1
|
Hours CM, Gil S, Gressens P. Molecular and Cellular Insights: A Focus on Glycans and the HNK1 Epitope in Autism Spectrum Disorder. Int J Mol Sci 2023; 24:15139. [PMID: 37894820 PMCID: PMC10606426 DOI: 10.3390/ijms242015139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a synaptic disorder with a GABA/glutamate imbalance in the perineuronal nets and structural abnormalities such as increased dendritic spines and decreased long distance connections. Specific pregnancy disorders significantly increase the risk for an ASD phenotype such as preeclampsia, preterm birth, hypoxia phenomena, and spontaneous miscarriages. They are associated with defects in the glycosylation-immune placental processes implicated in neurogenesis. Some glycans epitopes expressed in the placenta, and specifically in the extra-villous trophoblast also have predominant functions in dendritic process and synapse function. Among these, the most important are CD57 or HNK1, CD22, CD24, CD33 and CD45. They modulate the innate immune cells at the maternal-fetal interface and they promote foeto-maternal tolerance. There are many glycan-based pathways of immunosuppression. N-glycosylation pathway dysregulation has been found to be associated with autoimmune-like phenotypes and maternal-autoantibody-related (MAR) autism have been found to be associated with central, systemic and peripheric autoimmune processes. Essential molecular pathways associated with the glycan-epitopes expression have been found to be specifically dysregulated in ASD, notably the Slit/Robo, Wnt, and mTOR/RAGE signaling pathways. These modifications have important effects on major transcriptional pathways with important genetic expression consequences. These modifications lead to defects in neuronal progenitors and in the nervous system's implementation specifically, with further molecular defects in the GABA/glutamate system. Glycosylation placental processes are crucial effectors for proper maternofetal immunity and endocrine/paracrine pathways formation. Glycans/ galectins expression regulate immunity and neurulation processes with a direct link with gene expression. These need to be clearly elucidated in ASD pathophysiology.
Collapse
Affiliation(s)
- Camille M Hours
- INSERM 1141, NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, 75019 Paris, France
- Service de Psychiatrie de l'Enfant et de l'Adolescent, APHP, Hôpital Robert Debré, 75019 Paris, France
| | - Sophie Gil
- INSERM 1144, Therapeutics in Neuropsychopharmacology, Université Paris Cité, 75019 Paris, France
| | - Pierre Gressens
- INSERM 1141, NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, 75019 Paris, France
- Neurologie Pédiatrique, APHP, Hôpital Robert Debré, 75019 Paris, France
| |
Collapse
|
2
|
Roll L, Lessmann K, Brüstle O, Faissner A. Cerebral Organoids Maintain the Expression of Neural Stem Cell-Associated Glycoepitopes and Extracellular Matrix. Cells 2022; 11:cells11050760. [PMID: 35269382 PMCID: PMC8909158 DOI: 10.3390/cells11050760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
During development, the nervous system with its highly specialized cell types forms from a pool of relatively uniform stem cells. This orchestrated process requires tight regulation. The extracellular matrix (ECM) is a complex network rich in signaling molecules, and therefore, of interest in this context. Distinct carbohydrate structures, bound to ECM molecules like Tenascin C (TNC), are associated with neural stem/progenitor cells. We have analyzed the expression patterns of the LewisX (LeX) trisaccharide motif and of the sulfation-dependent DSD-1 chondroitin sulfate glycosaminoglycan epitope in human cerebral organoids, a 3D model for early central nervous system (CNS) development, immunohistochemically. In early organoids we observed distinct expression patterns of the glycoepitopes, associated with rosette-like structures that resemble the neural tube in vitro: Terminal LeX motifs, recognized by the monoclonal antibody (mAb) 487LeX, were enriched in the lumen and at the outer border of neural rosettes. In contrast, internal LeX motif repeats detected with mAb 5750LeX were concentrated near the lumen. The DSD-1 epitope, labeled with mAb 473HD, was detectable at rosette borders and in adjacent cells. The epitope expression was maintained in older organoids but appeared more diffuse. The differential glycoepitope expression suggests a specific function in the developing human CNS.
Collapse
Affiliation(s)
- Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Katrin Lessmann
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
- Correspondence: ; Tel.: +49-(0)234-32-28851
| |
Collapse
|
3
|
Wiemann S, Yousf A, Joachim SC, Peters C, Mueller-Buehl AM, Wagner N, Reinhard J. Knock-Out of Tenascin-C Ameliorates Ischemia-Induced Rod-Photoreceptor Degeneration and Retinal Dysfunction. Front Neurosci 2021; 15:642176. [PMID: 34093110 PMCID: PMC8172977 DOI: 10.3389/fnins.2021.642176] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Retinal ischemia is a common pathomechanism in various eye diseases. Recently, evidence accumulated suggesting that the extracellular matrix (ECM) glycoprotein tenascin-C (Tnc) plays a key role in ischemic degeneration. However, the possible functional role of Tnc in retinal ischemia is not yet known. The aim of our study was to explore retinal function and rod-bipolar/photoreceptor cell degeneration in wild type (WT) and Tnc knock-out (KO) mice after ischemia/reperfusion (I/R) injury. Therefore, I/R was induced by increasing intraocular pressure in the right eye of wild type (WT I/R) and Tnc KO (KO I/R) mice. The left eye served as untreated control (WT CO and KO CO). Scotopic electroretinogram (ERG) recordings were performed to examine rod-bipolar and rod-photoreceptor cell function. Changes of Tnc, rod-bipolar cells, photoreceptors, retinal structure and apoptotic and synaptic alterations were analyzed by immunohistochemistry, Hematoxylin and Eosin staining, Western blot, and quantitative real time PCR. We found increased Tnc protein levels 3 days after ischemia, while Tnc immunoreactivity decreased after 7 days. Tnc mRNA expression was comparable in the ischemic retina. ERG measurements after 7 days showed lower a-/b-wave amplitudes in both ischemic groups. Nevertheless, the amplitudes in the KO I/R group were higher than in the WT I/R group. We observed retinal thinning in WT I/R mice after 3 and 7 days. Although compared to the KO CO group, retinal thinning was not observed in the KO I/R group until 7 days. The number of PKCα+ rod-bipolar cells, recoverin+ photoreceptor staining and Prkca and Rcvrn expression were comparable in all groups. However, reduced rhodopsin protein as well as Rho and Gnat1 mRNA expression levels of rod-photoreceptors were found in the WT I/R, but not in the KO I/R retina. Additionally, a lower number of activated caspase 3+ cells was observed in the KO I/R group. Finally, both ischemic groups displayed enhanced vesicular glutamate transporter 1 (vGlut1) levels. Collectively, KO mice showed diminished rod-photoreceptor degeneration and retinal dysfunction after I/R. Elevated vGlut1 levels after ischemia could be related to an impaired glutamatergic photoreceptor-bipolar cell signaling and excitotoxicity. Our study provides novel evidence that Tnc reinforces ischemic retinal degeneration, possibly by synaptic remodeling.
