1
|
Lam P, Vinnakota C, Guzmán BCF, Newland J, Peppercorn K, Tate WP, Waldvogel HJ, Faull RLM, Kwakowsky A. Beta-Amyloid (Aβ 1-42) Increases the Expression of NKCC1 in the Mouse Hippocampus. Molecules 2022; 27:2440. [PMID: 35458638 PMCID: PMC9027496 DOI: 10.3390/molecules27082440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with an increasing need for developing disease-modifying treatments as current therapies only provide marginal symptomatic relief. Recent evidence suggests the γ-aminobutyric acid (GABA) neurotransmitter system undergoes remodeling in AD, disrupting the excitatory/inhibitory (E/I) balance in the brain. Altered expression levels of K-Cl-2 (KCC2) and N-K-Cl-1 (NKCC1), which are cation-chloride cotransporters (CCCs), have been implicated in disrupting GABAergic activity by regulating GABAA receptor signaling polarity in several neurological disorders, but these have not yet been explored in AD. NKCC1 and KCC2 regulate intracellular chloride [Cl-]i by accumulating and extruding Cl-, respectively. Increased NKCC1 expression in mature neurons has been reported in these disease conditions, and bumetanide, an NKCC1 inhibitor, is suggested to show potential therapeutic benefits. This study used primary mouse hippocampal neurons to explore if KCC2 and NKCC1 expression levels are altered following beta-amyloid (Aβ1-42) treatment and the potential neuroprotective effects of bumetanide. KCC2 and NKCC1 expression levels were also examined in 18-months-old male C57BL/6 mice following bilateral hippocampal Aβ1-42 stereotaxic injection. No change in KCC2 and NKCC1 expression levels were observed in mouse hippocampal neurons treated with 1 nM Aβ1-42, but NKCC1 expression increased 30-days post-Aβ1-42-injection in the CA1 region of the mouse hippocampus. Primary mouse hippocampal cultures were treated with 1 nM Aβ1-42 alone or with various concentrations of bumetanide (1 µM, 10 µM, 100 µM, 1 mM) to investigate the effect of the drug on cell viability. Aβ1-42 produced 53.1 ± 1.4% cell death after 5 days, and the addition of bumetanide did not reduce this. However, the drug at all concentrations significantly reduced cell viability, suggesting bumetanide is highly neurotoxic. In summary, these results suggest that chronic exposure to Aβ1-42 alters the balance of KCC2 and NKCC1 expression in a region-and layer-specific manner in mouse hippocampal tissue; therefore, this process most likely contributes to altered hippocampal E/I balance in this model. Furthermore, bumetanide induces hippocampal neurotoxicity, thus questioning its suitability for AD therapy. Further investigations are required to examine the effects of Aβ1-42 on KCC2 and NKCC1 expression and whether targeting CCCs might offer a therapeutic approach for AD.
Collapse
Affiliation(s)
- Patricia Lam
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Beatriz Calvo-Flores Guzmán
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Julia Newland
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Katie Peppercorn
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand; (K.P.); (W.P.T.)
| | - Warren P. Tate
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand; (K.P.); (W.P.T.)
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
- Pharmacology and Therapeutics, Galway Neuroscience Centre, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| |
Collapse
|
2
|
Sahin GS, Luis Rodriguez-Llamas J, Dillon C, Medina I, Appleyard SM, Gaiarsa JL, Wayman GA. Leptin increases GABAergic synaptogenesis through the Rho guanine exchange factor β-PIX in developing hippocampal neurons. Sci Signal 2021; 14:14/683/eabe4111. [PMID: 34006608 DOI: 10.1126/scisignal.abe4111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Developing hippocampal neurons undergo rapid synaptogenesis in response to neurotrophic signals to form and refine circuit connections. The adipokine leptin is a satiety factor with neurotrophic actions, which potentiates both glutamatergic and GABAergic synaptogenesis in the hippocampus during neonatal development. Brief exposure to leptin enhances GABAA receptor-dependent synaptic currents in hippocampal neurons. Here, using molecular and electrophysiological techniques, we found that leptin increased the surface localization of GABAA receptors and the number of functional GABAergic synapses in hippocampal cultures from male and female rat pups. Leptin increased the interaction between GABAA receptors and the Rho guanine exchange factor β-PIX (a scaffolding protein at GABAergic postsynaptic sites) in a manner dependent on the kinase CaMKK. We also found that the leptin receptor and β-PIX formed a complex, the amount of which transiently increased upon leptin receptor activation. Furthermore, Tyr985 in the leptin receptor and the SH3 domain of β-PIX are crucial for this interaction, which was required for the developmental increase in GABAergic synaptogenesis. Our results suggest a mechanism by which leptin promotes GABAergic synaptogenesis in hippocampal neurons and reveal further complexity in leptin receptor signaling and its interactome.
Collapse
Affiliation(s)
- Gulcan Semra Sahin
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Jose Luis Rodriguez-Llamas
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Crystal Dillon
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Igor Medina
- Aix-Marseille University UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Suzanne M Appleyard
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Jean-Luc Gaiarsa
- Aix-Marseille University UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Gary A Wayman
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA.
| |
Collapse
|
3
|
Herzog N, Johnstone A, Bellamy T, Russell N. Characterization of neuronal viability and network activity under microfluidic flow. J Neurosci Methods 2021; 358:109200. [PMID: 33932456 DOI: 10.1016/j.jneumeth.2021.109200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Microfluidics technology has the potential to allow precise control of the temporal and spatial aspects of solute concentration, making it highly relevant for the study of volume transmission mechanisms in neural tissue. However, full utilization of this technology depends on understanding how microfluidic flow at the rates needed for rapid solution exchange affects neuronal viability and network activity. NEW METHOD We designed a tape-based pressurized microfluidic flow system that is simple to fabricate and can be attached to commercial microelectrode arrays. The device is multi-layered, allowing the inclusion of a porous polycarbonate membrane to isolate neuronal cultures from shear forces while maintaining diffusive exchange of solutes. We used this system to investigate how flow affected survival and spiking patterns of cultured hippocampal neurons. RESULTS Viability and network activity of the cultures were reduced in proportion to flow rate. However, shear reduction measures did not improve survival or spiking activity; media conditioning in conjunction with culture age proved to be the critical factors for network stability. Diffusion simulations indicate that dilution of a small molecule accounts for the deleterious effects of flow on neuronal cultures. COMPARISON WITH EXISTING METHODS This work establishes the experimental conditions for real time measurement of network activity during rapid solution exchange, using multi-layered chambers with reversible bonding that allow for reuse of microelectrode arrays. CONCLUSIONS With correct media conditioning, the microfluidic flow system allows drug delivery on a subsecond timescale without disruption of network activity or viability, enabling in vitro reproduction of volume transmission mechanisms.
Collapse
Affiliation(s)
- Nitzan Herzog
- School of Electronic and Electrical Engineering, University of Nottingham, Nottingham, United Kingdom.
| | - Alexander Johnstone
- School of Electronic and Electrical Engineering, University of Nottingham, Nottingham, United Kingdom.
| | - Tomas Bellamy
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.
| | - Noah Russell
- School of Electronic and Electrical Engineering, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
4
|
Dexmedetomidine Prevents Excessive γ-Aminobutyric Acid Type A Receptor Function after Anesthesia. Anesthesiology 2018; 129:477-489. [DOI: 10.1097/aln.0000000000002311] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
What We Already Know about This Topic
What This Article Tells Us That Is New
Background
Postoperative delirium is associated with poor long-term outcomes and increased mortality. General anesthetic drugs may contribute to delirium because they increase cell-surface expression and function of α5 subunit-containing γ-aminobutyric acid type A receptors, an effect that persists long after the drugs have been eliminated. Dexmedetomidine, an α2 adrenergic receptor agonist, prevents delirium in patients and reduces cognitive deficits in animals. Thus, it was postulated that dexmedetomidine prevents excessive function of α5 γ-aminobutyric acid type A receptors.
Methods
Injectable (etomidate) and inhaled (sevoflurane) anesthetic drugs were studied using cultured murine hippocampal neurons, cultured murine and human cortical astrocytes, and ex vivo murine hippocampal slices. γ-Aminobutyric acid type A receptor function and cell-signaling pathways were studied using electrophysiologic and biochemical methods. Memory and problem-solving behaviors were also studied.
Results
The etomidate-induced sustained increase in α5 γ-aminobutyric acid type A receptor cell-surface expression was reduced by dexmedetomidine (mean ± SD, etomidate: 146.4 ± 51.6% vs. etomidate + dexmedetomidine: 118.4 ± 39.1% of control, n = 8 each). Dexmedetomidine also reduced the persistent increase in tonic inhibitory current in hippocampal neurons (etomidate: 1.44 ± 0.33 pA/pF, n = 10; etomidate + dexmedetomidine: 1.01 ± 0.45 pA/pF, n = 9). Similarly, dexmedetomidine prevented a sevoflurane-induced increase in the tonic current. Dexmedetomidine stimulated astrocytes to release brain-derived neurotrophic factor, which acted as a paracrine factor to reduce excessive α5 γ-aminobutyric acid type A receptor function in neurons. Finally, dexmedetomidine attenuated memory and problem-solving deficits after anesthesia.
