1
|
Carrero L, Antequera D, Alcalde I, Megias D, Ordoñez-Gutierrez L, Gutierrez C, Merayo-Lloves J, Wandosell F, Municio C, Carro E. Altered Clock Gene Expression in Female APP/PS1 Mice and Aquaporin-Dependent Amyloid Accumulation in the Retina. Int J Mol Sci 2023; 24:15679. [PMID: 37958666 PMCID: PMC10648501 DOI: 10.3390/ijms242115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is a neurodegenerative disorder characterized by different pathological symptomatology, including disrupted circadian rhythm. The regulation of circadian rhythm depends on the light information that is projected from the retina to the suprachiasmatic nucleus in the hypothalamus. Studies of AD patients and AD transgenic mice have revealed AD retinal pathology, including amyloid-β (Aβ) accumulation that can directly interfere with the regulation of the circadian cycle. Although the cause of AD pathology is poorly understood, one of the main risk factors for AD is female gender. Here, we found that female APP/PS1 mice at 6- and 12-months old display severe circadian rhythm disturbances and retinal pathological hallmarks, including Aβ deposits in retinal layers. Since brain Aβ transport is facilitated by aquaporin (AQP)4, the expression of AQPs were also explored in APP/PS1 retina to investigate a potential correlation between retinal Aβ deposits and AQPs expression. Important reductions in AQP1, AQP4, and AQP5 were detected in the retinal tissue of these transgenic mice, mainly at 6-months of age. Taken together, our findings suggest that abnormal transport of Aβ, mediated by impaired AQPs expression, contributes to the retinal degeneration in the early stages of AD.
Collapse
Affiliation(s)
- Laura Carrero
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
- PhD Program in Neuroscience, Autonoma de Madrid University, 28049 Madrid, Spain
| | - Desireé Antequera
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Fundación de Investigación Oftalmológica, 28012 Oviedo, Spain; (I.A.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Diego Megias
- Advanced Optical Microscopy Unit, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28222 Madrid, Spain;
| | - Lara Ordoñez-Gutierrez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.O.-G.); (F.W.)
| | - Cristina Gutierrez
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Fundación de Investigación Oftalmológica, 28012 Oviedo, Spain; (I.A.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.O.-G.); (F.W.)
| | - Cristina Municio
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Eva Carro
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| |
Collapse
|
2
|
Hoshi A, Tsunoda A, Yamamoto T, Tada M, Kakita A, Ugawa Y. Increased neuronal and astroglial aquaporin-1 immunoreactivity in rat striatum by chemical preconditioning with 3-nitropropionic acid. Neurosci Lett 2016; 626:48-53. [PMID: 27181510 DOI: 10.1016/j.neulet.2016.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 02/06/2023]
Abstract
Aquaporin-1 (AQP1) is a water channel expressed in the choroid plexus and participates in forming cerebrospinal fluid. Interestingly, reactive astrocytes also express AQP1 in the central nervous system under some pathological conditions. On the other hand, 3-nitropropionic acid (3NP) is a mitochondrial toxin that causes selective degeneration of striatum; however, its chemical preconditioning is neuroprotective against cerebral ischemia. We previously reported that mild 3NP application is accompanied with numerous reactive astrocytes in rat striatum devoid of typical necrotic lesions. Therefore, we studied whether AQP1 in the rat striatum could be upregulated with reactive astrocytosis using the 3NP model. Immunohistochemical or immunofluorescence analysis showed that reactive astrocytosis in the striatum, which upregulates glial fibrillary acidic protein and glutamine synthetase, was induced by mild doses of 3NP administration. Intriguingly, after 3NP treatment, AQP1 was intensely expressed not only by the subpopulation of astroglia but also by neurons. The AQP1 immunoreactivity became more intensified at the early-subtoxic stage (ES: 24-48h), but not as much in the delayed-subtoxic stage (DS: 96-120h). In contrast, AQP4 expression in the striatum was downregulated after 3NP treatment, in particular during the ES stage. AQP1 upregulation/AQP4 downregulation induced under subtoxic 3NP treatment may play a pivotal role in water homeostasis and cell viability in the striatum.
Collapse
Affiliation(s)
- Akihiko Hoshi
- Department of Neurology, Fukushima Medical University, Fukushima, Japan.
| | - Ayako Tsunoda
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - Teiji Yamamoto
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - Mari Tada
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
3
|
|
4
|
Schey KL, Wang Z, L Wenke J, Qi Y. Aquaporins in the eye: expression, function, and roles in ocular disease. Biochim Biophys Acta Gen Subj 2013; 1840:1513-23. [PMID: 24184915 DOI: 10.1016/j.bbagen.2013.10.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND All thirteen known mammalian aquaporins have been detected in the eye. Moreover, aquaporins have been identified as playing essential roles in ocular functions ranging from maintenance of lens and corneal transparency to production of aqueous humor to maintenance of cellular homeostasis and regulation of signal transduction in the retina. SCOPE OF REVIEW This review summarizes the expression and known functions of ocular aquaporins and discusses their known and potential roles in ocular diseases. MAJOR CONCLUSIONS Aquaporins play essential roles in all ocular tissues. Remarkably, not all aquaporin function as a water permeable channel and the functions of many aquaporins in ocular tissues remain unknown. Given their vital roles in maintaining ocular function and their roles in disease, aquaporins represent potential targets for future therapeutic development. GENERAL SIGNIFICANCE Since aquaporins play key roles in ocular physiology, an understanding of these functions is important to improving ocular health and treating diseases of the eye. It is likely that future therapies for ocular diseases will rely on modulation of aquaporin expression and/or function. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA.