Collapse
Affiliation(s)
- Susanne Wiemann
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Aisha Yousf
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Carolin Peters
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Ana M Mueller-Buehl
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Natalie Wagner
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Extracellular Matrix Remodeling in the Retina and Optic Nerve of a Novel Glaucoma Mouse Model. BIOLOGY 2021; 10:biology10030169. [PMID: 33668263 PMCID: PMC7996343 DOI: 10.3390/biology10030169] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Glaucoma is a leading cause of blindness worldwide, and increased age and intraocular pressure (IOP) are the major risk factors. Glaucoma is characterized by the death of nerve cells and the loss of optic nerve fibers. Recently, evidence has accumulated indicating that proteins in the environment of nerve cells, called the extracellular matrix (ECM), play an important role in glaucomatous neurodegeneration. Depending on its constitution, the ECM can influence either the survival or the death of nerve cells. Thus, the aim of our study was to comparatively explore alterations of various ECM molecules in the retina and optic nerve of aged control and glaucomatous mice with chronic IOP elevation. Interestingly, we observed elevated levels of blood vessel and glial cell-associated ECM components in the glaucomatous retina and optic nerve, which could be responsible for various pathological processes. A better understanding of the underlying signaling mechanisms may help to develop new diagnostic and therapeutic strategies for glaucoma patients. Abstract Glaucoma is a neurodegenerative disease that is characterized by the loss of retinal ganglion cells (RGC) and optic nerve fibers. Increased age and intraocular pressure (IOP) elevation are the main risk factors for developing glaucoma. Mice that are heterozygous (HET) for the mega-karyocyte protein tyrosine phosphatase 2 (PTP-Meg2) show chronic and progressive IOP elevation, severe RGCs loss, and optic nerve damage, and represent a valuable model for IOP-dependent primary open-angle glaucoma (POAG). Previously, evidence accumulated suggesting that glaucomatous neurodegeneration is associated with the extensive remodeling of extracellular matrix (ECM) molecules. Unfortunately, little is known about the exact ECM changes in the glaucomatous retina and optic nerve. Hence, the goal of the present study was to comparatively explore ECM alterations in glaucomatous PTP-Meg2 HET and control wild type (WT) mice. Due to their potential relevance in glaucomatous neurodegeneration, we specifically analyzed the expression pattern of the ECM glycoproteins fibronectin, laminin, tenascin-C, and tenascin-R as well as the proteoglycans aggrecan, brevican, and members of the receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) family. The analyses were carried out in the retina and optic nerve of glaucomatous PTP-Meg2 HET and WT mice using quantitative real-time PCR (RT-qPCR), immunohistochemistry, and Western blot. Interestingly, we observed increased fibronectin and laminin levels in the glaucomatous HET retina and optic nerve compared to the WT group. RT-qPCR analyses of the laminins α4, β2 and γ3 showed an altered isoform-specific regulation in the HET retina and optic nerve. In addition, an upregulation of tenascin-C and its interaction partner RPTPβ/ζ/phosphacan was found in glaucomatous tissue. However, comparable protein and mRNA levels for tenascin-R as well as aggrecan and brevican were observed in both groups. Overall, our study showed a remodeling of various ECM components in the glaucomatous retina and optic nerve of PTP-Meg2 HET mice. This dysregulation could be responsible for pathological processes such as neovascularization, inflammation, and reactive gliosis in glaucomatous neurodegeneration.
