1
|
Bielecki J, Dam Nielsen SK, Nachman G, Garm A. Associative learning in the box jellyfish Tripedalia cystophora. Curr Biol 2023; 33:4150-4159.e5. [PMID: 37741280 DOI: 10.1016/j.cub.2023.08.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 09/25/2023]
Abstract
Associative learning, such as classical or operant conditioning, has never been unequivocally associated with animals outside bilatarians, e.g., vertebrates, arthropods, or mollusks. Learning modulates behavior and is imperative for survival in the vast majority of animals. Obstacle avoidance is one of several visually guided behaviors in the box jellyfish, Tripedalia cystophora Conant, 1897 (Cnidaria: Cubozoa), and it is intimately associated with foraging between prop roots in their mangrove habitat. The obstacle avoidance behavior (OAB) is a species-specific defense reaction (SSDR) for T. cystophora, so identifying such SSDR is essential for testing the learning capacity of a given animal. Using the OAB, we show that box jellyfish performed associative learning (operant conditioning). We found that the rhopalial nervous system is the learning center and that T. cystophora combines visual and mechanical stimuli during operant conditioning. Since T. cystophora has a dispersed central nervous system lacking a conventional centralized brain, our work challenges the notion that associative learning requires complex neuronal circuitry. Moreover, since Cnidaria is the sister group to Bilateria, it suggests the intriguing possibility that advanced neuronal processes, like operant conditioning, are a fundamental property of all nervous systems.
Collapse
Affiliation(s)
- Jan Bielecki
- Institute of Physiology, Kiel University, 24118 Kiel, Germany.
| | | | - Gösta Nachman
- Section of Ecology and Evolution, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anders Garm
- Marine Biological Section, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Nielsen SKD, Koch TL, Wiisbye SH, Grimmelikhuijzen CJP, Garm A. Neuropeptide expression in the box jellyfish Tripedalia cystophora-New insights into the complexity of a "simple" nervous system. J Comp Neurol 2021; 529:2865-2882. [PMID: 33660861 DOI: 10.1002/cne.25133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 01/09/2023]
Abstract
Box jellyfish have an elaborate visual system and perform advanced visually guided behaviors. However, the rhopalial nervous system (RNS), believed to be the main visual processing center, only has 1000 neurons in each of the four eye carrying rhopalia. We have examined the detailed structure of the RNS of the box jellyfish Tripedalia cystophora, using immunolabeling with antibodies raised against four putative neuropeptides (T. cystophora RFamide, VWamide, RAamide, and FRamide). In the RNS, T. cystophora RF-, VW-, and RAamide antibodies stain sensory neurons, the pit eyes, the neuropil, and peptide-specific subpopulations of stalk-associated neurons and giant neurons. Furthermore, RFamide ir+ neurites are seen in the epidermal stalk nerve, whereas VWamide antibodies stain the gastrodermal stalk nerve. RFamide has the most widespread expression including in the ring and radial nerves, the pedalium nerve plexus, and the tentacular nerve net. RAamide is the putative neurotransmitter in the motor neurons of the subumbrellar nerve net, and VWamide is a potential marker for neuronal differentiation as it is found in subpopulations of undifferentiated cells both in the rhopalia and in the bell. The results from the FRamide antibodies were not included as only few cells were stained, and in an unreproducible way. Our studies show hitherto-unseen details of the nervous system of T. cystophora and allowed us to identify specific functional groups of neurons. This identification is important for understanding visual processing in the RNS and enables experimental work, directly addressing the role of the different neuropeptides in vision.