Conclusions
Dexmedetomidine prevented excessive α5 γ-aminobutyric acid type A receptor function after anesthesia. This novel α2 adrenergic receptor- and brain-derived neurotrophic factor-dependent pathway may be targeted to prevent delirium.
Collapse
|
5
|
Enhanced GABAergic actions resulting from the coapplication of the steroid 3α-hydroxy-5α-pregnane-11,20-dione (alfaxalone) with propofol or diazepam. Sci Rep 2018; 8:10341. [PMID: 29985445 PMCID: PMC6037692 DOI: 10.1038/s41598-018-28754-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/29/2018] [Indexed: 11/09/2022] Open
Abstract
Many GABAergic drugs are in clinical use as anesthetics, sedatives, or anxiolytics. We have investigated the actions of the combinations of the neuroactive steroid 3α-hydroxy-5α-pregnane-11,20-dione (alfaxalone) with the intravenous anesthetic propofol or the benzodiazepine diazepam. The goal of the study was to determine whether coapplication of alfaxalone reduces the effective doses and concentrations of propofol and diazepam. Behavioral effects of alfaxalone, propofol, diazepam, and the combinations of the drugs were evaluated during a 30-min activity test in mice. Functional effects of the individual drugs and drug combinations were tested by measuring the decay times of spontaneous inhibitory postsynaptic currents in rat hippocampal neurons, and peak current responses from heterologously expressed concatemeric α1β2γ2L GABAA receptors. Co-administration of alfaxalone increased the sedative actions of propofol and diazepam in mice. The combination of alfaxalone with propofol or diazepam increased the decay times of sIPSCs and shifted the concentration-response relationships for GABA-activated receptors to lower transmitter concentrations. We infer that alfaxalone acts as a co-agonist to enhance the GABAergic effects of propofol and diazepam. We propose that co-administration of alfaxalone, and possibly other neuroactive steroids, can be employed to reduce dosage requirements for propofol and diazepam.
Collapse
|
6
|
Hwang S, Ham S, Lee SE, Lee Y, Lee GH. Hypoxia regulates the level of glutamic acid decarboxylase enzymes and interrupts inhibitory synapse stability in primary cultured neurons. Neurotoxicology 2018; 65:221-230. [DOI: 10.1016/j.neuro.2017.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/19/2017] [Accepted: 10/27/2017] [Indexed: 01/23/2023]
|
7
|
Altered Channel Conductance States and Gating of GABA A Receptors by a Pore Mutation Linked to Dravet Syndrome. eNeuro 2017; 4:eN-NWR-0251-16. [PMID: 28197552 PMCID: PMC5301078 DOI: 10.1523/eneuro.0251-16.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 11/21/2022] Open
Abstract
We identified a de novo missense mutation, P302L, in the γ-aminobutyric acid type A (GABAA) receptor γ2 subunit gene GABRG2 in a patient with Dravet syndrome using targeted next-generation sequencing. The mutation was in the cytoplasmic portion of the transmembrane segment M2 of the γ2 subunit that faces the pore lumen. GABAA receptor α1 and β3 subunits were coexpressed with wild-type (wt) γ2L or mutant γ2L(P302L) subunits in HEK 293T cells and cultured mouse cortical neurons. We measured currents using whole-cell and single-channel patch clamp techniques, surface and total expression levels using surface biotinylation and Western blotting, and potential structural perturbations in mutant GABAA receptors using structural modeling. The γ2(P302L) subunit mutation produced an ∼90% reduction of whole-cell current by increasing macroscopic desensitization and reducing GABA potency, which resulted in a profound reduction of GABAA receptor-mediated miniature IPSCs (mIPSCs). The conductance of the receptor channel was reduced to 24% of control conductance by shifting the relative contribution of the conductance states from high- to low-conductance levels with only slight changes in receptor surface expression. Structural modeling of the GABAA receptor in the closed, open, and desensitized states showed that the mutation was positioned to slow activation, enhance desensitization, and shift channels to a low-conductance state by reshaping the hour-glass-like pore cavity during transitions between closed, open, and desensitized states. Our study revealed a novel γ2 subunit missense mutation (P302L) that has a novel pathogenic mechanism to cause defects in the conductance and gating of GABAA receptors, which results in hyperexcitability and contributes to the pathogenesis of the genetic epilepsy Dravet syndrome.
Collapse
|
8
|
Schneider L, Goldsworthy M, Cole J, Ridding M, Pitcher J. The influence of short-interval intracortical facilitation when assessing developmental changes in short-interval intracortical inhibition. Neuroscience 2016; 312:19-25. [DOI: 10.1016/j.neuroscience.2015.10.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/02/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022]
|
9
|
Brain extracellular matrix retains connectivity in neuronal networks. Sci Rep 2015; 5:14527. [PMID: 26417723 PMCID: PMC4586818 DOI: 10.1038/srep14527] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 08/24/2015] [Indexed: 11/08/2022] Open
Abstract
The formation and maintenance of connectivity are critically important for the processing and storage of information in neuronal networks. The brain extracellular matrix (ECM) appears during postnatal development and surrounds most neurons in the adult mammalian brain. Importantly, the removal of the ECM was shown to improve plasticity and post-traumatic recovery in the CNS, but little is known about the mechanisms. Here, we investigated the role of the ECM in the regulation of the network activity in dissociated hippocampal cultures grown on microelectrode arrays (MEAs). We found that enzymatic removal of the ECM in mature cultures led to transient enhancement of neuronal activity, but prevented disinhibition-induced hyperexcitability that was evident in age-matched control cultures with intact ECM. Furthermore, the ECM degradation followed by disinhibition strongly affected the network interaction so that it strongly resembled the juvenile pattern seen in naïve developing cultures. Taken together, our results demonstrate that the ECM plays an important role in retention of existing connectivity in mature neuronal networks that can be exerted through synaptic confinement of glutamate. On the other hand, removal of the ECM can play a permissive role in modification of connectivity and adaptive exploration of novel network architecture.
Collapse
|
10
|
Harrill JA, Chen H, Streifel KM, Yang D, Mundy WR, Lein PJ. Ontogeny of biochemical, morphological and functional parameters of synaptogenesis in primary cultures of rat hippocampal and cortical neurons. Mol Brain 2015; 8:10. [PMID: 25757474 PMCID: PMC4339650 DOI: 10.1186/s13041-015-0099-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/30/2015] [Indexed: 11/23/2022] Open
Abstract
Background Synaptogenesis is a critical neurodevelopmental process whereby pre- and postsynaptic neurons form apposed sites of contact specialized for chemical neurotransmission. Many neurodevelopmental disorders are thought to reflect altered patterns of synaptic connectivity, including imbalances between excitatory and inhibitory synapses. Developing rapid throughput approaches for assessing synaptogenesis will facilitate toxicologic and drug screening studies of neurodevelopmental disorders. The current study describes the use of high-content imaging to quantify the ontogeny of excitatory and inhibitory synapses using in vitro models of neurodevelopment. These data are compared to biochemical and functional measures of synaptogenesis. Results The ontogenetic patterns of synapse formation were compared between primary rodent hippocampal and cortical neurons over 28 days in vitro (DIV). As determined by ELISA, the increase in synaptophysin expression levels as cultures matured was similar between hippocampal and cortical cultures. High-content imaging of immunoreactivity of excitatory and inhibitory synaptic biomarkers demonstrated an overall greater number of synapses in hippocampal relative to cortical neurons with marked differences in the pattern of inhibitory synapse development between these two neuronal cell types. Functional assays revealed that both the mean firing rates and mean bursting rates were significantly increased in cortical cultures relative to hippocampal cultures. This difference may reflect decreased inhibitory synaptic tone in cortical versus hippocampal cultures. Conclusions These data demonstrate differences and similarities in the ontogeny of synaptogenesis between hippocampal and cortical neurons, depending on the biological level examined. Assessment of synaptophysin protein levels by ELISA showed a general increase in synapse formation in both cell types with increasing time in culture, while high-content imaging was able to delineate cell type-dependent differences in formation of excitatory versus inhibitory synapses. The functional significance of differences in the balance of excitatory to inhibitory synapses was confirmed by the assessment of network activity using microelectrode arrays. These results suggest that high-content imaging and microelectrode arrays provide complementary approaches for quantitative assessment of synaptogenesis, which should provide a robust readout of toxicologic and pharmacologic effects on this critical neurodevelopmental event.