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Jamie L Wenke
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Ying Qi
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Ortak H, Cayli S, Ocaklı S, Söğüt E, Ekici F, Tas U, Demir S. Age-related changes of aquaporin expression patterns in the postnatal rat retina. Acta Histochem 2013; 115:382-8. [PMID: 23131425 DOI: 10.1016/j.acthis.2012.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 12/24/2022]
Abstract
Previous studies revealed that the rat retina contains numerous membrane-located water channels, the aquaporins (AQPs). Protein expression patterns of AQP1-4, 6 and 9 were examined by immunohistochemistry. In the present study, we investigated the immunolocalization of AQP1-4, 6 and 9 during postnatal development in the rat retina and examined the effect of age on the tissue distribution of these channels. AQP1, 3, 4, 6 and 9 showed gradually increased expression in rat retinas from postnatal week 1 to week 12, and decreased in the 40-week-old rat retinas. AQP2 expression was barely seen in the first week in rat retinas and displayed a significant increase from week 1 to week 4, however no significant alteration of AQP2 was observed after 4weeks of development. AQP1 and 4 immunoreactivities were present in the inner limiting membrane (ILM), the ganglion cell layer (GCL), inner nuclear layer (INL) and retinal pigment epithelium (RPE) in the 4-, 12- and 40-week-old rat retinas. The RPE, OLM and ILM showed a remarkable expression of AQP1-4, 6 and 9 in the 4, 12 and 40-week-old rat retinas. The reduced expression of AQPs in aged rat retinas may indicate the involvement of AQPs in the pathogenesis of age-related retinal diseases.
Collapse
Affiliation(s)
- Huseyin Ortak
- Department of Ophthalmology, Gaziosmanpasa University Faculty of Medicine, Tokat, Turkey.
| | | | | | | | | | | | | |
Collapse
|
6
|
Aquaporin-4 immunoreactivity in Müller and amacrine cells of marine teleost fish retina. Brain Res 2012; 1432:46-55. [DOI: 10.1016/j.brainres.2011.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 02/02/2023]
|
7
|
Close association of water channel AQP1 with amyloid-beta deposition in Alzheimer disease brains. Acta Neuropathol 2008; 116:247-60. [PMID: 18509662 PMCID: PMC2516196 DOI: 10.1007/s00401-008-0387-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/05/2008] [Accepted: 05/05/2008] [Indexed: 11/25/2022]
Abstract
Aquaporin-1 (AQP1), a membrane water channel protein, is expressed exclusively in the choroid plexus epithelium in the central nervous system under physiological conditions. However, AQP1 expression is enhanced in reactive astrocytes, accumulating in brain lesions of Creutzfeldt-Jakob disease and multiple sclerosis, suggesting a role of AQP1-expressing astrocytes in brain water homeostasis under pathological conditions. To clarify a pathological implication of AQP1 in Alzheimer disease (AD), we investigated the possible relationship between amyloid-beta (Aβ) deposition and astrocytic AQP1 expression in the motor cortex and hippocampus of 11 AD patients and 16 age-matched other neurological disease cases. In all cases, AQP1 was expressed exclusively in a subpopulation of multipolar fibrillary astrocytes. The great majority of AQP1-expressing astrocytes were located either on the top of or in close proximity to Aβ plaques in AD brains but not in non-AD cases, whereas those independent of Aβ deposition were found predominantly in non-AD brains. By Western blot, cultured human astrocytes constitutively expressed AQP1, and the levels of AQP1 protein expression were not affected by exposure to Aβ1-42 peptide, but were elevated by hypertonic sodium chloride. By immunoprecipitation, the C-terminal fragment-beta (CTFβ) of amyloid precursor protein interacted with the N-terminal half of AQP1 spanning the transmembrane helices H1, H2 and H3. These observations suggest the possible association of astrocytic AQP1 with Aβ deposition in AD brains.