Collapse
Affiliation(s)
- Sofie K D Nielsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas L Koch
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sofus H Wiisbye
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Garm
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Macias-Muñoz A, Murad R, Mortazavi A. Molecular evolution and expression of opsin genes in Hydra vulgaris. BMC Genomics 2019; 20:992. [PMID: 31847811 PMCID: PMC6918707 DOI: 10.1186/s12864-019-6349-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The evolution of opsin genes is of great interest because it can provide insight into the evolution of light detection and vision. An interesting group in which to study opsins is Cnidaria because it is a basal phylum sister to Bilateria with much visual diversity within the phylum. Hydra vulgaris (H. vulgaris) is a cnidarian with a plethora of genomic resources to characterize the opsin gene family. This eyeless cnidarian has a behavioral reaction to light, but it remains unknown which of its many opsins functions in light detection. Here, we used phylogenetics and RNA-seq to investigate the molecular evolution of opsin genes and their expression in H. vulgaris. We explored where opsin genes are located relative to each other in an improved genome assembly and where they belong in a cnidarian opsin phylogenetic tree. In addition, we used RNA-seq data from different tissues of the H. vulgaris adult body and different time points during regeneration and budding stages to gain insight into their potential functions. RESULTS We identified 45 opsin genes in H. vulgaris, many of which were located near each other suggesting evolution by tandem duplications. Our phylogenetic tree of cnidarian opsin genes supported previous claims that they are evolving by lineage-specific duplications. We identified two H. vulgaris genes (HvOpA1 and HvOpB1) that fall outside of the two commonly determined Hydra groups; these genes possibly have a function in nematocytes and mucous gland cells respectively. We also found opsin genes that have similar expression patterns to phototransduction genes in H. vulgaris. We propose a H. vulgaris phototransduction cascade that has components of both ciliary and rhabdomeric cascades. CONCLUSIONS This extensive study provides an in-depth look at the molecular evolution and expression of H. vulgaris opsin genes. The expression data that we have quantified can be used as a springboard for additional studies looking into the specific function of opsin genes in this species. Our phylogeny and expression data are valuable to investigations of opsin gene evolution and cnidarian biology.
Collapse
Affiliation(s)
- Aide Macias-Muñoz
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
| | - Rabi Murad
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Stamatis SA, Worsaae K, Garm A. Regeneration of the Rhopalium and the Rhopalial Nervous System in the Box Jellyfish Tripedalia cystophora. THE BIOLOGICAL BULLETIN 2018; 234:22-36. [PMID: 29694798 DOI: 10.1086/697071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cubozoans have the most intricate visual apparatus within Cnidaria. It comprises four identical sensory structures, the rhopalia, each of which holds six eyes of four morphological types. Two of these eyes are camera-type eyes that are, in many ways, similar to the vertebrate eye. The visual input is used to control complex behaviors, such as navigation and obstacle avoidance, and is processed by an elaborate rhopalial nervous system. Several studies have examined the rhopalial nervous system, which, despite a radial symmetric body plan, is bilaterally symmetrical, connecting the two sides of the rhopalium through commissures in an extensive neuropil. The four rhopalia are interconnected by a nerve ring situated in the oral margin of the bell, and together these structures constitute the cubozoan central nervous system. Cnidarians have excellent regenerative capabilities, enabling most species to regenerate large body areas or body parts, and some species can regenerate completely from just a few hundred cells. Here we test whether cubozoans are capable of regenerating the rhopalia, despite the complexity of the visual system and the rhopalial nervous system. The results show that the rhopalia are readily regrown after amputation and have developed most, if not all, neural elements within two weeks. Using electrophysiology, we investigated the functionality of the regrown rhopalia and found that they generated pacemaker signals and that the lens eyes showed a normal response to light. Our findings substantiate the amazing regenerative ability in Cnidaria by showing here the complex sensory system of Cubozoa, a model system proving to be highly applicable in studies of neurogenesis.
Collapse
Key Words
- CNS, central nervous system
- DAPI, 4′,6-diamidino-2-phenylindole
- EdU, 5-ethynyl-2′-deoxyuridine
- FMRF-LIR, FMRFamide-like immunoreactive
- I-cells, interstitial cells
- PFA, paraformaldehyde
- PNS, peripheral nervous system
- RF-LIR, RFamide-like immunoreactive
- RNS, rhopalial nervous system
- α-tubulin LIR, α-tubulin-like immunoreactions
Collapse
|
5
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. The Diversity of Spine Synapses in Animals. Neuromolecular Med 2016; 18:497-539. [PMID: 27230661 PMCID: PMC5158183 DOI: 10.1007/s12017-016-8405-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
Abstract
Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| |
Collapse
|
6
|
Arendt D, Tosches MA, Marlow H. From nerve net to nerve ring, nerve cord and brain--evolution of the nervous system. Nat Rev Neurosci 2016; 17:61-72. [PMID: 26675821 DOI: 10.1038/nrn.2015.15] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The puzzle of how complex nervous systems emerged remains unsolved. Comparative studies of neurodevelopment in cnidarians and bilaterians suggest that this process began with distinct integration centres that evolved on opposite ends of an initial nerve net. The 'apical nervous system' controlled general body physiology, and the 'blastoporal nervous system' coordinated feeding movements and locomotion. We propose that expansion, integration and fusion of these centres gave rise to the bilaterian nerve cord and brain.