Collapse
|
11
|
Pro-brain-derived neurotrophic factor inhibits GABAergic neurotransmission by activating endocytosis and repression of GABAA receptors. J Neurosci 2015; 34:13516-34. [PMID: 25274828 DOI: 10.1523/jneurosci.2069-14.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GABA is the canonical inhibitory neurotransmitter in the CNS. This inhibitory action is largely mediated by GABA type A receptors (GABAARs). Among the many factors controlling GABAergic transmission, brain-derived neurotrophic factor (BDNF) appears to play a major role in regulating synaptic inhibition. Recent findings have demonstrated that BDNF can be released as a precursor (proBDNF). Although the role of mature BDNF on GABAergic synaptogenesis and maintenance has been well studied, an important question still unanswered is whether secreted proBDNF might affect GABAergic neurotransmission. Here, we have used 14 d in vitro primary culture of hippocampal neurons and ex vivo preparations from rats to study the function of proBDNF in regulation of GABAAR trafficking and activity. We demonstrate that proBDNF impairs GABAergic transmission by the activation of two distinct pathways: (1) a RhoA-Rock-PTEN pathway that decreases the phosphorylation levels of GABAAR, thus affecting receptor function and triggering endocytosis and degradation of internalized receptors, and (2) a JAK-STAT-ICER pathway leading to the repression of GABAARs synthesis. These effects lead to the diminution of GABAergic synapses and are correlated with a decrease in GABAergic synaptic currents. These results revealed new functions for proBDNF-p75 neurotrophin receptor signaling pathway in the control of the efficacy of GABAergic synaptic activity by regulating the trafficking and synthesis of GABAARs at inhibitory synapses.
Collapse
|
12
|
Brain-derived neurotrophic factor promotes gephyrin protein expression and GABAA receptor clustering in immature cultured hippocampal cells. Neurochem Int 2014; 72:14-21. [PMID: 24747341 DOI: 10.1016/j.neuint.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/31/2022]
Abstract
Fast synaptic inhibition in the adult brain is largely mediated by GABAA receptors (GABAAR). GABAAR are anchored to synaptic sites by gephyrin, a scaffolding protein that appears to be assembled as a hexagonal lattice beneath the plasma membrane. Brain derived neurotrophic factor (BDNF) alters the clustering and synaptic distribution of GABAAR but mechanisms behind this regulation are just starting to emerge. The current study was aimed to examine if BDNF alters the protein levels and/or clustering of gephyrin and to investigate whether the modulation of gephyrin is accompanied by changes in the distribution and/or clustering of GABAAR. Exogenous application of BDNF to immature neuronal cultures from rat hippocampus increased the protein levels and clustering of gephyrin. BDNF also augmented the association of gephyrin with GABAAR and promoted the formation of GABAAR clusters. Together, these observations indicate that BDNF might regulate the assembly of GABAergic synapses by promoting the association of GABAAR with gephyrin.
Collapse
|
13
|
González MI. The possible role of GABAA receptors and gephyrin in epileptogenesis. Front Cell Neurosci 2013; 7:113. [PMID: 23885234 PMCID: PMC3717475 DOI: 10.3389/fncel.2013.00113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/26/2013] [Indexed: 12/29/2022] Open
Abstract
The term epileptogenesis refers to a dynamic alteration in neuronal excitability that promotes the appearance of spontaneous seizures. Temporal lobe epilepsy, the most common type of acquired epilepsy, often develops after an insult to the brain such as trauma, febrile seizures, encephalitis, or status epilepticus. During the pre-epileptic state (also referred as latent or silent period) there is a plethora of molecular, biochemical, and structural changes that lead to the generation of recurrent spontaneous seizures (or epilepsy). The specific contribution of these alterations to epilepsy development is unclear, but a loss of inhibition has been associated with the increased excitability detected in the latent period. A rapid increase in neuronal hyperexcitability could be due, at least in part, to a decline in the number of physiologically active GABAA receptors (GABAAR). Altered expression of scaffolding proteins involved in the trafficking and anchoring of GABAAR could directly impact the stability of GABAergic synapses and promote a deficiency in inhibitory neurotransmission. Uncovering the molecular mechanisms operating during epileptogenesis and its possible impact on the regulation of GABAAR and scaffolding proteins may offer new targets to prevent the development of epilepsy.
Collapse
Affiliation(s)
- Marco I González
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
14
|
Homeostatic responses fail to correct defective amygdala inhibitory circuit maturation in fragile X syndrome. J Neurosci 2013; 33:7548-58. [PMID: 23616559 DOI: 10.1523/jneurosci.2764-12.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fragile X syndrome (FXS) is a debilitating neurodevelopmental disorder thought to arise from disrupted synaptic communication in several key brain regions, including the amygdala, a central processing center for information with emotional and social relevance. Recent studies reveal defects in both excitatory and inhibitory neurotransmission in mature amygdala circuits in Fmr1(-/y) mutants, the animal model of FXS. However, whether these defects are the result of altered synaptic development or simply faulty mature circuits remains unknown. Using a combination of electrophysiological and genetic approaches, we show the development of both presynaptic and postsynaptic components of inhibitory neurotransmission in the FXS amygdala is dynamically altered during critical stages of neural circuit formation. Surprisingly, we observe that there is a homeostatic correction of defective inhibition, which, despite transiently restoring inhibitory synaptic efficacy to levels at or beyond those of control, ultimately fails to be maintained. Using inhibitory interneuron-specific conditional knock-out and rescue mice, we further reveal that fragile X mental retardation protein function in amygdala inhibitory microcircuits can be segregated into distinct presynaptic and postsynaptic components. Collectively, these studies reveal a previously unrecognized complexity of disrupted neuronal development in FXS and therefore have direct implications for establishing novel temporal and region-specific targeted therapies to ameliorate core amygdala-based behavioral symptoms.
Collapse
|
15
|
Joshi S, Keith KJ, Ilyas A, Kapur J. GABAA receptor membrane insertion rates are specified by their subunit composition. Mol Cell Neurosci 2013; 56:201-11. [PMID: 23714576 DOI: 10.1016/j.mcn.2013.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/03/2013] [Accepted: 05/19/2013] [Indexed: 02/07/2023] Open
Abstract
γ Amino-butyric acid type-A receptors (GABARs) containing γ2 or δ subunits form separate pools of receptors in vivo, with distinct localization and function. We determined the rate of surface membrane insertion of native and recombinant γ2 and δ subunit-containing GABARs (γ2-GABARs and δ-GABARs). Insertion of the α-bungarotoxin binding site (BBS) tagged γ2 subunit (t-γ2)-containing GABARs in the surface membrane of HEK293 cells occurred within minutes and reached a peak by 30 min. In contrast, insertion of the BBS-tagged δ subunit (t-δ)-containing receptors required longer incubation and peaked in 120 min. Insertion of the t-γ2 subunit-containing receptors was not influenced by assembling α1 or α4 subunits. In contrast, insertion of the α4β3t-δ subunit-containing receptors was faster than those containing α1β3t-δ subunits. The rate of insertion of native GABARs in the surface membrane of cultured hippocampal neurons, determined by an antibody saturation assay, was similar to that of the recombinant receptors expressed in HEK293 cells. Insertion of the γ2-GABARs was rapid and new γ2-GABARs were detected on the surface membrane of cell soma and dendrites within minutes. In contrast, insertion of the δ-GABARs was slow and newly inserted receptors were initially present only in the surface membrane of cell soma and later also appeared over the dendrites. Thus the rate of insertion of GABARs was dependent on their subunit composition.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States
| | | | | | | |
Collapse
|
16
|
Abstract
The flux of neurotransmitter receptors in and out of synapses depends on receptor interaction with scaffolding molecules. However, the crowd of transmembrane proteins and the rich cytoskeletal environment may constitute obstacles to the diffusion of receptors within the synapse. To address this question, we studied the membrane diffusion of the γ-aminobutyric acid type A receptor (GABAAR) subunits clustered (γ2) or not (α5) at inhibitory synapses in rat hippocampal dissociated neurons. Relative to the extrasynaptic region, γ2 and α5 showed reduced diffusion and increased confinement at both inhibitory and excitatory synapses but they dwelled for a short time at excitatory synapses. In contrast, γ2 was ∼3-fold more confined and dwelled ∼3-fold longer in inhibitory synapses than α5, indicating faster synaptic escape of α5. Furthermore, using a gephyrin dominant-negative approach, we showed that the increased residency time of γ2 at inhibitory synapses was due to receptor-scaffold interactions. As shown for GABAAR, the excitatory glutamate receptor 2 subunit (GluA2) of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) had lower mobility in both excitatory and inhibitory synapses but a higher residency time at excitatory synapses. Therefore barriers impose significant diffusion constraints onto receptors at synapses where they accumulate or not. Our data further reveal that the confinement and the dwell time but not the diffusion coefficient report on the synapse specific sorting, trapping and accumulation of receptors.