Collapse
|
5
|
Wiemann S, Reinhard J, Reinehr S, Cibir Z, Joachim SC, Faissner A. Loss of the Extracellular Matrix Molecule Tenascin-C Leads to Absence of Reactive Gliosis and Promotes Anti-inflammatory Cytokine Expression in an Autoimmune Glaucoma Mouse Model. Front Immunol 2020; 11:566279. [PMID: 33162981 PMCID: PMC7581917 DOI: 10.3389/fimmu.2020.566279] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023] Open
Abstract
Previous studies demonstrated that retinal damage correlates with a massive remodeling of extracellular matrix (ECM) molecules and reactive gliosis. However, the functional significance of the ECM in retinal neurodegeneration is still unknown. In the present study, we used an intraocular pressure (IOP) independent experimental autoimmune glaucoma (EAG) mouse model to examine the role of the ECM glycoprotein tenascin-C (Tnc). Wild type (WT ONA) and Tnc knockout (KO ONA) mice were immunized with an optic nerve antigen (ONA) homogenate and control groups (CO) obtained sodium chloride (WT CO, KO CO). IOP was measured weekly and electroretinographies were recorded at the end of the study. Ten weeks after immunization, we analyzed retinal ganglion cells (RGCs), glial cells, and the expression of different cytokines in retina and optic nerve tissue in all four groups. IOP and retinal function were comparable in all groups. Although RGC loss was less severe in KO ONA, WT as well as KO mice displayed a significant cell loss after immunization. Compared to KO ONA, less βIII-tubulin+ axons, and downregulated oligodendrocyte markers were noted in WT ONA optic nerves. In retina and optic nerve, we found an enhanced GFAP+ staining area of astrocytes in immunized WT. A significantly higher number of retinal Iba1+ microglia was found in WT ONA, while a lower number of Iba1+ cells was observed in KO ONA. Furthermore, an increased expression of the glial markers Gfap, Iba1, Nos2, and Cd68 was detected in retinal and optic nerve tissue of WT ONA, whereas comparable levels were observed in KO ONA. In addition, pro-inflammatory Tnfa expression was upregulated in WT ONA, but downregulated in KO ONA. Vice versa, a significantly increased anti-inflammatory Tgfb1 expression was measured in KO ONA animals. We conclude that Tnc plays an important role in glial and inflammatory response during retinal neurodegeneration. Our results provide evidence that Tnc is involved in glaucomatous damage by regulating retinal glial activation and cytokine release. Thus, this transgenic EAG mouse model for the first time offers the possibility to investigate IOP-independent glaucomatous damage in direct relation to ECM remodeling.
Collapse
Affiliation(s)
- Susanne Wiemann
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr University Bochum, Bochum, Germany
| | - Zülal Cibir
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Reinhard J, Wagner N, Krämer MM, Jarocki M, Joachim SC, Dick HB, Faissner A, Kakkassery V. Expression Changes and Impact of the Extracellular Matrix on Etoposide Resistant Human Retinoblastoma Cell Lines. Int J Mol Sci 2020; 21:ijms21124322. [PMID: 32560557 PMCID: PMC7352646 DOI: 10.3390/ijms21124322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Retinoblastoma (RB) represents the most common malignant childhood eye tumor worldwide. Several studies indicate that the extracellular matrix (ECM) plays a crucial role in tumor growth and metastasis. Moreover, recent studies indicate that the ECM composition might influence the development of resistance to chemotherapy drugs. The objective of this study was to evaluate possible expression differences in the ECM compartment of the parental human cell lines WERI-RB1 (retinoblastoma 1) and Y79 and their Etoposide resistant subclones via polymerase chain reaction (PCR). Western blot analyses were performed to analyze protein levels. To explore the influence of ECM molecules on RB cell proliferation, death, and cluster formation, WERI-RB1 and resistant WERI-ETOR cells were cultivated on Fibronectin, Laminin, Tenascin-C, and Collagen IV and analyzed via time-lapse video microscopy as well as immunocytochemistry. We revealed a significantly reduced mRNA expression of the proteoglycans Brevican, Neurocan, and Versican in resistant WERI-ETOR compared to sensitive WERI-RB1 cells. Also, for the glycoproteins α1-Laminin, Fibronectin, Tenascin-C, and Tenascin-R as well as Collagen IV, reduced expression levels were observed in WERI-ETOR. Furthermore, a downregulation was detected for the matrix metalloproteinases MMP2, MMP7, MMP9, the tissue-inhibitor of metalloproteinase TIMP2, the Integrin receptor subunits ITGA4, ITGA5 and ITGB1, and all receptor protein tyrosine phosphatase β/ζ isoforms. Downregulation of Brevican, Collagen IV, Tenascin-R, MMP2, TIMP2, and ITGA5 was also verified in Etoposide resistant Y79 cells compared to sensitive ones. Protein levels of Tenascin-C and MMP-2 were comparable in both WERI cell lines. Interestingly, Fibronectin displayed an apoptosis-inducing effect on WERI-RB1 cells, whereas an anti-apoptotic influence was observed for Tenascin-C. Conversely, proliferation of WERI-ETOR cells was enhanced on Tenascin-C, while an anti-proliferative effect was observed on Fibronectin. In WERI-ETOR, cluster formation was decreased on the substrates Collagen IV, Fibronectin, and Tenascin-C. Collectively, we noted a different ECM mRNA expression and behavior of Etoposide resistant compared to sensitive RB cells. These findings may indicate a key role of ECM components in chemotherapy resistance formation of RB.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
- Correspondence: (J.R.); (V.K.); Tel.: +49-234-32-24-314 (J.R.); +49-451-500-43911 (V.K.); Fax: +49-234-32-143-13 (J.R.); +49-451-500-43914 (V.K.)
| | - Natalie Wagner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Miriam M. Krämer
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Marvin Jarocki
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Vinodh Kakkassery
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
- Department of Ophthalmology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
- Correspondence: (J.R.); (V.K.); Tel.: +49-234-32-24-314 (J.R.); +49-451-500-43911 (V.K.); Fax: +49-234-32-143-13 (J.R.); +49-451-500-43914 (V.K.)
| |
Collapse
|
7
|
Cui R, Lwigale P. Expression of the heparin-binding growth factors Midkine and pleiotrophin during ocular development. Gene Expr Patterns 2019; 32:28-37. [PMID: 30825522 DOI: 10.1016/j.gep.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Midkine (MDK) and Pleiotrophin (PTN) belong to a group of heparin-binding growth factors that has been shown to have pleiotropic functions in various biological processes during development and disease. Development of the vertebrate eye is a multistep process that involves coordinated interactions between neuronal and non-neuronal cells, but very little is known about the potential function of MDK and PTN in these processes. In this study, we demonstrate by section in situ hybridization, the spatiotemporal expression of MDK and PTN during ocular development in chick and mouse. We show that MDK and PTN are expressed in dynamic patterns that overlap in a few non-neuronal tissues in the anterior eye and in neuronal cell layers of the posterior eye. We show that the expression patterns of MDK and PTN are only conserved in a few tissues in chick and mouse but they overlap with the expression of some of their receptors LRP1, RPTPZ, ALK, NOTCH2, ITGβ1, SDC1, and SDC3. The dynamic expression patterns of MDK, PTN and their receptors suggest that they function together during the multistep process of ocular development and they may play important roles in cell proliferation, adhesion, and migration of neuronal and non-neuronal cells.