Collapse
Affiliation(s)
- Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 699117 Heidelberg, Germany
| | - Maria Antonietta Tosches
- Max Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438 Frankfurt am Main, Germany
| | - Heather Marlow
- Pasteur Institute, 25-28 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
7
|
Satterlie RA. The search for ancestral nervous systems: an integrative and comparative approach. ACTA ACUST UNITED AC 2015; 218:612-7. [PMID: 25696824 DOI: 10.1242/jeb.110387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Even the most basal multicellular nervous systems are capable of producing complex behavioral acts that involve the integration and combination of simple responses, and decision-making when presented with conflicting stimuli. This requires an understanding beyond that available from genomic investigations, and calls for a integrative and comparative approach, where the power of genomic/transcriptomic techniques is coupled with morphological, physiological and developmental experimentation to identify common and species-specific nervous system properties for the development and elaboration of phylogenomic reconstructions. With careful selection of genes and gene products, we can continue to make significant progress in our search for ancestral nervous system organizations.
Collapse
Affiliation(s)
- Richard A Satterlie
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28409, USA
| |
Collapse
|
8
|
Liegertová M, Pergner J, Kozmiková I, Fabian P, Pombinho AR, Strnad H, Pačes J, Vlček Č, Bartůněk P, Kozmik Z. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution. Sci Rep 2015; 5:11885. [PMID: 26154478 PMCID: PMC5155618 DOI: 10.1038/srep11885] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/05/2015] [Indexed: 11/09/2022] Open
Abstract
Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans.
Collapse
Affiliation(s)
- Michaela Liegertová
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Jiří Pergner
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Iryna Kozmiková
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Peter Fabian
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Antonio R Pombinho
- Department of Cell Differentiation, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Jan Pačes
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Čestmír Vlček
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Petr Bartůněk
- Department of Cell Differentiation, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| | - Zbyněk Kozmik
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Videnska 1083, Prague, CZ-14220, Czech Republic
| |
Collapse
|
9
|
Speiser DI, Pankey MS, Zaharoff AK, Battelle BA, Bracken-Grissom HD, Breinholt JW, Bybee SM, Cronin TW, Garm A, Lindgren AR, Patel NH, Porter ML, Protas ME, Rivera AS, Serb JM, Zigler KS, Crandall KA, Oakley TH. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms. BMC Bioinformatics 2014; 15:350. [PMID: 25407802 PMCID: PMC4255452 DOI: 10.1186/s12859-014-0350-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/09/2014] [Indexed: 11/10/2022] Open
Abstract
Background Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. Results We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository (http://bitbucket.org/osiris_phylogenetics/pia/) and we demonstrate PIA on a publicly-accessible web server (http://galaxy-dev.cnsi.ucsb.edu/pia/). Conclusions Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0350-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel I Speiser
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA. .,Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| | - M Sabrina Pankey
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Alexander K Zaharoff
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Barbara A Battelle
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
| | - Heather D Bracken-Grissom
- Department of Biological Sciences, Florida International University-Biscayne Bay Campus, North Miami, FL, USA.
| | - Jesse W Breinholt
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Seth M Bybee
- Department of Biology, Brigham Young University, Provo, UT, USA.
