1
|
Chen J, Roll-Mecak A. Glutamylation is a negative regulator of microtubule growth. Mol Biol Cell 2023; 34:ar70. [PMID: 37074962 PMCID: PMC10295482 DOI: 10.1091/mbc.e23-01-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/20/2023] Open
Abstract
Microtubules are noncovalent polymers built from αβ-tubulin dimers. The disordered C-terminal tubulin tails are functionalized with multiple glutamate chains of variable lengths added and removed by tubulin tyrosine ligases (TTLLs) and carboxypeptidases (CCPs). Glutamylation is abundant on stable microtubule arrays such as in axonemes and axons, and its dysregulation leads to human pathologies. Despite this, the effects of glutamylation on intrinsic microtubule dynamics are unclear. Here we generate tubulin with short and long glutamate chains and show that glutamylation slows the rate of microtubule growth and increases catastrophes as a function of glutamylation levels. This implies that the higher stability of glutamylated microtubules in cells is due to effectors. Interestingly, EB1 is minimally affected by glutamylation and thus can report on the growth rates of both unmodified and glutamylated microtubules. Finally, we show that glutamate removal by CCP1 and 5 is synergistic and occurs preferentially on soluble tubulin, unlike TTLL enzymes that prefer microtubules. This substrate preference establishes an asymmetry whereby once the microtubule depolymerizes, the released tubulin is reset to a less-modified state, while polymerized tubulin accumulates the glutamylation mark. Our work shows that a modification on the disordered tubulin tails can directly affect microtubule dynamics and furthers our understanding of the mechanistic underpinnings of the tubulin code.
Collapse
Affiliation(s)
- Jiayi Chen
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, and
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, and
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| |
Collapse
|
2
|
Yang Y, Chen X, Feng Z, Cai X, Zhu X, Cao M, Yang L, Chen Y, Wang Y, Feng H. MEC17-induced α-tubulin acetylation restores mitochondrial transport function and alleviates axonal injury after intracerebral hemorrhage in mice. J Neurochem 2021; 160:51-63. [PMID: 34407220 DOI: 10.1111/jnc.15493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 02/01/2023]
Abstract
Injury to long axonal projections is a central pathological feature at the early phase of intracerebral hemorrhage (ICH). It has been reported to contribute to persistent functional disability following ICH. However, the molecular mechanisms that drive axonal degeneration remain unclear. Autologous blood was injected into the striatum to mimic the pathology of ICH. Observed significant swollen axons with characteristic retraction bulbs were found around the striatal hematoma at 24 h after ICH. Electronic microscopic examination revealed highly disorganized microtubule and swollen mitochondria in the retraction bulbs. MEC17 is a specific α-tubulin acetyltransferase, ablation of acetylated α-tubulin in MEC17-/- mice aggravated axonal injury, axonal transport mitochondria dysfunction, and motor dysfunction. In contrast, treatment with tubastatin A (TubA), which promotes microtubule acetylation, significantly alleviated axonal injury and protected the integrity of the corticospinal tract and fine motor function after ICH. Moreover, results showed that 41% mitochondria were preferentially bundled to the acetylated α-tubulin in identifiable axons and dendrites in primary neurons. This impaired axonal transport of mitochondria in primary neurons of MEC17-/- mice. Given that opening of mitochondrial permeability transition pore (mPTP) induces mitochondrial dysfunction and impairs ATP supply thereby promoting axonal injury, we enhanced the availability of acetylated α-tubulin using TubA and inhibited mPTP opening with cyclosporin A. The results indicated that this combined treatment synergistically protected corticospinal tract integrity and promoted fine motor control recovery. These findings reveal key intracellular mechanisms that drive axonal degeneration after ICH and highlight the need to target multiple factors and respective regulatory mechanisms as an effective approach to prevent axonal degeneration and motor dysfunction after ICH.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China.,Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Medical University, Chongqing, China.,Wuxi Translational Medicine Center, Wuxi, Jiangsu, China
| | - Xuezhu Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Medical University, Chongqing, China
| | - Zhizhong Feng
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Xianfeng Cai
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Xiaoming Zhu
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Ming Cao
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Likun Yang
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China.,Wuxi Translational Medicine Center, Wuxi, Jiangsu, China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Medical University, Chongqing, China
| | - Yuhai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China.,Wuxi Translational Medicine Center, Wuxi, Jiangsu, China
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Girouard MP, Simas T, Hua L, Morquette B, Khazaei MR, Unsain N, Johnstone AD, Rambaldi I, Sanz RL, Di Raddo ME, Gamage KK, Yong Y, Willis DE, Verge VMK, Barker PA, Deppmann C, Fournier AE. Collapsin Response Mediator Protein 4 (CRMP4) Facilitates Wallerian Degeneration and Axon Regeneration following Sciatic Nerve Injury. eNeuro 2020; 7:ENEURO.0479-19.2020. [PMID: 32001550 PMCID: PMC7053045 DOI: 10.1523/eneuro.0479-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/29/2022] Open
Abstract