Collapse
|
17
|
Swijsen A, Brône B, Rigo JM, Hoogland G. Long-lasting enhancement of GABA(A) receptor expression in newborn dentate granule cells after early-life febrile seizures. Dev Neurobiol 2012; 72:1516-27. [PMID: 22378685 DOI: 10.1002/dneu.22016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/06/2012] [Accepted: 02/23/2012] [Indexed: 02/05/2023]
Abstract
Febrile seizures (FS) are the most common type of seizures in childhood and are suggested to play a role in the development of temporal lobe epilepsy (TLE). Animal studies demonstrated that experimental FS induce a long-lasting change in hippocampal excitability, resulting in enhanced seizure susceptibility. Hippocampal neurogenesis and altered ion channel expression have both been proposed as mechanisms underlying this decreased seizure threshold. The present study aimed to analyze whether dentate gyrus (DG) cells that were born after FS and matured for 8 weeks display an altered repertoire of ligand-gated ion channels. To this end, we applied an established model, in which FS are elicited in 10-day-old rat pups by hyperthermia (HT). Normothermia littermates served as controls. From postnatal day 11 (P11) to P16, rats were injected with bromodeoxyuridine (BrdU) to label dividing cells immediately following FS. At P66, we evaluated BrdU-labeled DG cells for coexpression with γ-aminobutyric acid-type A receptors (GABA(A)Rs) and N-methyl-D-aspartate receptors (NMDARs). In control animals, 40% of BrdU-labeled cells coexpressed GABA(A)R β2/3, whereas in rats that had experienced FS, 60% of BrdU-labeled cells also expressed GABA(A)R β2/3. The number of BrdU-NMDAR NR2A/B coexpressing cells was in both groups about 80% of BrdU-labeled cells. The results demonstrate that developmental seizures cause a long-term increase in GABA(A)R β2/3 expression in newborn DG cells. This may affect hippocampal physiology.
Collapse
Affiliation(s)
- Ann Swijsen
- Research Group Cell Physiology, BIOMED Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | | | | |
Collapse
|
18
|
Wu X, Wu Z, Ning G, Guo Y, Ali R, Macdonald RL, De Blas AL, Luscher B, Chen G. γ-Aminobutyric acid type A (GABAA) receptor α subunits play a direct role in synaptic versus extrasynaptic targeting. J Biol Chem 2012; 287:27417-30. [PMID: 22711532 DOI: 10.1074/jbc.m112.360461] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA(A) receptors (GABA(A)-Rs) are localized at both synaptic and extrasynaptic sites, mediating phasic and tonic inhibition, respectively. Previous studies suggest an important role of γ2 and δ subunits in synaptic versus extrasynaptic targeting of GABA(A)-Rs. Here, we demonstrate differential function of α2 and α6 subunits in guiding the localization of GABA(A)-Rs. To study the targeting of specific subtypes of GABA(A)-Rs, we used a molecularly engineered GABAergic synapse model to precisely control the GABA(A)-R subunit composition. We found that in neuron-HEK cell heterosynapses, GABAergic events mediated by α2β3γ2 receptors were very fast (rise time ∼2 ms), whereas events mediated by α6β3δ receptors were very slow (rise time ∼20 ms). Such an order of magnitude difference in rise time could not be attributed to the minute differences in receptor kinetics. Interestingly, synaptic events mediated by α6β3 or α6β3γ2 receptors were significantly slower than those mediated by α2β3 or α2β3γ2 receptors, suggesting a differential role of α subunit in receptor targeting. This was confirmed by differential targeting of the same δ-γ2 chimeric subunits to synaptic or extrasynaptic sites, depending on whether it was co-assembled with the α2 or α6 subunit. In addition, insertion of a gephyrin-binding site into the intracellular domain of α6 and δ subunits brought α6β3δ receptors closer to synaptic sites. Therefore, the α subunits, together with the γ2 and δ subunits, play a critical role in governing synaptic versus extrasynaptic targeting of GABA(A)-Rs, possibly through differential interactions with gephyrin.
Collapse
Affiliation(s)
- Xia Wu
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Szczot M, Czyzewska MM, Appendino G, Mozrzymas JW. Modulation of GABAergic synaptic currents and current responses by α-thujone and dihydroumbellulone. JOURNAL OF NATURAL PRODUCTS 2012; 75:622-629. [PMID: 22364543 DOI: 10.1021/np200863q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
α-Thujone (1a), a constituent of wormwood, has been suspected to cause adverse psychoactive reactions in addicted drinkers of absinthe. While the content of 1a in absinthe is too low for such effects, at higher doses it can indeed induce seizures and inhibit GABA(A) receptors (GABA(A)Rs). The effect of 1a on GABAergic synaptic currents and the mechanisms by which it modulates GABA(A)Rs remain unknown. To address these issues, cultured hippocampal neurons were used to investigate the action of 1a on GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and on responses to exogenous GABA applications. Since lipophilic compounds often show nonspecific actions related to their hydrophobicity, the action of 1a was compared to that of dihydroumbellulone (2), a configurationally pseudoenantiomeric constitutional isomer. α-Thujone (1a) reduced mIPSC frequency and amplitude and also moderately affected their kinetics, indicating both pre- and postsynaptic mechanisms. Analysis of current responses to exogenous GABA revealed that 1a reduced their amplitude, affecting their onset, desensitization, and deactivation, suggesting an effect on receptor gating. In contrast, 2 caused only a weak or negligible effect on GABAergic currents, supporting the effects of 1a on GABAergic inhibition as being due to specific interactions with GABA(A)Rs.
Collapse
Affiliation(s)
- Marcin Szczot
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3, 50-367 Wrocław, Poland.
| | | | | | | |
Collapse
|
20
|
Wyrembek P, Negri R, Kaczor P, Czyżewska M, Appendino G, Mozrzymas JW. Falcarindiol allosterically modulates GABAergic currents in cultured rat hippocampal neurons. JOURNAL OF NATURAL PRODUCTS 2012; 75:610-616. [PMID: 22432736 DOI: 10.1021/np2008522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Falcarindiol (1), a C-17 polyacetylenic diol, shows a pleiotropic profile of bioactivity, but the mechanism(s) underlying its actions are largely unknown. Large amounts of 1 co-occur in water hemlock (Oenanthe crocata) along with the convulsant polyacetylenic toxin oenanthotoxin (2), a potent GABA(A) receptor (GABA(A)R) inhibitor. Since these compounds are structurally and biogenetically related, it was considered of interest to evaluate whether 1 could affect GABAergic activity, and for this purpose a model of hippocampal cultured neurons was used. Compound 1 significantly increased the amplitude of miniature inhibitory postsynaptic currents, accelerated their onset, and prolonged the decay kinetics. This compound enhanced also the amplitude of currents elicited by 3 μM GABA and accelerated their fading, reducing, however, currents evoked by a saturating (10 mM) GABA concentration. Moreover, kinetic analysis of responses to 10 mM GABA revealed that 1 upregulated the rate and extent of desensitization and slowed the current onset and deactivation. Taken together, these data show that 1 exerts a potent modulatory action on GABA(A)Rs, possibly by modulating agonist binding and desensitization, overall potentially decreasing the toxicity of co-occurring GABA-inhibiting convulsant toxins.
Collapse
Affiliation(s)
- Paulina Wyrembek
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3, 50-358 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
21
|
Chisari M, Wu K, Zorumski CF, Mennerick S. Hydrophobic anions potently and uncompetitively antagonize GABA(A) receptor function in the absence of a conventional binding site. Br J Pharmacol 2012; 164:667-80. [PMID: 21457224 DOI: 10.1111/j.1476-5381.2011.01396.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE A 'lock-and-key' binding site typically accounts for the effect of receptor antagonists. However, sulphated neurosteroids are potent non-competitive antagonists of GABA(A) receptors without a clear structure-activity relationship. To gain new insights, we tested two structurally unrelated hydrophobic anions with superficially similar properties to sulphated neurosteroids. EXPERIMENTAL APPROACH We used voltage-clamp techniques in Xenopus oocytes and hippocampal neurons to characterize dipicrylamine (DPA) and tetraphenylborate (TPB), compounds previously used to probe membrane structure and voltage-gated ion channel function. KEY RESULTS Both DPA and TPB potently antagonized GABA(A) receptors. DPA exhibited an IC₅₀ near 60 nM at half-maximal GABA concentration and antagonism with features indistinguishable from pregnenolone sulphate antagonism, including sensitivity to a point mutation in transmembrane domain 2 of the α1 subunit. Bovine serum albumin, which scavenges free membrane-associated DPA, accelerated both capacitance offset and antagonism washout. Membrane interactions and antagonism were explored using the voltage-dependent movement of DPA between membrane leaflets. Washout of DPA antagonism was strongly voltage-dependent, paralleling DPA membrane loss, although steady-state antagonism lacked voltage dependence. At antagonist concentrations, DPA failed to affect inhibitory post-synaptic current (IPSC) amplitude or decay, but DPA accelerated pharmacologically prolonged IPSCs. CONCLUSIONS AND IMPLICATIONS Neurosteroid-like GABA(A) receptor antagonism appears to lacks a conventional binding site. These features highlight key roles of membrane interactions in antagonism. Because its membrane mobility can be controlled, DPA may be a useful probe of GABA(A) receptors, but its effects on excitability via GABA(A) receptors raise caveats for its use in monitoring neuronal activity.