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA.
| | - Anders Garm
- Department of Biology, Marine Biological Section, University of Copenhagen, Copenhagen, Denmark.
| | - Annie R Lindgren
- Department of Biology, Portland State University, Portland, OR, USA.
| | - Nipam H Patel
- Department of Molecular and Cell Biology & Department of Integrative Biology, University of California, Berkeley, CA, USA.
| | - Megan L Porter
- Department of Biology, University of South Dakota, Vermillion, SD, USA.
| | - Meredith E Protas
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, USA.
| | - Ajna S Rivera
- Department of Biology, University of the Pacific, Stockton, CA, USA.
| | - Jeanne M Serb
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Kirk S Zigler
- Department of Biology, Sewanee: The University of the South, Sewanee, TN, USA.
| | - Keith A Crandall
- Computational Biology Institute, George Washington University, Ashburn, VA, USA. .,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| | - Todd H Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
10
|
Gurska D, Garm A. Cell proliferation in cubozoan jellyfish Tripedalia cystophora and Alatina moseri. PLoS One 2014; 9:e102628. [PMID: 25047715 PMCID: PMC4105575 DOI: 10.1371/journal.pone.0102628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/22/2014] [Indexed: 11/19/2022] Open
Abstract
Cubozoans (box jellyfish) undergo remarkable body reorganization throughout their life cycle when, first, they metamorphose from swimming larvae to sessile polyps, and second, through the metamorphosis from sessile polyps to free swimming medusae. In the latter they develop complex structures like the central nervous system (CNS) and visual organs. In the present study several aspects of cell proliferation at different stages of the life cycle of the box jellyfish Tripedalia cystophora and Alatina moseri have been examined through in vivo labeling of cells in the synthetic phase (S phase) of the cell cycle. Proliferation zones were found in metamorphosing polyps, as well as in juvenile medusae, where both the rhopalia and pedalia have enhanced rates of proliferation. The results also indicate a rather fast cell turnover in the rhopalia including the rhopalial nervous system (RNS). Moreover, T. cystophora showed diurnal pattern of cell proliferation in certain body parts of the medusa, with higher proliferation rates at nighttime. This is true for two areas in close connection with the CNS: the stalk base and the rhopalia.
Collapse
Affiliation(s)
- Daniela Gurska
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Garm
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
11
|
Garm A, Hedal I, Islin M, Gurska D. Pattern- and contrast-dependent visual response in the box jellyfish Tripedalia cystophora. ACTA ACUST UNITED AC 2013; 216:4520-9. [PMID: 24031055 DOI: 10.1242/jeb.091934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cubomedusae possess a total of 24 eyes, some of which are structurally similar to vertebrate eyes. Accordingly, the medusae also display a range of light-guided behaviours including obstacle avoidance, diurnal activity patterns and navigation. Navigation is supported by spatial resolution and image formation in the so-called upper lens eye. Further, there are indications that obstacle avoidance requires image information from the lower lens eye. Here we use a behavioural assay to examine the obstacle avoidance behaviour of the Caribbean cubomedusa Tripedalia cystophora and test whether it requires spatial resolution. The possible influence of the contrast and orientation of the obstacles is also examined. We show that the medusae can only perform the behaviour when spatial information is present, and fail to avoid a uniformly dark wall, directly proving the use of spatial vision. We also show that the medusae respond stronger to high contrast lines than to low contrast lines in a graded fashion, and propose that the medusae use contrast as a semi-reliable measure of distance to the obstacle.
Collapse
Affiliation(s)
- Anders Garm
- Section of Marine Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | | | | | | |
Collapse
|
12
|
Swim pacemaker response to bath applied neurotransmitters in the cubozoan Tripedalia cystophora. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:785-97. [PMID: 23893247 DOI: 10.1007/s00359-013-0839-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
The four rhopalia of cubomedusae are integrated parts of the central nervous system carrying their many eyes and thought to be the centres of visual information processing. Rhopalial pacemakers control locomotion through a complex neural signal transmitted to the ring nerve and the signal frequency is modulated by the visual input. Since electrical synapses have never been found in the cubozoan nervous system all signals are thought to be transmitted across chemical synapses, and so far information about the neurotransmitters involved are based on immunocytochemical or behavioural data. Here we present the first direct physiological evidence for the types of neurotransmitters involved in sensory information processing in the rhopalial nervous system. FMRFamide, serotonin and dopamine are shown to have inhibitory effect on the pacemaker frequency. There are some indications that the fast acting acetylcholine and glycine have an initial effect and then rapidly desensitise. Other tested neuroactive compounds (GABA, glutamate, and taurine) could not be shown to have a significant effect.