In contrast to neurons in the CNS, damaged neurons from the peripheral nervous system (PNS) regenerate, but this process can be slow and imperfect. Successful regeneration is orchestrated by cytoskeletal reorganization at the tip of the proximal axon segment and cytoskeletal disassembly of the distal segment. Collapsin response mediator protein 4 (CRMP4) is a cytosolic phospho-protein that regulates the actin and microtubule cytoskeleton. During development, CRMP4 promotes growth cone formation and dendrite development. Paradoxically, in the adult CNS, CRMP4 impedes axon regeneration. Here, we investigated the involvement of CRMP4 in peripheral nerve injury in male and female Crmp4-/- mice following sciatic nerve injury. We find that sensory axon regeneration and Wallerian degeneration are impaired in Crmp4-/- mice following sciatic nerve injury. In vitro analysis of dissociated dorsal root ganglion (DRG) neurons from Crmp4-/- mice revealed that CRMP4 functions in the proximal axon segment to promote the regrowth of severed DRG neurons and in the distal axon segment where it facilitates Wallerian degeneration through calpain-dependent formation of harmful CRMP4 fragments. These findings reveal an interesting dual role for CRMP4 in proximal and distal axon segments of injured sensory neurons that coordinately facilitate PNS axon regeneration.
Collapse
Affiliation(s)
- Marie-Pier Girouard
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Tristan Simas
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Luyang Hua
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Barbara Morquette
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Mohamad R Khazaei
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Nicolas Unsain
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 5016 Córdoba, Argentina
| | - Aaron D Johnstone
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Isabel Rambaldi
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | - Ricardo L Sanz
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| | | | - Kanchana K Gamage
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903
| | - Yu Yong
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903
| | - Dianna E Willis
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
- Burke Institute, Weill Cornell Medicine, White Plains, New York 10605
| | - Valerie M K Verge
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan-CMSNRC, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Philip A Barker
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | | | - Alyson E Fournier
- Department of Neurology and Neurosurgery, Montréal Neurological Institute and Hospital, Montréal, Québec H3A 2B4, Canada
| |
Collapse
|
4
|
Girouard MP, Bueno M, Julian V, Drake S, Byrne AB, Fournier AE. The Molecular Interplay between Axon Degeneration and Regeneration. Dev Neurobiol 2018; 78:978-990. [PMID: 30022605 DOI: 10.1002/dneu.22627] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022]
Abstract
Neurons face a series of morphological and molecular changes following trauma and in the progression of neurodegenerative disease. In neurons capable of mounting a spontaneous regenerative response, including invertebrate neurons and mammalian neurons of the peripheral nervous system (PNS), axons regenerate from the proximal side of the injury and degenerate on the distal side. Studies of Wallerian degeneration slow (WldS /Ola) mice have revealed that a level of coordination between the processes of axon regeneration and degeneration occurs during successful repair. Here, we explore how shared cellular and molecular pathways that regulate both axon regeneration and degeneration coordinate the two distinct outcomes in the proximal and distal axon segments. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Marie-Pier Girouard
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Mardja Bueno
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Victoria Julian
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Sienna Drake
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Alexandra B Byrne
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Alyson E Fournier
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
5
|
Ivakhnitskaia E, Lin RW, Hamada K, Chang C. Timing of neuronal plasticity in development and aging. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29139210 DOI: 10.1002/wdev.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/21/2017] [Accepted: 09/11/2017] [Indexed: 01/21/2023]
Abstract
Molecular oscillators are well known for their roles in temporal control of some biological processes like cell proliferation, but molecular mechanisms that provide temporal control of differentiation and postdifferentiation events in cells are less understood. In the nervous system, establishment of neuronal connectivity during development and decline in neuronal plasticity during aging are regulated with temporal precision, but the timing mechanisms are largely unknown. Caenorhabditis elegans has been a preferred model for aging research and recently emerges as a new model for the study of developmental and postdevelopmental plasticity in neurons. In this review we discuss the emerging mechanisms in timing of developmental lineage progression, axon growth and pathfinding, synapse formation, and reorganization, and neuronal plasticity in development and aging. We also provide a current view on the conserved core axon regeneration molecules with the intention to point out potential regulatory points of temporal controls. We highlight recent progress in understanding timing mechanisms that regulate decline in regenerative capacity, including progressive changes of intrinsic timers and co-opting the aging pathway molecules. WIREs Dev Biol 2018, 7:e305. doi: 10.1002/wdev.305 This article is categorized under: Invertebrate Organogenesis > Worms Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Nervous System Development > Worms Gene Expression and Transcriptional Hierarchies > Regulatory RNA.