Collapse
|
8
|
Chapter 2 Ocular Aquaporins and Aqueous Humor Dynamics. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
9
|
Satoh JI, Tabunoki H, Yamamura T, Arima K, Konno H. Human astrocytes express aquaporin-1 and aquaporin-4 in vitro and in vivo. Neuropathology 2007; 27:245-56. [PMID: 17645239 DOI: 10.1111/j.1440-1789.2007.00774.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aquaporins (AQP) constitute an evolutionarily conserved family of integral membrane water transport channel proteins. Previous studies indicate that AQP1 is expressed exclusively in the choroid plexus epithelium, while AQP4 is localized on the vascular foot of astrocytes in the central nervous system (CNS) under physiological conditions. To investigate a role of AQP in the pathophysiology of neurological diseases involving astrogliosis we studied the expression of AQP1 and AQP4 in cultured human astrocytes and brain tissues of multiple sclerosis (MS), cerebral infarction and control cases. By reverse transcriptasepolymerase chain reaction and western blot analysis, cultured human astrocytes co-expressed both AQP1 and AQP4 mRNA and proteins, where AQP4 levels were elevated by exposure to interferon-gamma but neither by tumor necrosis factor-alpha nor interleukin-1beta, whereas AQP1 levels were unaffected by any of the cytokines examined. By western blot analysis, AQP1 and AQP4 proteins were detected in the brain homogenates of the MS and non-MS cases, where both levels were correlated with those of glial fibrillary acid protein. By immunohistochemistry, astrocytes with highly branched processes surrounding blood vessels, along with glial scar, expressed intensely AQP1 and AQP4 in MS and ischemic brain lesions, whereas neither macrophages, neurons nor oligodendrocyte cell bodies were immunopositive. These immunohistochemical results indicate that the expression not only of AQP4 but also of AQP1 was enhanced in MS and ischemic brain lesions located predominantly in astrocytes, suggesting a pivotal role of astrocytic AQP in the maintenance of water homeostasis in the CNS under pathological conditions.
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Bioinformatics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | | | | | | | | |
Collapse
|
10
|
Iandiev I, Biedermann B, Reichenbach A, Wiedemann P, Bringmann A. Expression of aquaporin-9 immunoreactivity by catecholaminergic amacrine cells in the rat retina. Neurosci Lett 2006; 398:264-7. [PMID: 16446030 DOI: 10.1016/j.neulet.2006.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 01/04/2006] [Accepted: 01/05/2006] [Indexed: 11/24/2022]
Abstract
Aquaporins are involved in the maintenance of ionic and osmotic balance in the central nervous system and in the eye. Whereas the expression of aquaporin-9 immunoreactivity in the brain has been described for catecholaminergic neurons and glial cells, the expression of aquaporin-9 in the neural retina is unclear. We examined the distribution of aquaporin-1 and -9 immunoreactivities in retinas of the rat. Aquaporin-9 immunoreactivity was expressed exclusively by tyrosine hydroxylase (TH) positive amacrine cells, while aquaporin-1 immunoreactivity was expressed by photoreceptor cells and by TH negative amacrine cells. The staining pattern of aquaporin-9 did not change up to 4 weeks after pressure-induced transient retinal ischemia. It is concluded that catecholaminergic, putatively dopaminergic, amacrine cells of the retina express aquaporin-9.
Collapse
Affiliation(s)
- Ianors Iandiev
- Paul Flechsig Institute of Brain Research, University of Leipzig Medical Faculty, Jahnallee 59, 04109 Leipzig, Germany
| | | | | | | | | |
Collapse
|
11
|
Liedtke T, Naskar R, Eisenacher M, Thanos S. Transformation of adult retina from the regenerative to the axonogenesis state activates specific genes in various subsets of neurons and glial cells. Glia 2006; 55:189-201. [PMID: 17078023 DOI: 10.1002/glia.20447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to identify the gene expression profile of the regenerating retina in vitro. To achieve this goal, three experimental groups were studied: (1) an injury control group (OC-LI group) that underwent open crush (OC) of the optic nerve and lens injury (LI) in vivo; (2) an experimental group (OC-LI-R group) that comprised animals treated like those in the OC-LI group except that retinal axons were allowed to regenerate (R) in vitro; and (3) an experimental group (OC-LI-NR group) that comprised animals treated as those in the OC-LI group, except that the retinas were cultured in vitro with the retinal ganglion cell (RGC) layer facing upwards to prevent axonal regeneration (NR). Gene expression in each treatment group was compared to that of untreated controls. Immunohistochemistry was used to examine whether expression of differentially regulated genes also occurred at the protein level and to localize these proteins to the respective retinal cells. Genes that were regulated belonged to different functional categories such as antioxidants, antiapoptotic molecules, transcription factors, secreted signaling molecules, inflammation-related genes, and others. Comparison of changes in gene expression among the various treatment groups revealed a relatively small cohort of genes that was expressed in different subsets of cells only in the OC-LI-R group; these genes can be considered to be regeneration-specific. Our findings demonstrate that axonal regeneration of RGC involves an orchestrated response of all retinal neurons and glia, and could provide a platform for the development of therapeutic strategies for the regeneration of injured ganglion cells.
Collapse
Affiliation(s)
- Thomas Liedtke
- Department of Experimental Ophthalmology, University Eye Hospital Münster Domagkstrasse, Muenster, Germany
| | | | | | | |
Collapse
|