Collapse
|
13
|
Gehring WJ. The evolution of vision. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 3:1-40. [DOI: 10.1002/wdev.96] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Abstract
Charles Darwin has proposed the theory that evolution of live organisms is based on random variation and natural selection. Jacques Monod in his classic book Chance and Necessity, published 40 years ago, presented his thesis “that the biosphere does not contain a predictable class of objects or events, but constitutes a particular occurrence, compatible indeed with the first principles, but not deducible from those principals and therefore, essentially unpredictable.” Recent discoveries in eye evolution are in agreement with both of these theses. They confirm Darwin's assumption of a simple eye prototype and lend strong support for the notion of a monophyletic origin of the various eye types. Considering the complexity of the underlying gene regulatory networks the unpredictability is obvious. The evolution of the Hox gene cluster and the specification of the body plan starting from an evolutionary prototype segment is discussed. In the course of evolution, a series of similar prototypic segments gradually undergoes cephalization anteriorly and caudalization posteriorly through diversification of the Hox genes.
Collapse
Affiliation(s)
- Walter J Gehring
- Department of Growth and Development, Biozentrum University of Basel, Switzerland.
| |
Collapse
|
15
|
Stöckl AL, Petie R, Nilsson DE. Setting the pace: new insights into central pattern generator interactions in box jellyfish swimming. PLoS One 2011; 6:e27201. [PMID: 22073288 PMCID: PMC3206948 DOI: 10.1371/journal.pone.0027201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/11/2011] [Indexed: 11/18/2022] Open
Abstract
Central Pattern Generators (CPGs) produce rhythmic behaviour across all animal phyla. Cnidarians, which have a radially symmetric nervous system and pacemaker centres in multiples of four, provide an interesting comparison to bilaterian animals for studying the coordination between CPGs. The box jellyfish Tripedalia cystophora is remarkable among cnidarians due to its most elaborate visual system. Together with their ability to actively swim and steer, they use their visual system for multiple types of behaviour. The four swim CPGs are directly regulated by visual input. In this study, we addressed the question of how the four pacemaker centres of this radial symmetric cnidarian interact. We based our investigation on high speed camera observations of the timing of swim pulses of tethered animals (Tripedalia cystophora) with one or four rhopalia, under different simple light regimes. Additionally, we developed a numerical model of pacemaker interactions based on the inter pulse interval distribution of animals with one rhopalium. We showed that the model with fully resetting coupling and hyperpolarization of the pacemaker potential below baseline fitted the experimental data best. Moreover, the model of four swim pacemakers alone underscored the proportion of long inter pulse intervals (IPIs) considerably. Both in terms of the long IPIs as well as the overall swim pulse distribution, the simulation of two CPGs provided a better fit than that of four. We therefore suggest additional sources of pacemaker control than just visual input. We provide guidelines for future research on the physiological linkage of the cubozoan CPGs and show the insight from bilaterian CPG research, which show that pacemakers have to be studied in their bodily and nervous environment to capture all their functional features, are also manifest in cnidarians.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Vision Group, Department of Biology, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
16
|
Abstract
The traditional view of the cnidarian nervous system is of a diffuse nerve net that functions as both a conducting and an integrating system; this is considered an indicator of a primitive condition. Yet, in medusoid members, varying degrees of nerve net compression and neuronal condensation into ganglion-like structures represent more centralized integrating centers. In some jellyfish, this relegates nerve nets to motor distribution systems. The neuronal condensation follows a precept of neuronal organization of higher animals with a relatively close association with the development and elaboration of sensory structures. Nerve nets still represent an efficient system for diffuse, non-directional activation of broad, two-dimensional effector sheets, as required by the radial, non-cephalized body construction. However, in most jellyfish, an argument can be made for the presence of centralized nervous systems that interact with the more diffuse nerve nets.