Collapse
Affiliation(s)
- M Chisari
- Departments of Psychiatry Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | |
Collapse
|
22
|
Homeostatic strengthening of inhibitory synapses is mediated by the accumulation of GABA(A) receptors. J Neurosci 2012; 31:17701-12. [PMID: 22131430 DOI: 10.1523/jneurosci.4476-11.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mechanisms of homeostatic plasticity scale synaptic strength according to changes in overall activity to maintain stability in neuronal network function. This study investigated mechanisms of GABAergic homeostatic plasticity. Cultured neurons exposed to depolarizing conditions reacted with an increased firing rate (high activity, HA) that normalized to control levels after 48 h of treatment. HA-treated hippocampal neurons displayed an attenuated response to further changes in depolarization, and the firing rate in HA-treated neurons increased above normalized levels when inhibition was partially reduced back to the level of control neurons. The amplitude and frequency of mIPSCs in hippocampal neurons increased after 48 h of HA, and increases in the size of GABA(A) receptor γ2 subunit clusters and presynaptic GAD-65 puncta were observed. Investigation of the time course of inhibitory homeostasis suggested that accumulation of GABA(A) receptors preceded presynaptic increases in GAD-65 puncta size. Interestingly, the size of GABA(A) receptor γ2 subunit clusters that colocalized with GAD-65 were larger at 12 h, coinciding in time with the increase found in mIPSC amplitude. The rate of internalization of GABA(A) receptors, a process involved in regulating the surface expression of inhibitory receptors, was slower in HA-treated neurons. These data also suggest that increased receptor expression was consolidated with presynaptic changes. HA induced an increase in postsynaptic GABA(A) receptors through a decrease in the rate of internalization, leading to larger synaptically localized receptor clusters that increased GABAergic synaptic strength and contributed to the homeostatic stabilization of neuronal firing rate.
Collapse
|
23
|
Withers GS, Wallace CS, Gibbs EM, Emery IR, Applegate ML. Synapses on demand require dendrites at the ready: how defining stages of dendritic development in vitro could inform studies of behaviorally driven information storage in the brain. Dev Psychobiol 2011; 53:443-55. [PMID: 21678392 DOI: 10.1002/dev.20560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bill Greenough's work provides a framework for thinking about synaptogenesis not only as a key step in the initial wiring of neural systems according to a species typical plan (i.e., experience-expectant development), but also as a mechanism for storing information based an individual's unique experience over its lifetime (i.e., experience-dependent plasticity). Analysis of synaptic development in vitro brings a new opportunity to test the limits of expectant-expectant development at the level of the individual neuron. We analyzed dendritic growth, synapse formation, and the development of specialized cytoplasmic microdomains during development in cultured hippocampal neurons, to determine if the timing of each of these events is correlated. Taken together, the findings reported here support the hypotheses that (1) dendritic development is rate limiting in synapse formation and (2) synaptic circuits are assembled in a step-wise fashion consistent with a stage-specific shift from genomically pre-programmed to activity-dependent mechanisms.
Collapse
Affiliation(s)
- Ginger S Withers
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA.
| | | | | | | | | |
Collapse
|
24
|
Cheyne JE, Grant L, Butler-Munro C, Foote JW, Connor B, Montgomery JM. Synaptic integration of newly generated neurons in rat dissociated hippocampal cultures. Mol Cell Neurosci 2011; 47:203-14. [DOI: 10.1016/j.mcn.2011.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/20/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022] Open
|
25
|
Barberis A, Petrini EM, Mozrzymas JW. Impact of synaptic neurotransmitter concentration time course on the kinetics and pharmacological modulation of inhibitory synaptic currents. Front Cell Neurosci 2011; 5:6. [PMID: 21734864 PMCID: PMC3123770 DOI: 10.3389/fncel.2011.00006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/05/2011] [Indexed: 12/26/2022] Open
Abstract
The time course of synaptic currents is a crucial determinant of rapid signaling between neurons. Traditionally, the mechanisms underlying the shape of synaptic signals are classified as pre- and post-synaptic. Over the last two decades, an extensive body of evidence indicated that synaptic signals are critically shaped by the neurotransmitter time course which encompasses several phenomena including pre- and post-synaptic ones. The agonist transient depends on neurotransmitter release mechanisms, diffusion within the synaptic cleft, spill-over to the extra-synaptic space, uptake, and binding to post-synaptic receptors. Most estimates indicate that the neurotransmitter transient is very brief, lasting between one hundred up to several hundreds of microseconds, implying that post-synaptic activation is characterized by a high degree of non-equilibrium. Moreover, pharmacological studies provide evidence that the kinetics of agonist transient plays a crucial role in setting the susceptibility of synaptic currents to modulation by a variety of compounds of physiological or clinical relevance. More recently, the role of the neurotransmitter time course has been emphasized by studies carried out on brain slice models that revealed a striking, cell-dependent variability of synaptic agonist waveforms ranging from rapid pulses to slow volume transmission. In the present paper we review the advances on studies addressing the impact of synaptic neurotransmitter transient on kinetics and pharmacological modulation of synaptic currents at inhibitory synapses.
Collapse
Affiliation(s)
- Andrea Barberis
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology Genova, Italy
| | | | | |
Collapse
|
26
|
Di Vito A, Giusi G, Alò R, Piscioneri A, Morelli S, De Bartolo L, Canonaco M. Distinct α GABA(A)R subunits influence structural and transcriptional properties of CA1 hippocampal neurons. Neurosci Lett 2011; 496:106-10. [PMID: 21511007 DOI: 10.1016/j.neulet.2011.03.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/22/2011] [Accepted: 03/30/2011] [Indexed: 11/28/2022]
Abstract
The hippocampus is recognized as a major telencephalic area modulating learning and episodic memory through the activation of its different subregions. The various functional properties of Ammon's horn 1 (Cornu Amonis 1; CA1) area have been shown to rely on GABAergic and Glutamat- (Glu)-ergic neuronal signals during both postnatal and adult stages. For this purpose, it was the aim of the present study to establish whether certain alpha GABA(A)R subunits (alpha(2,5)) were capable of modifying CA1 structural and functional features via their interaction with specific NMDA receptor subunits such as NR1 during early development stages of the hibernating hamster (Mesocricetus auratus). Indeed, in vitro addition of the selective alpha(2,5) GABA(A)R agonist diazepam (DZP; alpha(2,5)) accounted for early neuronal formations that were blocked by its antagonist flumazenil (FLM). In particular, the former drug caused very great (p<0.001) increases of dendritic sprouting and branching processes mainly at day in vitro (DIV) 3, while its effects still continued to be responsible for moderate (p<0.05) increases of axonal length during the entire culture period. Contextually, DZP was also responsible for a very great up-regulated expression of neuritic NR1 and MAP2 together with a great (p<0.01) increase of synaptophysin at DIV7. Overall, this first study suggests a specifically tight cross-talking relationship of GABAergic/Gluergic mechanisms operating during CA1 neuronal development, which may bring us closer to the identification of more selective therapeutic targets for hippocampal-linked neurological disorders.
Collapse
Affiliation(s)
- Anna Di Vito
- Comparative Neuroanatomy Laboratory, Ecology Department, University of Calabria, 87030 Arcavacata di Rende, CS, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Sutachan JJ, Chao MV, Ninan I. Regulation of inhibitory neurotransmission by the scaffolding protein ankyrin repeat-rich membrane spanning/kinase D-interacting substrate of 220 kDa. J Neurosci Res 2010; 88:3447-56. [PMID: 20936698 DOI: 10.1002/jnr.22513] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/09/2010] [Accepted: 08/16/2010] [Indexed: 11/10/2022]
Abstract
Scaffolding proteins play a critical role in the proper development and function of neural circuits. In contrast to the case for excitatory circuits, in which the role of several scaffolding proteins has been characterized, less is known about the scaffolding proteins that regulate inhibitory neurotransmission. The ankyrin repeat-rich membrane spanning (ARMS)/kinase D-interacting substrate of 220 kDa (Kidins220) scaffolding protein is expressed during the establishment of γ-aminobutyric acid (GABA) neurotransmission and is highly regulated by activity. To evaluate whether ARMS/Kidins220 expression affects GABAergic neurotransmission, we modified the ARMS/Kidins220 levels during the period of its maximum expression in culture (DIV 1-10). Whereas a decrease in ARMS/Kidins220 levels suppressed GABAergic neurotransmission, overexpression of ARMS/Kidins220 produced an increase in GABAergic neurotransmission in hippocampal neurons. In addition, we found that ARMS/Kidins220 regulates GABAergic neurotransmission by a presynaptic mechanism. Our results suggest that the ARMS/Kidins220 scaffold protein plays a critical role in the regulation of inhibitory transmission in hippocampal neurons.