Collapse
Affiliation(s)
- Ruda Cui
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Peter Lwigale
- Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
8
|
Reinhard J, Roll L, Faissner A. Tenascins in Retinal and Optic Nerve Neurodegeneration. Front Integr Neurosci 2017; 11:30. [PMID: 29109681 PMCID: PMC5660115 DOI: 10.3389/fnint.2017.00030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/03/2017] [Indexed: 02/04/2023] Open
Abstract
Tenascins represent key constituents of the extracellular matrix (ECM) with major impact on central nervous system (CNS) development. In this regard, several studies indicate that they play a crucial role in axonal growth and guidance, synaptogenesis and boundary formation. These functions are not only important during development, but also for regeneration under several pathological conditions. Additionally, tenascin-C (Tnc) represents a key modulator of the immune system and inflammatory processes. In the present review article, we focus on the function of Tnc and tenascin-R (Tnr) in the diseased CNS, specifically after retinal and optic nerve damage and degeneration. We summarize the current view on both tenascins in diseases such as glaucoma, retinal ischemia, age-related macular degeneration (AMD) or diabetic retinopathy. In this context, we discuss their expression profile, possible functional relevance, remodeling of the interacting matrisome and tenascin receptors, especially under pathological conditions.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
9
|
Faissner A, Roll L, Theocharidis U. Tenascin-C in the matrisome of neural stem and progenitor cells. Mol Cell Neurosci 2017; 81:22-31. [DOI: 10.1016/j.mcn.2016.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/16/2023] Open
|
10
|
Ischemic injury leads to extracellular matrix alterations in retina and optic nerve. Sci Rep 2017; 7:43470. [PMID: 28262779 PMCID: PMC5338032 DOI: 10.1038/srep43470] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/25/2017] [Indexed: 01/10/2023] Open
Abstract
Retinal ischemia occurs in a variety of eye diseases. Restrained blood flow induces retinal damage, which leads to progressive optic nerve degeneration and vision loss. Previous studies indicate that extracellular matrix (ECM) constituents play an important role in complex tissues, such as retina and optic nerve. They have great impact on de- and regeneration processes and represent major candidates of central nervous system glial scar formation. Nevertheless, the importance of the ECM during ischemic retina and optic nerve neurodegeneration is not fully understood yet. In this study, we analyzed remodeling of the extracellular glycoproteins fibronectin, laminin, tenascin-C and tenascin-R and the chondroitin sulfate proteoglycans (CSPGs) aggrecan, brevican and phosphacan/RPTPβ/ζ in retinae and optic nerves of an ischemia/reperfusion rat model via quantitative real-time PCR, immunohistochemistry and Western blot. A variety of ECM constituents were dysregulated in the retina and optic nerve after ischemia. Regarding fibronectin, significantly elevated mRNA and protein levels were observed in the retina following ischemia, while laminin and tenascin-C showed enhanced immunoreactivity in the optic nerve after ischemia. Interestingly, CSPGs displayed significantly increased expression levels in the optic nerve. Our study demonstrates a dynamic expression of ECM molecules following retinal ischemia, which strengthens their regulatory role during neurodegeneration.
Collapse
|
11
|
Reinehr S, Reinhard J, Wiemann S, Stute G, Kuehn S, Woestmann J, Dick HB, Faissner A, Joachim SC. Early remodelling of the extracellular matrix proteins tenascin-C and phosphacan in retina and optic nerve of an experimental autoimmune glaucoma model. J Cell Mol Med 2016; 20:2122-2137. [PMID: 27374750 PMCID: PMC5082392 DOI: 10.1111/jcmm.12909] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/19/2016] [Indexed: 12/17/2022] Open
Abstract
Glaucoma is characterized by the loss of retinal ganglion cells (RGCs) and optic nerve fibres. Previous studies noted fewer RGCs after immunization with ocular antigens at 28 days. It is known that changes in extracellular matrix (ECM) components conduct retina and optic nerve degeneration. Here, we focused on the remodelling of tenascin‐C and phosphacan/receptor protein tyrosine phosphatase β/ζ in an autoimmune glaucoma model. Rats were immunized with optic nerve homogenate (ONA) or S100B protein (S100). Controls received sodium chloride (Co). After 14 days, no changes in RGC number were noted in all groups. An increase in GFAPmRNA expression was observed in the S100 group, whereas no alterations were noted via immunohistochemistry in both groups. Extracellular matrix remodelling was analyzed after 3, 7, 14 and 28 days. Tenascin‐C and 473HD immunoreactivity in retinae and optic nerves was unaltered in both immunized groups at 3 days. At 7 days, tenascin‐C staining increased in both tissues in the ONA group. Also, in the optic nerves of the S100 group, an intense tenascin‐C staining could be shown. In the retina, an increased tenascin‐C expression was also observed in ONA animals via Western blot. 473HD immunoreactivity was elevated in the ONA group in both tissues and in the S100 optic nerves at 7 days. At 14 days, tenascin‐C and 473HD immunoreactivity was up‐regulated in the ONA retinae, whereas phosphacan expression was up‐regulated in both groups. We conclude that remodelling of tenascin‐C and phosphacan occurred shortly after immunization, already before RGC loss. We assume that both ECM molecules represent early indicators of neurodegeneration.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Susanne Wiemann
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Gesa Stute
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Julia Woestmann
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany.