Collapse
Affiliation(s)
- Richard A Satterlie
- Department of Biology and Marine Biology, University of North Carolina Wilmington and Center for Marine Science, 5600 Marvin K. Moss Lane, Wilmington, NC 28409, USA
| |
Collapse
|
17
|
Garm A, Ekström P. Evidence for multiple photosystems in jellyfish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:41-78. [PMID: 20797681 DOI: 10.1016/s1937-6448(10)80002-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cnidarians are often used as model animals in studies of eye and photopigment evolution. Most cnidarians display photosensitivity at some point in their lifecycle ranging from extraocular photoreception to image formation in camera-type eyes. The available information strongly suggests that some cnidarians even possess multiple photosystems. The evidence is strongest within Cubomedusae where all known species posses 24 eyes of four morphological types. Physiological experiments show that each cubomedusan eye type likely constitutes a separate photosystem controlling separate visually guided behaviors. Further, the visual system of cubomedusae also includes extraocular photoreception. The evidence is supported by immunocytochemical and molecular data indicating multiple photopigments in cubomedusae as well as in other cnidarians. Taken together, available data suggest that multiple photosystems had evolved already in early eumetazoans and that their original level of organization was discrete sets of special-purpose eyes and/or photosensory cells.
Collapse
Affiliation(s)
- Anders Garm
- Department of Comparative Zoology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
18
|
Temporal properties of the lens eyes of the box jellyfish Tripedalia cystophora. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:213-20. [PMID: 20131056 PMCID: PMC2825319 DOI: 10.1007/s00359-010-0506-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/18/2009] [Accepted: 01/13/2010] [Indexed: 11/05/2022]
Abstract
Box jellyfish (Cubomedusae) are visually orientating animals which posses a total of 24 eyes of 4 morphological types; 2 pigment cup eyes (pit eye and slit eye) and 2 lens eyes [upper lens-eye (ule) and lower lens-eye (lle)]. In this study, we use electroretinograms (ERGs) to explore temporal properties of the two lens eyes. We find that the ERG of both lens eyes are complex and using sinusoidal flicker stimuli we find that both lens eyes have slow temporal resolution. The average flicker fusion frequency (FFF) was found to be approximately 10 Hz for the ule and 8 Hz for the lle. Differences in the FFF and response patterns between the two lens eyes suggest that the ule and lle filter information differently in the temporal domain and thus are tuned to perform different visual tasks. The data collected in this study support the idea that the visual system of box jellyfish is a collection of special purpose eyes.
Collapse
|
19
|
Garm A, Mori S. Multiple photoreceptor systems control the swim pacemaker activity in box jellyfish. ACTA ACUST UNITED AC 2010; 212:3951-60. [PMID: 19946073 DOI: 10.1242/jeb.031559] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Like all other cnidarian medusae, box jellyfish propel themselves through the water by contracting their bell-shaped body in discrete swim pulses. These pulses are controlled by a swim pacemaker system situated in their sensory structures, the rhopalia. Each medusa has four rhopalia each with a similar set of six eyes of four morphologically different types. We have examined how each of the four eye types influences the swim pacemaker. Multiple photoreceptor systems, three of the four eye types, plus the rhopalial neuropil, affect the swim pacemaker. The lower lens eye inhibits the pacemaker when stimulated and provokes a strong increase in the pacemaker frequency upon light-off. The upper lens eye, the pit eyes and the rhopalial neuropil all have close to the opposite effect. When these responses are compared with all-eye stimulations it is seen that some advanced integration must take place.
Collapse
Affiliation(s)
- A Garm
- Section of Aquatic Biology, University of Copenhagen, Denmark.
| | | |
Collapse
|
20
|
Parkefelt L, Ekström P. Prominent system of RFamide immunoreactive neurons in the rhopalia of box jellyfish (Cnidaria: Cubozoa). J Comp Neurol 2009; 516:157-65. [PMID: 19598151 DOI: 10.1002/cne.22072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The four visual sensory structures of a cubomedusa, the rhopalia, display a surprisingly elaborate organization by containing two lens eyes and four bilaterally paired pigment cup eyes. Peptides containing the peptide sequence Arg-Phe-NH2 (RFamide) occur in close association with visual structures of cnidarians, including the rhopalia and rhopalial stalk of cubomedusae, suggesting that RFamide functions as a neuronal marker for certain parts of the visual system of medusae. Using immunofluorescence we give a detailed description of the organization of the RFamide-immunoreactive (ir) nervous system in the rhopalia and rhopalial stalk of the cubomedusae Tripedalia cystophora and Carybdea marsupialis. The bilaterally symmetric RFamide-ir nervous system contains four cell groups and three morphologically different cell types. Neurites spread throughout the rhopalia and occur in close vicinity of the pigment cup eyes and the lower lens eye. Two commissures connect the two sides of the system and neurites of one rhopalial cell group extend into the rhopalial stalk. The RFamide-ir nervous system in the rhopalia of cubomedusae is more widespread and comprises more cells than earlier discerned. We suggest that the system might not only integrate visual input but also signals from other senses. One of the RFamide-ir cell groups is favorably situated to represent pacemaker neurons that set the swimming rhythm of the medusa.