Collapse
Affiliation(s)
- Jhon-Jairo Sutachan
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
28
|
Jacob AL, Jordan BA, Weinberg RJ. Organization of amyloid-beta protein precursor intracellular domain-associated protein-1 in the rat brain. J Comp Neurol 2010; 518:3221-36. [PMID: 20575057 PMCID: PMC2894292 DOI: 10.1002/cne.22394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sustained activity-dependent synaptic modifications require protein synthesis. Although proteins can be synthesized locally in dendrites, long-term changes also require nuclear signaling. Amyloid-beta protein precursor intracellular domain-associated protein-1 (AIDA-1), an abundant component of the biochemical postsynaptic density fraction, contains a nuclear localization sequence, making it a plausible candidate for synapse-to-nucleus signaling. We used immunohistochemistry to study the regional, cellular, and subcellular distribution of AIDA-1. Immunostaining was prominent in the hippocampus, cerebral cortex, and neostriatum. Along with diffuse staining of neuropil, fluorescence microscopy revealed immunostaining of excitatory synapses throughout the forebrain, and immunoreactive puncta within and directly outside the nucleus. Presynaptic staining was conspicuous in hippocampal mossy fibers. Electron microscopic analysis of material processed for postembedding immunogold revealed AIDA-1 label within postsynaptic densities in both hippocampus and cortex. Together with previous work, these data suggest that AIDA-1 serves as a direct signaling link between synapses and the nucleus in adult rat brain.
Collapse
Affiliation(s)
- Amanda L Jacob
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
29
|
Giusi G, Facciolo RM, Rende M, Alò R, Di Vito A, Salerno S, Morelli S, De Bartolo L, Drioli E, Canonaco M. Distinct alpha subunits of the GABAA receptor are responsible for early hippocampal silent neuron-related activities. Hippocampus 2010; 19:1103-14. [PMID: 19338020 DOI: 10.1002/hipo.20584] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The modulatory actions of GABA(A) receptor subunits are crucial for morphological and transcriptional neuronal activities. In this study, growth of hamster hippocampal neurons on biohybrid membrane substrates allowed us to show for the first time that the two major GABA(A) alpha receptor subunits (alpha(2,5)) are capable of early neuronal shaping plus expression differences of some of the main neuronal cytoskeletal factors (GAP-43, the neurotrophin--BDNF) and of Gluergic subtypes. In a first case the inverse alpha(5) agonist (RY-080) seemed to account for the reduction of dendritic length at DIV7, very likely via lower BDNF levels. Conversely, the effects of the preferentially specific agonist for hippocampal alpha(2) subunit (flunitrazepam) were, instead, directed at the formation of growth cones at DIV3 in the presence of greatly (P < 0.01) diminished GAP-43 levels as displayed by strongly reduced axonal sprouting. It is interesting to note that concomitantly to these morphological variations, the transcription of some Gluergic receptor subtypes resulted to be altered. In particular, flunitrazepam was responsible for a distinctly rising expression of axonal NR1 mRNA levels from DIV3 (P < 0.01) until DIV7 (P < 0.001), whereas RY-080 evoked a very great (P < 0.001) downregulation of dendritic GluR2 at only DIV7. Together, our results demonstrate that GABA(A) alpha(2,5) receptor-containing subunits by regulating the precise synchronization of cytoskeletal factors are considered key modulating neuronal elements of hippocampal morphological growth features. Moreover, the notable NR1 and GluR2 transcription differences promoted by these GABA(A) alpha subunits tend to favorably corroborate the early role of alpha(2) + alpha(5) on hippocampal neuronal networks in hibernating rodents through the recruitment and activation of silent neurons, and this may provide useful insights regarding molecular neurodegenerative events.
Collapse
Affiliation(s)
- Giuseppina Giusi
- Ecology Department, Comparative Neuroanatomy Laboratory, University of Calabria, Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nitric oxide alters GABAergic synaptic transmission in cultured hippocampal neurons. Brain Res 2009; 1297:23-31. [PMID: 19699726 DOI: 10.1016/j.brainres.2009.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/11/2009] [Accepted: 08/13/2009] [Indexed: 01/23/2023]
Abstract
Nitric oxide (NO) production increases during hypoxia/ischemia-reperfusion in the immature brain and is associated with neurotoxicity. NO at physiologic concentrations has been shown to modulate GABAergic (gamma-aminobutyric acid) synaptic transmission in the adult brain. However, the effects of neurotoxic concentrations of NO (relevant to hypoxia-ischemia) on GABAergic synaptic transmission remain unknown. The present study tests the hypothesis that nNOS is expressed at GABAergic synapses and that exposure to neurotoxic concentrations of NO results in enhanced GABAergic synaptic transmission in cultured hippocampal neurons (days-in-vitro 10-14) prepared from fetal rats. Using double immunocytochemistry techniques, we were able to demonstrate that nNOS is co-localized to both presynaptic and postsynaptic markers of GABAergic synapses. The effects of NO on GABAergic synaptic transmission were then studied using whole cell patch-clamp electrophysiology. Spontaneous and miniature inhibitory postsynaptic currents (sIPSCS and mIPSCs) were recorded prior to and after exposure to 250 microM of the NO donor diethyleneamine/nitric oxide adduct (DETA-NO). Exposure to DETA-NO resulted in increased sIPSCs and mIPSCs frequency, indicating that neurotoxic concentrations of NO enhance GABAergic synaptic transmission in cultured hippocampal neurons. Because GABA synapses appear to be excitatory in the immature brain, this effect may contribute to overall enhanced synaptic transmission and hyperexcitability. We speculate that NO represents one of the mechanisms by which hypoxia-ischemia increases seizure susceptibility in the immature brain.
Collapse
|
31
|
Walther M, Berweck S, Schessl J, Linder-Lucht M, Fietzek UM, Glocker FX, Heinen F, Mall V. Maturation of inhibitory and excitatory motor cortex pathways in children. Brain Dev 2009; 31:562-7. [PMID: 19329268 DOI: 10.1016/j.braindev.2009.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/03/2009] [Accepted: 02/16/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To study intracortical inhibition and facilitation with paired-pulse transcranial magnetic stimulation in children, adolescents and adults. METHODS Paired-pulse transcranial magnetic stimulation (interstimulus intervals (ISI): 1, 3, 5, 10 and 20 ms) was applied over the primary motor cortex (M1) in 30 healthy subjects (range 6-30 years, median age 15 years and 8 months, SD 7,9) divided in three groups: adults (>or=18 years), adolescents (> 10 and < 18 years) and children (<or=10 years). RESULTS We observed significantly less intracortical inhibition (SICI) in children's M1 compared to that of adults. Adolescents showed significantly less SICI at the 5 ms interval than did adults. No significant differences were apparent in intracortical facilitation (ICF). CONCLUSION We postulate that, as in adults, the maturing M1 possesses horizontal glutamatergic cross-links that represent the neuronal substrate of excitatory intracortical pathways. GABAergic interneurons, the neuronal substrate of inhibitory intracortical pathways, mature between childhood and adulthood. Reduced GABAergic inhibition may facilitate neuronal plasticity and motor learning in children.
Collapse
Affiliation(s)
- Michael Walther
- Division of Neuropediatrics and Muscular Disorders, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Age- and gender-related differences in GABAA receptor-mediated postsynaptic currents in GABAergic neurons of the substantia nigra reticulata in the rat. Neuroscience 2009; 163:155-67. [PMID: 19531372 DOI: 10.1016/j.neuroscience.2009.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 06/10/2009] [Accepted: 06/01/2009] [Indexed: 11/21/2022]
Abstract
The responsiveness of the rat anterior substantia nigra pars reticulata (SNR) GABAergic neurons to GABA(A)ergic drugs changes with age and gender, altering its role in seizure control. To determine whether maturational and gender-specific differences in the properties of spontaneous GABA(A)Rs-mediated inhibitory postsynaptic currents (sIPSCs) underlie these events, we studied sIPSCs at baseline and after application of the alpha1 GABA(A)Rs subunit selective agonist zolpidem, at postnatal days (PN) 5-9, PN12-15, and PN28-32. Results were correlated with the alpha1 and alpha 3 GABA(A)Rs subunit immunoreactivity (-ir) at PN5, PN15, and PN30, using immunochemistry. The mean frequency, amplitude and charge transfer increased whereas the 10-90% rise time and decay time accelerated with age in both genders. The faster sIPSC kinetics in older rats were paralleled by increased alpha1-ir and decreased alpha 3-ir. At PN5-9, males had more robust sIPSCs (frequency, amplitude, charge carried per event and charge transfer) than females. At PN28-32, males exhibited higher amplitudes and faster kinetics than females. The zolpidem-induced increase of decay times, amplitude and charge transfer and alpha1-ir expression were the lowest in PN5-9 males but increased with age, in both genders. Our findings demonstrate that alterations in GABA(A)Rs subunit expression partially underlie age- and gender-specific sIPSC changes in SNR neurons. However, the observation of gender differences in sIPSC kinetics that cannot be attributed to changes in perisomatic alpha1 expression suggests the existence of additional gender-specific factors that control the sIPSC kinetics in rat SNR.