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
12
|
Faissner A, Reinhard J. The extracellular matrix compartment of neural stem and glial progenitor cells. Glia 2015; 63:1330-49. [DOI: 10.1002/glia.22839] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| |
Collapse
|
13
|
Reinhard J, Joachim SC, Faissner A. Extracellular matrix remodeling during retinal development. Exp Eye Res 2015; 133:132-40. [DOI: 10.1016/j.exer.2014.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
|
14
|
The guanine nucleotide exchange factor Vav3 regulates differentiation of progenitor cells in the developing mouse retina. Cell Tissue Res 2014; 359:423-440. [PMID: 25501893 DOI: 10.1007/s00441-014-2050-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
The seven main cell types in the mammalian retina arise from multipotent retinal progenitor cells, a process that is tightly regulated by intrinsic and extrinsic signals. However, the molecular mechanisms that control proliferation, differentiation and cell-fate decisions of retinal progenitor cells are not fully understood yet. Here, we report that the guanine nucleotide exchange factor Vav3, a regulator of Rho-GTPases, is involved in retinal development. We demonstrate that Vav3 is expressed in the mouse retina during the embryonic period. In order to study the role of Vav3 in the developing retina, we generate Vav3-deficient mice. The loss of Vav3 results in an accelerated differentiation of retinal ganglion cells and cone photoreceptors during early and late embryonic development. We provide evidence that more retinal progenitor cells express the late progenitor marker Sox9 in Vav3-deficient mice than in wild-types. This premature differentiation is compensated during the postnatal period and late-born cell types such as bipolar cells and Müller glia display normal numbers. Taken together, our data imply that Vav3 is a regulator of retinal progenitor cell differentiation, thus highlighting a novel role for guanine nucleotide exchange factors in retinogenesis.
Collapse
|
15
|
Gramage E, Li J, Hitchcock P. The expression and function of midkine in the vertebrate retina. Br J Pharmacol 2014; 171:913-23. [PMID: 24460673 PMCID: PMC3925030 DOI: 10.1111/bph.12495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/20/2022] Open
Abstract
The functional role of midkine during development, following injury and in disease has been studied in a variety of tissues. In this review, we summarize what is known about midkine in the vertebrate retina, focusing largely on recent studies utilizing the zebrafish (Danio rerio) as an animal model. Zebrafish are a valuable animal model for studying the retina, due to its very rapid development and amazing ability for functional neuronal regeneration following neuronal cell death. The zebrafish genome harbours two midkine paralogues, midkine-a (mdka) and midkine-b (mdkb), which, during development, are expressed in nested patterns among different cell types. mdka is expressed in the retinal progenitors and mdkb is expressed in newly post-mitotic cells. Interestingly, studies of loss-and gain-of-function in zebrafish larvae indicate that midkine-a regulates cell cycle kinetics. Moreover, both mdka and mdkb are expressed in different cell types in the normal adult zebrafish retina, but after light-induced death of photoreceptors, both are up-regulated and expressed in proliferating Müller glia and photoreceptor progenitors, suggesting an important and (perhaps) coincident role for these cytokines during stem cell-based neuronal regeneration. Based on its known role in other tissues and the expression and function of the midkine paralogues in the zebrafish retina, we propose that midkine has an important functional role both during development and regeneration in the retina. Further studies are needed to understand this role and the mechanisms that underlie it.
Collapse
Affiliation(s)
- E Gramage
- Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
16
|
Roll L, Faissner A. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage. Front Cell Neurosci 2014; 8:219. [PMID: 25191223 PMCID: PMC4137450 DOI: 10.3389/fncel.2014.00219] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/18/2014] [Indexed: 01/07/2023] Open
Abstract
The limited regeneration capacity of the adult central nervous system (CNS) requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation. In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP) and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo. As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM), a complex network that contains numerous signaling molecules. It appears that signals in the damaged CNS lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C (TN-C). Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section.
Collapse
Affiliation(s)
- Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr-University Bochum Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
17
|
Beller JA, Kulengowski B, Kobraei EM, Curinga G, Calulot CM, Bahrami A, Hering TM, Snow DM. Comparison of sensory neuron growth cone and filopodial responses to structurally diverse aggrecan variants, in vitro. Exp Neurol 2013; 247:143-57. [PMID: 23458191 DOI: 10.1016/j.expneurol.2013.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/06/2013] [Accepted: 02/18/2013] [Indexed: 12/20/2022]
Abstract
Following spinal cord injury, a regenerating neurite encounters a glial scar enriched in chondroitin sulfate proteoglycans (CSPGs), which presents a major barrier. There are two points at which a neurite makes contact with glial scar CSPGs: initially, filopodia surrounding the growth cone extend and make contact with CSPGs, then the peripheral domain of the entire growth cone makes CSPG contact. Aggrecan is a CSPG commonly used to model the effect CSPGs have on elongating or regenerating neurites. In this study, we investigated filopodia and growth cone responses to contact with structurally diverse aggrecan variants using the common stripe assay. Using time-lapse imaging with 15-s intervals, we measured growth cone area, growth cone width, growth cone length, filopodia number, total filopodia length, and the length of the longest filopodia following contact with aggrecan. Responses were measured after both filopodia and growth cone contact with five different preparations of aggrecan: two forms of aggrecan derived from bovine articular cartilage (purified and prepared using different techniques), recombinant aggrecan lacking chondroitin sulfate side chains (produced in CHO-745 cells) and two additional recombinant aggrecan preparations with varying lengths of chondroitin sulfate side chains (produced in CHO-K1 and COS-7 cells). Responses in filopodia and growth cone behavior differed between the structurally diverse aggrecan variants. Mutant CHO-745 aggrecan (lacking chondroitin sulfate