Collapse
Affiliation(s)
- Linda Parkefelt
- Department of Cell and Organism Biology, Lund University, S-22362 Lund, Sweden.
| | | |
Collapse
|
21
|
Gray GC, Martin VJ, Satterlie RA. Ultrastructure of the retinal synapses in cubozoans. THE BIOLOGICAL BULLETIN 2009; 217:35-49. [PMID: 19679721 DOI: 10.1086/bblv217n1p35] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cubomedusae (box jellyfish) are well known for strong directional swimming, rapid responses to visual stimuli, and complex lensed eyes comparable to those of more advanced multicellular animals. They possess a total of 24 eyes that are of four morphologically different types, yet little is known about the neural organization of their eyes. The eyes are located on ganglion-like structures called rhopalia. Each of the four rhopalia contains an upper and a lower lensed eye (with a cornea, lens, and retina), two pit ocelli, and two slit ocelli. Transmission electron microscopy was used to examine the synaptic morphology of the eyes and pacemaker region of four species of cubozoans (Tamoya haplonema, Carybdea marsupialis, Tripedalia cystophora, and Chiropsalmus quadrumanus). Invaginated synapses were found in all four species, but only in the upper and lower lensed eyes. Density measurements indicated that the invaginated synapses were located close to the basal region of photoreceptor cells, and size differences of invaginated synapses were observed between the upper and lower lensed eyes, as well as between species. Four additional types of chemical synapses-clear unidirectional, dense-core unidirectional, clear bidirectional, and clear and dense-core bidirectional-were also observed in the rhopalia. The invaginated synapses of the lensed eyes may be useful as markers to help sort out the neural circuitry in the retinal region of these complex cubomedusan eyes.
Collapse
Affiliation(s)
- G Clark Gray
- Center for Marine Science and Department of Biology and Marine Biology, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, North Carolina 28409, USA
| | | | | |
Collapse
|
22
|
Garm A, Poussart Y, Parkefelt L, Ekström P, Nilsson DE. The ring nerve of the box jellyfish Tripedalia cystophora. Cell Tissue Res 2007; 329:147-57. [PMID: 17340150 DOI: 10.1007/s00441-007-0393-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 12/01/2006] [Indexed: 11/29/2022]
Abstract
Box jellyfish have the most elaborate sensory system and behavioural repertoire of all cnidarians. Sensory input largely comes from 24 eyes situated on four club-shaped sensory structures, the rhopalia, and behaviour includes obstacle avoidance, light shaft attractance and mating. To process the sensory input and convert it into the appropriate behaviour, the box jellyfish have a central nervous system (CNS) but this is still poorly understood. The CNS has two major components: the rhopalial nervous system and the ring nerve. The rhopalial nervous system is situated within the rhopalia in close connection with the eyes, whereas the ring nerve encircles the bell. We describe the morphology of the ring nerve of the box jellyfish Tripedalia cystophora as ascertained by normal histological techniques, immunohistochemistry and transmission electron microscopy. By light microscopy, we have estimated the number of cells in the ring nerve by counting their nuclei. In cross sections at the ultrastructural level, the ring nerve appears to have three types of neurites: (1) small "normal"-looking neurites, (2) medium-sized neurites almost completely filled by electron-lucent vacuoles and (3) giant neurites. In general, only one giant neurite is seen on each section; this type displays the most synapses. Epithelial cells divide the ring nerve into compartments, each having a tendency to contain neurites of similar morphology. The number and arrangement of the compartments vary along the length of the ring nerve.
