost complete 8 weeks after treatment cessation, when 2.6 times more SGCs were observed. In four eCAP characteristics (three involving alteration of the interphase gap of the biphasic current pulse and one involving pulse trains), we found large and statistically significant differences between normal-hearing and deaf controls. Importantly, for BDNF-treated animals, these eCAP characteristics were near normal, suggesting healthy responsiveness of BDNF-treated SGCs. In conclusion, clinically practicable short-term neurotrophin treatment is sufficient for long-term survival of SGCs, and it can restore or preserve SGC function well beyond the treatment period. Significance statement: Successful restoration of hearing in deaf subjects by means of a cochlear implant requires a healthy spiral ganglion cell population. Deafness-induced degeneration of these cells can be averted with neurotrophic factors. In the present study in deafened guinea pigs, we investigated the long-term effects of temporary (i.e., clinically practicable) treatment with brain-derived neurotrophic factor (BDNF). We show that, after treatment cessation, the neuroprotective effect remains for at least 8 weeks. Moreover, for the first time, it is shown that the electrical responsiveness of BDNF-treated spiral ganglion cells is preserved during this period as well. These findings demonstrate that treatment of the auditory nerve with neurotrophic factors may be relevant for cochlear implant users.
Collapse
|
48
|
Gillespie LN, Richardson RT, Nayagam BA, Wise AK. Treating hearing disorders with cell and gene therapy. J Neural Eng 2015; 11:065001. [PMID: 25420002 DOI: 10.1088/1741-2560/11/6/065001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hearing loss is an increasing problem for a substantial number of people and, with an aging population, the incidence and severity of hearing loss will become more significant over time. There are very few therapies currently available to treat hearing loss, and so the development of new therapeutic strategies for hearing impaired individuals is of paramount importance to address this unmet clinical need. Most forms of hearing loss are progressive in nature and therefore an opportunity exists to develop novel therapeutic approaches to slow or halt hearing loss progression, or even repair or replace lost hearing function. Numerous emerging technologies have potential as therapeutic options. This paper details the potential of cell- and gene-based therapies to provide therapeutic agents to protect sensory and neural cells from various insults known to cause hearing loss; explores the potential of replacing lost sensory and nerve cells using gene and stem cell therapy; and describes the considerations for clinical translation and the challenges that need to be overcome.
Collapse
|
49
|
Sameer Mallick A, Qureishi A, Pearson R, O'Donoghue G. Neurotrophins and cochlear implants: a solution to sensorineural deafness? Cochlear Implants Int 2015; 14:158-64. [PMID: 22889496 DOI: 10.1179/1754762812y.0000000013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To review current trends for treating sensorineural deafness by enhancing spiral ganglion neuron (SGN) survival using neurotrophins combined with cochlear implants and identify areas for future research and development. METHODS A literature search was undertaken on PubMed and Google scholar using terms: neurotrophins, cochlear implants (CIs), and sensorineural to identify the most recent and significant publications. The abstracts were read to identify relevant papers; these were accessed in full and analysed for this review. RESULTS Neurotrophins have a known role in cochlear development and the maintenance of SGNs. So far experiments using osmotic pumps to deliver neurotrophins have been successful for short-term enhanced survival of SGN's following aminoglycoside ototoxicity in animal models. They have demonstrated the re-sprouting of radial nerve fibres from SGN's towards the source of delivery. In addition electrical stimulation, gene and cell-based therapy have increased SGN survival to varying degrees. DISCUSSION Osmotic pumps carry a high risk of infection therefore CIs coated in a drug containing polymer or hydrogel are a realistic alternative for sustained delivery of neurotrophins. Increased SGN survival combined with neuronal re-growth raises the possibility for CIs to stimulate discrete SGN populations. Unfortunately, the duration of treatment needed for long-term survival still remains unclear and further work is needed. Nevertheless the combination of regenerative medicine to CI technology presents a novel approach to developing CI technology.
Collapse
|
50
|
Fransson A, de Medina P, Paillasse MR, Silvente-Poirot S, Poirot M, Ulfendahl M. Dendrogenin A and B two new steroidal alkaloids increasing neural responsiveness in the deafened guinea pig. Front Aging Neurosci 2015; 7:145. [PMID: 26257649 PMCID: PMC4513558 DOI: 10.3389/fnagi.2015.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/13/2015] [Indexed: 12/20/2022] Open
Abstract
Aim: To investigate the therapeutic potential for treating inner ear damage of two new steroidal alkaloid compounds, Dendrogenin A and Dendrogenin B, previously shown to be potent inductors of cell differentiation. Methods: Guinea pigs, unilaterally deafened by neomycin infusion, received a cochlear implant followed by immediate or a 2-week delayed treatment with Dendrogenin A, Dendrogenin B, and, as comparison artificial perilymph and glial cell-line derived neurotrophic factor. After a 4-week treatment period the animals were sacrificed and the cochleae processed for morphological analysis. Electrically-evoked auditory brainstem responses (eABRs) were measured weekly throughout the experiment. Results: Following immediate or delayed Dendrogenin treatment the electrical responsiveness was significantly maintained, in a similar extent as has been shown using neurotrophic factors. Histological analysis showed that the spiral ganglion neurons density was only slightly higher than the untreated group. Conclusions: Our results suggest that Dendrogenins constitute a new class of drugs with strong potential to improve cochlear implant efficacy and to treat neuropathy/synaptopathy related hearing loss. That electrical responsiveness was maintained despite a significantly reduced neural population suggests that the efficacy of cochlear implants is more related to the functional state of the spiral ganglion neurons than merely their number.
Collapse
Affiliation(s)
- Anette Fransson
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | | | | | | | - Marc Poirot
- INSERM UMR 1037, Cancer Research Center of Toulouse Toulouse, France
| | - Mats Ulfendahl
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|