chains) permitted extensive growth across the PG stripe. Filopodia contact with the CHO-745 aggrecan caused a significant increase in growth cone width and filopodia length (112.7% ± 4.9 and 150.9% ± 7.2 respectively, p<0.05), and subsequently upon growth cone contact, growth cone width remained elevated along with a reduction in filopodia number (121.9% ± 4.2; 72.39% ± 6.4, p<0.05). COS-7 derived aggrecan inhibited neurite outgrowth following growth cone contact. Filopodia contact produced an increase in growth cone area and width (126.5% ± 8.1; 150.3% ± 13.31, p<0.001), and while these parameters returned to baseline upon growth cone contact, a reduction in filopodia number and length was observed (73.94% ± 5.8, 75.3% ± 6.2, p<0.05). CHO-K1 derived aggrecan inhibited neurite outgrowth following filopodia contact, and caused an increase in growth cone area and length (157.6% ± 6.2; 117.0% ± 2.8, p<0.001). Interestingly, the two bovine articular cartilage aggrecan preparations differed in their effects on neurite outgrowth. The proprietary aggrecan (BA I, Sigma-Aldrich) inhibited neurites at the point of growth cone contact, while our chemically purified aggrecan (BA II) inhibited neurite outgrowth at the point of filopodia contact. BA I caused a reduction in growth cone width following filopodia contact (91.7% ± 2.5, p<0.05). Upon growth cone contact, there was a further reduction in growth cone width and area (66.4% ± 2.2; 75.6% ± 2.9; p<0.05), as well as reductions in filopodia number, total length, and max length (75.9% ± 5.7, p<0.05; 68.8% ± 6.0; 69.6% ± 3.5, p<0.001). Upon filopodia contact, BA II caused a significant increase in growth cone area, and reductions in filopodia number and total filopodia length (115.9% ± 5.4, p<0.05; 72.5% ± 2.7; 77.7% ± 3.2, p<0.001). In addition, filopodia contact with BA I caused a significant reduction in growth cone velocity (38.6 nm/s ± 1.3 before contact, 17.1 nm/s ± 3.6 after contact). These data showed that neuron morphology and behavior are differentially dependent upon aggrecan structure. Furthermore, the behavioral changes associated with the approaching growth cone may be predictive of inhibition or growth.
Collapse
Affiliation(s)
- Justin A Beller
- Spinal Cord and Brain Injury Research Center, and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Expression and localization of receptor protein tyrosine phosphatase β and its ligand pleiotrophin in the submandibular gland of mice. Arch Oral Biol 2013; 58:181-91. [DOI: 10.1016/j.archoralbio.2012.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/31/2012] [Accepted: 09/20/2012] [Indexed: 01/06/2023]
|
19
|
Besser M, Jagatheaswaran M, Reinhard J, Schaffelke P, Faissner A. Tenascin C regulates proliferation and differentiation processes during embryonic retinogenesis and modulates the de-differentiation capacity of Müller glia by influencing growth factor responsiveness and the extracellular matrix compartment. Dev Biol 2012; 369:163-76. [DOI: 10.1016/j.ydbio.2012.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 01/18/2023]
|
20
|
Huang JK, Ferrari CC, Monteiro de Castro G, Lafont D, Zhao C, Zaratin P, Pouly S, Greco B, Franklin RJM. Accelerated axonal loss following acute CNS demyelination in mice lacking protein tyrosine phosphatase receptor type Z. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1518-23. [PMID: 22940073 DOI: 10.1016/j.ajpath.2012.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/14/2012] [Accepted: 07/03/2012] [Indexed: 12/17/2022]
Abstract
Protein tyrosine phosphatase receptor type Z (Ptprz) is widely expressed in the mammalian central nervous system and has been suggested to regulate oligodendrocyte survival and differentiation. We investigated the role of Ptprz in oligodendrocyte remyelination after acute, toxin-induced demyelination in Ptprz null mice. We found neither obvious impairment in the recruitment of oligodendrocyte precursor cells, astrocytes, or reactive microglia/macrophage to lesions nor a failure for oligodendrocyte precursor cells to differentiate and remyelinate axons at the lesions. However, we observed an unexpected increase in the number of dystrophic axons by 3 days after demyelination, followed by prominent Wallerian degeneration by 21 days in the Ptprz-deficient mice. Moreover, quantitative gait analysis revealed a deficit of locomotor behavior in the mutant mice, suggesting increased vulnerability to axonal injury. We propose that Ptprz is necessary to maintain central nervous system axonal integrity in a demyelinating environment and may be an important target of axonal protection in inflammatory demyelinating diseases, such as multiple sclerosis and periventricular leukomalacia.
Collapse
Affiliation(s)
- Jeffrey K Huang
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pyka M, Wetzel C, Aguado A, Geissler M, Hatt H, Faissner A. Chondroitin sulfate proteoglycans regulate astrocyte-dependent synaptogenesis and modulate synaptic activity in primary embryonic hippocampal neurons. Eur J Neurosci 2011; 33:2187-202. [PMID: 21615557 DOI: 10.1111/j.1460-9568.2011.07690.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been shown that astrocyte-derived extracellular matrix (ECM) is important for formation and maintenance of CNS synapses. In order to study the effects of glial-derived ECM on synaptogenesis, E18 rat hippocampal neurons and primary astrocytes were co-cultivated using a cell-insert system. Under these conditions, neurons differentiated under low density conditions (3500 cells/cm(2) ) in defined, serum-free medium and in the absence of direct, membrane-mediated neuron-astrocyte interactions. Astrocytes promoted the formation of structurally intact synapses, as documented by the co-localisation of bassoon- and ProSAP1/Shank2-positive puncta, markers of the pre- and postsynapse, respectively. The development of synapses was paralleled by the emergence of perineuronal net (PNN)-like structures that contained various ECM components such as hyaluronic acid, brevican and neurocan. In order to assess potential functions for synaptogenesis, the ECM was removed by treatment with hyaluronidase or chondroitinase ABC. Both enzymes significantly enhanced the number of synaptic puncta. Whole-cell voltage-clamp recordings of control and enzyme-treated hippocampal neurons revealed that chondroitinase ABC treatment led to a significant decrease in amplitude and a reduced charge of miniature excitatory postsynaptic currents, whereas inhibitory postsynaptic currents were not affected. When the response to the application of glutamate was measured, a reduced sensitivity could be detected and resulted in decreased currents in response to the excitatory neurotransmitter. These findings are consistent with the interpretation that the ECM partakes in the regulation of the density of glutamate receptors in subsynaptic sites.