Collapse
|
33
|
Yong W, Zhang MM, Wang S, Ruan DY. Effects of sodium valproate on synaptic transmission and neuronal excitability in rat hippocampus. Clin Exp Pharmacol Physiol 2009; 36:1062-7. [PMID: 19413604 DOI: 10.1111/j.1440-1681.2009.05186.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Valproate (VPA) has long been used in the treatment of both generalized and partial seizures. However, its cellular mechanisms of action remain unclear. 2. In the present study, the effects of VPA on synaptic transmission and neuronal excitability were examined in the hippocampal CA1 region using whole-cell patch clamp recordings. 3. Perfusion with VPA, at therapeutically attainable concentrations (i.e. 0.3 and 0.6 mmol/L), significantly increased the frequency (112 +/- 2 and 133 +/- 2% of control, respectively; n = 5; both P < 0.05), but not the average amplitude, of miniature inhibitory post-synaptic currents (mIPSCs). Perfusion with VPA had no effect on either the amplitude or the frequency of miniature excitatory post-synaptic currents (mEPSCs). 4. In acutely dissociated CA1 pyramidal neurons, VPA had no effect on 10 micromol/L GABA-induced currents. Furthermore, following the administration of 0.3 and 0.6 mmol/L VPA, the frequency of action potential firing was significantly reduced from 18.0 +/- 1.1 to 15.3 +/- 0.9 and from 18.6 +/- 0.9 to 12.6 +/- 0.6, respectively (n = 8; both P < 0.05). In contrast, 0.3 and 0.6 mmol/L VPA significantly increased spike frequency adaptation from 4.02 +/- 0.47 to 4.72 +/- 0.55 and from 3.47 +/- 0.41 to 4.48 +/- 0.58, respectively (n = 8; P < 0.05). 5. The results of the present study suggest that VPA presynaptically increases inhibitory synaptic activity without modifying excitatory synaptic transmission and reduces neuronal excitability. Any or all of these effects may contribute to its anticonvulsant action.
Collapse
Affiliation(s)
- Wu Yong
- Department of Neurobiology and Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China
| | | | | | | |
Collapse
|
34
|
Corner MA. Spontaneous neuronal burst discharges as dependent and independent variables in the maturation of cerebral cortex tissue cultured in vitro: a review of activity-dependent studies in live 'model' systems for the development of intrinsically generated bioelectric slow-wave sleep patterns. ACTA ACUST UNITED AC 2008; 59:221-44. [PMID: 18722470 DOI: 10.1016/j.brainresrev.2008.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 08/01/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
A survey is presented of recent experiments which utilize spontaneous neuronal spike trains as dependent and/or independent variables in developing cerebral cortex cultures when synaptic transmission is interfered with for varying periods of time. Special attention is given to current difficulties in selecting suitable preparations for carrying out biologically relevant developmental studies, and in applying spike-train analysis methods with sufficient resolution to detect activity-dependent age and treatment effects. A hierarchy of synchronized nested burst discharges which approximate early slow-wave sleep patterns in the intact organism is established as a stable basis for isolated cortex function. The complexity of reported long- and short-term homeostatic responses to experimental interference with synaptic transmission is reviewed, and the crucial role played by intrinsically generated bioelectric activity in the maturation of cortical networks is emphasized.
Collapse
Affiliation(s)
- Michael A Corner
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Viltono L, Patrizi A, Fritschy JM, Sassoè-Pognetto M. Synaptogenesis in the cerebellar cortex: differential regulation of gephyrin and GABAA receptors at somatic and dendritic synapses of Purkinje cells. J Comp Neurol 2008; 508:579-91. [PMID: 18366064 DOI: 10.1002/cne.21713] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In rodent cerebellar cortex, synaptogenesis occurs entirely postnatally, allowing study of the mechanisms of synapse formation in vivo. Here we monitored the clustering of GABA(A) receptors and the scaffolding protein gephyrin at GABAergic postsynaptic sites during rat cerebellar development. We found that GABA(A) receptors and gephyrin co-aggregate at nascent synapses in the molecular and Purkinje cell layers with a similar time course. With few exceptions, gephyrin and GABA(A) receptor subunits clustered selectively in front of presynaptic boutons expressing the vesicular inhibitory amino acid transporter VIAAT and no ectopic localization of these molecules was observed. Surprisingly, gephyrin clusters outlining the cell body of Purkinje cells were transient, and disappeared rapidly at the end of the second postnatal week. The loss of gephyrin from perisomatic synapses was coincident with a significant reduction in the size of GABA(A) receptor clusters. Furthermore, these changes were accompanied by a developmental decrease in the size of synaptic appositions, as documented by electron microscopy. These findings suggest that gephyrin takes part in the initial assembly of postsynaptic specializations and reveal an unsuspected heterogeneity in the molecular organization of the postsynaptic apparatus at somatic and dendritic synapses of mature Purkinje cells.
Collapse
Affiliation(s)
- Laura Viltono
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, I-10126 Torino, Italy
| | | | | | | |
Collapse
|
36
|
Abstract
It is proposed that a reduced surface expression of GABA(A) receptors (GABARs) contributes to the pathogenesis of status epilepticus (SE), a condition characterized by prolonged seizures. This hypothesis was based on the finding that prolonged epileptiform bursting (repetitive bursts of prolonged depolarizations with superimposed action potentials) in cultures of dissociated hippocampal pyramidal neurons (dissociated cultures) results in the increased intracellular accumulation of GABARs. However, it is not known whether this rapid modification in the surface-expressed GABAR pool results from selective, subunit-dependent or nonselective, subunit-independent internalization of GABARs. In hippocampal slices obtained from animals undergoing prolonged SE (SE-treated slices), we found that the surface expression of the GABAR beta2/3 and gamma2 subunits was reduced, whereas that of the delta subunit was not. Complementary electrophysiological recordings from dentate granule cells in SE-treated slices demonstrated a reduction in GABAR-mediated synaptic inhibition, but not tonic inhibition. A reduction in the surface expression of the gamma2 subunit, but not the delta subunit was also observed in dissociated cultures and organotypic hippocampal slice cultures when incubated in an elevated KCl external medium or an elevated KCl external medium supplemented with NMDA, respectively. Additional studies demonstrated that the reduction in the surface expression of the gamma2 subunit was independent of direct ligand binding of the GABAR. These findings demonstrate that the regulation of surface-expressed GABAR pool during SE is subunit-specific and occurs independent of ligand binding. The differential modulation of the surface expression of GABARs during SE has potential implications for the treatment of this neurological emergency.
Collapse
|
37
|
Glickstein SB, Moore H, Slowinska B, Racchumi J, Suh M, Chuhma N, Ross ME. Selective cortical interneuron and GABA deficits in cyclin D2-null mice. Development 2008; 134:4083-93. [PMID: 17965053 DOI: 10.1242/dev.008524] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In contrast to cyclin D1 nulls (cD1-/-), mice without cyclin D2 (cD2-/-) lack cerebellar stellate interneurons; the reason for this is unknown. In the present study in cortex, we found a disproportionate loss of parvalbumin (PV) interneurons in cD2-/- mice. This selective reduction in PV subtypes was associated with reduced frequency of GABA-mediated inhibitory postsynaptic currents in pyramidal neurons, as measured by voltage-clamp recordings, and increased cortical sharp activity in the EEGs of awake-behaving cD2-/- mice. Cell cycle regulation was examined in the medial ganglionic eminence (MGE), the major source of PV interneurons in mouse brain, and differences between cD2-/- and cD1-/- suggested that cD2 promotes subventricular zone (SVZ) divisions, exerting a stronger inhibitory influence on the p27 Cdk-inhibitor (Cdkn1b) to delay cell cycle exit of progenitors. We propose that cD2 promotes transit-amplifying divisions in the SVZ and that these ensure proper output of at least a subset of PV interneurons.