Collapse
Affiliation(s)
- A Garm
- Department of Cell and Organism Biology, Lund University, Zoology Building, Helgonavägen 3, 22362 Lund, Sweden.
| | | | | | | | | |
Collapse
|
23
|
Skogh C, Garm A, Nilsson DE, Ekström P. Bilaterally symmetrical rhopalial nervous system of the box jellyfish Tripedalia cystophora. J Morphol 2007; 267:1391-405. [PMID: 16874799 DOI: 10.1002/jmor.10472] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cubomedusae, or box jellyfish, have the most elaborate visual system of all cnidarians. They have 24 eyes of four morphological types, distributed on four sensory structures called rhopalia. Box jellyfish also display complex, probably visually guided behaviors such as obstacle avoidance and fast directional swimming. Here we describe the strikingly complex and partially bilaterally symmetrical nervous system found in each rhopalium of the box jellyfish, Tripedalia cystophora, and present the rhopalial neuroanatomy in an atlas-like series of drawings. Discrete populations of neurons and commissures connecting the left and the right side along with two populations of nonneuronal cells were visualized using several different histochemical staining techniques and electron microscopy. The number of rhopalial nerve cells and their overall arrangement indicates that visual processing and integration at least partly happen within the rhopalia. The larger of the two nonneuronal cell populations comprises approximately 2,000 likely undifferentiated cells and may support a rapid cell turnover in the rhopalial nervous system.
Collapse
Affiliation(s)
- C Skogh
- Department of Cell and Organism Biology, Lund University, Sweden
| | | | | | | |
Collapse
|
24
|
Coates MM, Garm A, Theobald JC, Thompson SH, Nilsson DE. The spectral sensitivity of the lens eyes of a box jellyfish, Tripedalia cystophora (Conant). ACTA ACUST UNITED AC 2006; 209:3758-65. [PMID: 16985192 DOI: 10.1242/jeb.02431] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Box jellyfish, or cubomedusae (class Cubozoa), are unique among the Cnidaria in possessing lens eyes similar in morphology to those of vertebrates and cephalopods. Although these eyes were described over 100 years ago, there has been no work done on their electrophysiological responses to light. We used an electroretinogram (ERG) technique to measure spectral sensitivity of the lens eyes of the Caribbean species Tripedalia cystophora. The cubomedusae have two kinds of lens eyes, the lower and upper lens eyes. We found that both lens eye types have similar spectral sensitivities, which likely result from the presence of a single receptor type containing a single opsin. The peak sensitivity is to blue-green light. Visual pigment template fits indicate a vitamin A-1 based opsin with peak sensitivity near 500 nm for both eye types.
Collapse
Affiliation(s)
- Melissa M Coates
- Hopkins Marine Station, Department of Biological Sciences, Stanford University, Oceanview Boulevard, Pacific Grove, California 93950, USA.
| | | | | | | | | |
Collapse
|
25
|
Garm A, Ekström P, Boudes M, Nilsson DE. Rhopalia are integrated parts of the central nervous system in box jellyfish. Cell Tissue Res 2006; 325:333-43. [PMID: 16557386 DOI: 10.1007/s00441-005-0134-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 11/23/2005] [Indexed: 10/24/2022]
Abstract
In cubomedusae, the central nervous system (CNS) is found both in the bell (the ring nerve) and in the four eye-bearing sensory structures (the rhopalia). The ring nerve and the rhopalia are connected via the rhopalial stalks and examination of the structure of the rhopalial stalks therefore becomes important when trying to comprehend visual processing. In the present study, the rhopalial stalk of the cubomedusae Tripedalia cystophora has been examined by light microscopy, transmission electron microscopy, and electrophysiology. A major part of the ring nerve is shown to continue into the stalk and to contact the rhopalial neuropil directly. Ultrastructural analysis of synapse distribution in the rhopalial stalk has failed to show any clustering, which indicates that integration of the visual input is probably spread throughout the CNS. Together, the results indicate that cubomedusae have one coherent CNS including the rhopalia. Additionally, a novel gastrodermal nerve has been found in the stalk; this nerve is not involved in visual processing but is likely to be mechanosensory and part of a proprioceptory system.
Collapse
Affiliation(s)
- A Garm
- Department of Cell and Organism Biology, Lund University, Zoology Building, Helgonavägen 3, 22362 Lund, Sweden.
| | | | | | | |
Collapse
|