Collapse
Affiliation(s)
- Martin Pyka
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitätsstr. 150, NDEF 05/594, D-44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Klausmeyer A, Conrad R, Faissner A, Wiese S. Influence of glial-derived matrix molecules, especially chondroitin sulfates, on neurite growth and survival of cultured mouse embryonic motoneurons. J Neurosci Res 2010; 89:127-41. [PMID: 21162121 DOI: 10.1002/jnr.22531] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/02/2010] [Accepted: 09/08/2010] [Indexed: 12/24/2022]
Abstract
Mechanisms controlling neuronal survival and regeneration play an important role during development, after birth, and under lesion conditions. Isolated embryonic mouse motoneurons have been a useful tool for studying such basic mechanisms. These cultured motoneurons depend on extracellular matrix (ECM) molecules, which are potent mediators of survival and axonal growth and guidance in the CNS and in vitro, exhibiting either attractive or repellent guidance cues. Additionally, ECM proteoglycans and glycoproteins are components of the glial scar acting as a growth barrier for regenerating axons. Compared with CNS axon outgrowth, less is known about the cues that guide motoneurons toward their peripheral targets. Because we are interested in the effects of glial-derived chondroitin sulfate proteoglycans (CSPGs), we have worked out a model system for investigating the influences of glial-derived matrix molecules on motoneuron outgrowth and survival. We used cultured embryonic mouse motoneurons to investigate axon growth effects of matrix molecules produced by the glial-derived cell lines A7, Neu7, and Oli-neu primary astrocytes as well as the immortalized Schwann cell line IMS32. The results indicate that molecules of the ECM, especially chondroitin sulfates, play an important role as axon growth-promoting cues. We could demonstrate a modifying effect of the matrix components on motoneuron survival and caspase3-induced apoptosis.
Collapse
Affiliation(s)
- Alice Klausmeyer
- Department of Cellmorphology and Molecular Neurobiology, Laboratory of Molecular Cellbiology, Faculty of Biology and Biotechnology, Ruhr-University-Bochum, Bochum, Germany
| | | | | | | |
Collapse
|
23
|
Comparative screening of glial cell types reveals extracellular matrix that inhibits retinal axon growth in a chondroitinase ABC-resistant fashion. Glia 2009; 57:1420-38. [DOI: 10.1002/glia.20860] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Besser M, Horvat-Bröcker A, Eysel UT, Faissner A. Differential expression of receptor protein tyrosine phosphatases accompanies the reorganisation of the retina upon laser lesion. Exp Brain Res 2009; 198:37-47. [PMID: 19639307 DOI: 10.1007/s00221-009-1932-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 06/29/2009] [Indexed: 12/14/2022]
Abstract
The regulation of protein phosphorylation plays an essential role in virtually all aspects of eukaryotic development. Beginning with the regulation of the cell cycle to cellular proliferation and differentiation, the delicate balance between the phosphorylating activity of kinases and the dephosphorylation by phosphatases controls the outcome of many signal transduction cascades. The generation of cellular diversity occurs in an environment that is structured by the extracellular matrix (ECM) which forms a surrounding niche for stem and progenitor cells. Cell-cell and cell-matrix interactions elicit specific signaling pathways that control cellular behavior. In pathological situations such as neural degenerating diseases, gene expression patterns and finally the composition of the ECM change dramatically. This leads to changes of cell behavior and finally results in the failure of regeneration and functional restoration in the adult central nervous system. In order to study the roles of tyrosine phosphatases and ECM in this context, we analyzed the effects of laser-induced retinal injury on the regulation of the receptor protein tyrosine phosphatases (RPTP) RPTPBr7, Phogrin and RPTPbeta/zeta. The latter occurs in several isoforms, including the soluble released chondroitin sulfate proteoglycan phosphacan that is expressed in the developing retina. The receptor variants RPTPbeta/zeta(long) and RPTPbeta/zeta(short) may serve as receptors of tenascin-proteins and serve as modulators of cell intrinsic signaling in response to the ECM. Using quantitative real-time RT-PCR analysis, we show here a time-dependent pattern of gene expression of these molecules following laser lesions of the retina.
Collapse
Affiliation(s)
- Manuela Besser
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
25
|
Beck H, Semisch M, Culmsee C, Plesnila N, Hatzopoulos AK. Egr-1 regulates expression of the glial scar component phosphacan in astrocytes after experimental stroke. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:77-92. [PMID: 18556777 DOI: 10.2353/ajpath.2008.070648] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ischemic brain injury causes tissue damage and neuronal death. The deficits can often be permanent because adult neurons fail to regenerate. One barrier to neuronal regeneration is the formation of the glial scar, a repair mechanism that is otherwise necessary to seal off necrotic areas. The process of gliosis has been well described, but the mechanisms regulating the robust production of scar components after injury remain poorly understood. Here we show that the early growth response 1 transcriptional factor (Egr-1, also called Krox24, Zif268, and NGFI-A) is expressed in astrocytes in the ventricular wall, corpus callosum, and striatum of normal mouse brain. After experimental stroke caused by permanent occlusion of the middle cerebral artery, Egr-1 was expressed long term in reactive astrocytes that accumulate around the injury site. Gain- and loss-of-function studies in primary astrocytes indicated that Egr-1 regulates the transcription of chondroitin sulfate proteoglycans genes, the main extracellular matrix proteins of the glial scar. Egr-1 bound to a site within the phosphacan promoter and transactivated its expression. Egr-1-deficient mice accumulated lower levels of phosphacan RNA and protein than wild-type mice after stroke, but there were no measurable differences in neurite outgrowth toward the infarct area between the two groups. Our findings suggest that Egr-1 is an important component of the transcriptional network regulating genes involved in gliosis after ischemic injury.