Collapse
Affiliation(s)
- Sara B Glickstein
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Developmental downregulation of GABAergic drive parallels formation of functional synapses in cultured mouse neocortical networks. Dev Neurobiol 2008; 68:934-49. [DOI: 10.1002/dneu.20632] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Nylen K, Velazquez JLP, Likhodii SS, Cortez MA, Shen L, Leshchenko Y, Adeli K, Gibson KM, Burnham WM, Snead OC. A ketogenic diet rescues the murine succinic semialdehyde dehydrogenase deficient phenotype. Exp Neurol 2007; 210:449-57. [PMID: 18199435 DOI: 10.1016/j.expneurol.2007.11.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH) deficiency is a heritable disorder of GABA degradation characterized by ataxia, psychomotor retardation and seizures. To date, there is no effective treatment for SSADH deficiency. We tested the hypothesis that a ketogenic diet (KD) would improve outcome in an animal model of SSADH deficiency, the SSADH knockout mouse (Aldh5a1-/-). Using a 4:1 ratio of fat to combined carbohydrate and protein KD we set out to compare the general phenotype, in vivo and in vitro electrophysiology and [35S]TBPS binding in both Aldh5a1-/- mice and control (Aldh5a1+/+) mice. We found that the KD prolonged the lifespan of mutant mice by >300% with normalization of ataxia, weight gain and EEG compared to mutants fed a control diet. Aldh5a1-/- mice showed significantly reduced mIPSC frequency in CA1 hippocampal neurons as well as significantly decreased [35S]TBPS binding in all brain areas examined. In KD fed mutants, mIPSC activity normalized and [35S]TBPS binding was restored in the cortex and hippocampus. The KD appears to reverse toward normal the perturbations seen in Aldh5a1-/- mice. Our data suggest that the KD may work in this model by restoring GABAergic inhibition. These data demonstrate a successful experimental treatment for murine SSADH deficiency using a KD, giving promise to the idea that the KD may be successful in the clinical treatment of SSADH deficiency.
Collapse
Affiliation(s)
- Kirk Nylen
- Program in Neuroscience and Mental Health, Hospital for Sick Children, and Department of Pharmacology, University of Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vereyken EJF, Bajova H, Chow S, de Graan PNE, Gruol DL. Chronic interleukin-6 alters the level of synaptic proteins in hippocampus in culture and in vivo. Eur J Neurosci 2007; 25:3605-16. [PMID: 17610580 DOI: 10.1111/j.1460-9568.2007.05615.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is now considerable evidence that the level of expression of the proinflammatory cytokine, interleukin-6 (IL-6), is increased in the central nervous system (CNS) during neuroinflammatory conditions such as occurs in neurological disorders and in disease and injury. However, our understanding of the consequences of increased expression of IL-6 on the CNS is still limited, especially with respect to the developing nervous system, which is known to be particularly vulnerable to environmental factors. To address this issue, we investigated the properties of cultured hippocampal neurons exposed chronically to IL-6 during the main period of morphological and physiological development, which occurs during the first 2 weeks of culture. IL-6 was tested at 500 U/mL, considered to reflect a pathophysiologic concentration. The morphological features of neuronal development in the control and IL-6-treated cultures appeared similar. However, Western blot analysis showed a significant reduction in the level of Group-II metabotropic receptors (mGluR2/3) and L-type Ca(2+) channels in the IL-6-treated cultures. A similar reduction in mGluR2/3 and L-type Ca(2+) channel protein was observed in transgenic mice that over-express IL-6 in the CNS through astrocyte production starting early in development. Analysis of Ca(2+) signals produced by spontaneous synaptic network activity in the hippocampal cultures and effects of a mGluR2/3 agonist and antagonist showed that the reduced levels of mGluR2/3 impact on the functional properties of hippocampal synaptic network activity. These results have important implications relative to the mechanisms responsible for altered CNS function during conditions associated with increased levels of IL-6 in the CNS.
Collapse
Affiliation(s)
- Elly J F Vereyken
- Department Pharmacology & Anatomy, Rudolf Magnus Institute of Neuroscience, UMCU, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Tan J, Rüttiger L, Panford-Walsh R, Singer W, Schulze H, Kilian SB, Hadjab S, Zimmermann U, Köpschall I, Rohbock K, Knipper M. Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg3.1/arc in auditory neurons following acoustic trauma. Neuroscience 2007; 145:715-26. [PMID: 17275194 DOI: 10.1016/j.neuroscience.2006.11.067] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 11/28/2006] [Accepted: 11/30/2006] [Indexed: 12/24/2022]
Abstract
The molecular changes following sensory trauma and the subsequent response of the CNS are poorly understood. We focused on finding a molecular tool for monitoring the features of excitability which occur following acoustic trauma to the auditory system. Of particular interest are genes that alter their expression pattern during activity-induced changes in synaptic efficacy and plasticity. The expression of brain-derived neurotrophic factor (BDNF), the activity-dependent cytoskeletal protein (Arg3.1/arc), and the immediate early gene c-Fos were monitored in the peripheral and central auditory system hours and days following a traumatic acoustic stimulus that induced not only hearing loss but also phantom auditory perception (tinnitus), as shown in rodent animal behavior models. A reciprocal responsiveness of activity-dependent genes became evident between the periphery and the primary auditory cortex (AI): as c-Fos and BDNF exon IV expression was increased in spiral ganglion neurons, Arg3.1/arc and (later on) BDNF exon IV expression was reduced in AI. In line with studies indicating increased spontaneous spike activity at the level of the inferior colliculus (IC), an increase in BDNF and GABA-positive neurons was seen in the IC. The data clearly indicate the usefulness of Arg3.1/arc and BDNF for monitoring trauma-induced activity changes and the associated putative plasticity responses in the auditory system.
Collapse
Affiliation(s)
- J Tan
- University of Tübingen, Department of Otorhinolaryngology, Hearing Research Center Tübingen, Molecular Neurobiology, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Maximov A, Pang ZP, Tervo DGR, Südhof TC. Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation. J Neurosci Methods 2006; 161:75-87. [PMID: 17118459 DOI: 10.1016/j.jneumeth.2006.10.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/10/2006] [Accepted: 10/11/2006] [Indexed: 12/23/2022]
Abstract
Various techniques have been applied for the functional analysis of synaptic transmission in cultured neurons. Here, we describe a method of studying synaptic transmission in neurons cultured at high-density from different brain regions such as the cortex, striatum and spinal cord. We use postsynaptic whole-cell recordings to monitor synaptic currents triggered by presynaptic action potentials that are induced by brief stimulations with a nearby extracellular bipolar electrode. Pharmacologically isolated excitatory or inhibitory postsynaptic currents can be reliably induced, with amplitudes, synaptic charge transfers, and short-term plasticity properties that are reproducible from culture to culture. We show that the size and kinetics of pharmacologically isolated inhibitory postsynaptic currents triggered by single action potentials or stimulus trains depend on the Ca2+ concentration, temperature and stimulation frequency. This method can be applied to study synaptic transmission in wildtype neurons infected with lentiviruses encoding various components of presynaptic release machinery, or in neurons from genetically modified mice, for example neurons carrying floxed genes in which gene expression can be acutely ablated by expression of Cre recombinase. The preparation described in this paper should be useful for analysis of synaptic transmission in inter-neuronal synapses formed by different types of neurons.
Collapse
Affiliation(s)
- Anton Maximov
- Center for Basic Neuroscience, Department of Molecular Genetics, 6000 Harry Hines Blvd. Dallas, TX 75390-9111, USA
| | | | | | | |
Collapse
|
43
|
Swanwick CC, Murthy NR, Kapur J. Activity-dependent scaling of GABAergic synapse strength is regulated by brain-derived neurotrophic factor. Mol Cell Neurosci 2005; 31:481-92. [PMID: 16330218 PMCID: PMC2842119 DOI: 10.1016/j.mcn.2005.11.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/17/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022] Open
Abstract
The homeostatic plasticity hypothesis suggests that neuronal activity scales synaptic strength. This study analyzed effects of activity deprivation on GABAergic synapses in cultured hippocampal neurons using patch clamp electrophysiology to record mIPSCs and immunocytochemistry to visualize presynaptic GAD-65 and the gamma2 subunit of the GABA(A) receptor. When neural activity was blocked for 48 h with tetrodotoxin (TTX, 1 microM), the amplitude of mIPSCs was reduced, corresponding with diminished sizes of GAD-65 puncta and gamma2 clusters. Treatment with the NMDA receptor antagonist APV (50 microM) or the AMPA receptor antagonist DNQX (20 microM) mimicked these effects, and co-application of brain-derived neurotrophic factor (BDNF, 100 ng/mL) overcame them. Moreover, when neurons were treated with BDNF alone for 48 h, these effects were reversed via the TrkB receptor. Overall, these results suggest that activity-dependent scaling of inhibitory synaptic strength can be modulated by BDNF/TrkB-mediated signaling.
Collapse
|