Collapse
Affiliation(s)
- Heike Beck
- Institute for Clinical Molecular Biology and Tumor Genetics, German Research Center for Environmental Health, Helmholtz Center Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
26
|
Horvat-Bröcker A, Reinhard J, Illes S, Paech T, Zoidl G, Harroch S, Distler C, Knyazev P, Ullrich A, Faissner A. Receptor protein tyrosine phosphatases are expressed by cycling retinal progenitor cells and involved in neuronal development of mouse retina. Neuroscience 2008; 152:618-45. [PMID: 18308476 DOI: 10.1016/j.neuroscience.2008.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 12/14/2007] [Accepted: 01/10/2008] [Indexed: 11/21/2022]
Abstract
Receptor protein tyrosine phosphatases (RPTPs) appear to coordinate many aspects of neural development, including cell proliferation, migration and differentiation. Here we investigated potential roles of RPTPs in the developing mouse retina. Using a degenerate oligonucleotide-based reverse transcription polymerase chain reaction approach, we identified 11 different RPTPs in the retina at embryonic stage 13 (E13). Subsequently, the expression patterns of RPTPkappa, RPTPJ, RPTPRR, RPTPsigma, RPTPepsilon and RPTPgamma in the retina from embryonic stages to adult were analyzed in detail using quantitative real-time-PCR, in situ hybridization, immunohistochemistry and Western blotting. At E13, all six RPTPs are expressed in actively cycling retinal progenitor cells and postmitotic newborn retinal neurons. With ongoing maturation, RPTPkappa, RPTPJ, RPTPRR, RPTPsigma, RPTPepsilon and RPTPgamma display a different spatiotemporal regulation of mRNAs and proteins in the pre- and postnatal retina. Finally, in adulthood these six RPTPs localize to distinct cellular compartments of multiple retinal neurons. Additional studies in RPTPgamma(-/-) and RPTPbeta/zeta(-/-) (also known as PTPRZ1, RPTPbeta or RPTPzeta) mice at postnatal stage P1 reveal no apparent differences in retinal laminar organization or in the expression pattern of specific retinal cell-type markers when compared with wild type. However, in RPTPbeta/zeta(-/-) retinas, immunoreactivity of vimentin, a marker of Müller glial cells, is selectively reduced and the morphology of vimentin-immunoreactive radial processes of Müller cells is considerably disturbed. Our results suggest distinct roles of RPTPs in cell proliferation and establishing phenotypes of different retinal cells during retinogenesis as well as later in the maintenance of mature retina.
Collapse
Affiliation(s)
- A Horvat-Bröcker
- Department of Cell Morphology and molecular Neurobiology, Faculty of Biology, Ruhr-University-Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Akita K, von Holst A, Furukawa Y, Mikami T, Sugahara K, Faissner A. Expression of multiple chondroitin/dermatan sulfotransferases in the neurogenic regions of the embryonic and adult central nervous system implies that complex chondroitin sulfates have a role in neural stem cell maintenance. Stem Cells 2007; 26:798-809. [PMID: 18079434 DOI: 10.1634/stemcells.2007-0448] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chondroitin/dermatan sulfotransferases (C/D-STs) underlie the synthesis of diverse sulfated structures in chondroitin/dermatan sulfate (CS/DS) chains. Recent reports have suggested that particular sulfated structures on CS/DS polymers are involved in the regulation of neural stem cell proliferation. Here, we examined the gene expression profile of C/D-STs in the neurogenic regions of embryonic and adult mouse central nervous system. Using reverse transcription-polymerase chain reaction analysis, all presently known C/D-STs were detected in the dorsal and ventral telencephalon of the embryonic day 13 (E13) mouse embryo, with the exception of chondroitin 4-O-sulfotransferase (C4ST)-3. In situ hybridization for C4ST-1, dermatan 4-O-sulfotransferase-1, chondroitin 6-O-sulfotransferase (C6ST)-1 and -2, and uronosyl 2-O-sulfotransferase revealed a cellular expression of these sulfotransferase genes in the embryonic germinal zones of the forebrain. The expression of multiple C/D-STs is maintained on cells residing in the adult neural stem cell niche. Neural stem cells cultured as neurospheres maintained the expression of these enzymes. Consistent with the gene expression pattern of C/D-STs, disaccharide analysis revealed that neurospheres and E13 mouse brain cells synthesized CS/DS chains containing monosulfated, but also significant amounts of disulfated, disaccharide units. Functionally, the inhibition of sulfation with sodium chlorate resulted in a significant, dose-dependent decrease in neurosphere number that could not be rescued by the addition of individual purified glycosaminoglycan (GAG) chains, including heparin. These findings argue against a simple charge-based mechanism of GAG chains in neural stem cell maintenance. The synergistic activities of C/D-STs might allow for the adaptive modification of CS/DS proteoglycans with diversely sulfated CS/DS chains in the extracellular microenvironment that surrounds neural stem cells.
Collapse
Affiliation(s)
- Kaoru Akita
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology, Ruhr-University Bochum, NDEF 05/594, Universitätsstrasse 150, D-44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|