Collapse
Affiliation(s)
- Evguenia Ivakhnitskaia
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.,Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL, USA.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| | - Ryan Weihsiang Lin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Kana Hamada
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Chieh Chang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Spitzbarth I, Lempp C, Kegler K, Ulrich R, Kalkuhl A, Deschl U, Baumgärtner W, Seehusen F. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis. Brain Behav 2016; 6:e00472. [PMID: 27247850 PMCID: PMC4864272 DOI: 10.1002/brb3.472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/24/2016] [Accepted: 03/11/2016] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION CDV-DL (Canine distemper virus-induced demyelinating leukoencephalitis) represents a spontaneously occurring animal model for demyelinating disorders. Axonopathy represents a key pathomechanism in this disease; however, its underlying pathogenesis has not been addressed in detail so far. This study aimed at the characterization of axonal cytoskeletal, transport, and potential regenerative changes with a parallel focus upon Schwann cell remyelination. METHODS Immunohistochemistry of canine cerebellar tissue as well as a comparative analysis of genes from an independent microarray study were performed. RESULTS Increased axonal immunoreactivity for nonphosphorylated neurofilament was followed by loss of cytoskeletal and motor proteins. Interestingly, a subset of genes encoding for neurofilament subunits and motor proteins was up-regulated in the chronic stage compared to dogs with subacute CDV-DL. However, immunohistochemically, hints for axonal regeneration were restricted to up-regulated axonal positivity of hypoxia-inducible factor 1 alpha, while growth-associated protein 43, erythropoietin and its receptor were not or even down-regulated. Periaxin-positive structures, indicative of Schwann cell remyelination, were only detected within few advanced lesions. CONCLUSIONS The present findings demonstrate a complex sequence of axonal cytoskeletal breakdown mechanisms. Moreover, though sparse, this is the first report of Schwann cell remyelination in CDV-DL. Facilitation of these very limited endogenous regenerative responses represents an important topic for future research.
Collapse
Affiliation(s)
- Ingo Spitzbarth
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Charlotte Lempp
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany
| | - Kristel Kegler
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Reiner Ulrich
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Arno Kalkuhl
- Department of Non-Clinical Drug Safety Boehringer Ingelheim Pharma GmbH & Co KG Biberach (Riß) Germany
| | - Ulrich Deschl
- Department of Non-Clinical Drug Safety Boehringer Ingelheim Pharma GmbH & Co KG Biberach (Riß) Germany
| | - Wolfgang Baumgärtner
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Frauke Seehusen
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany
| |
Collapse
|
7
|
He Z, Jin Y. Intrinsic Control of Axon Regeneration. Neuron 2016; 90:437-51. [DOI: 10.1016/j.neuron.2016.04.022] [Citation(s) in RCA: 337] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/10/2016] [Accepted: 04/13/2016] [Indexed: 01/12/2023]
|
8
|
Abstract
The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT) dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK) promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6) inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrew D Chisholm
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
9
|
Chen L, Chuang M, Koorman T, Boxem M, Jin Y, Chisholm AD. Axon injury triggers EFA-6 mediated destabilization of axonal microtubules via TACC and doublecortin like kinase. eLife 2015; 4. [PMID: 26339988 PMCID: PMC4596636 DOI: 10.7554/elife.08695] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023] Open
Abstract
Axon injury triggers a series of changes in the axonal cytoskeleton that are prerequisites for effective axon regeneration. In Caenorhabditis elegans the signaling protein Exchange Factor for ARF-6 (EFA-6) is a potent intrinsic inhibitor of axon regrowth. Here we show that axon injury triggers rapid EFA-6-dependent inhibition of axonal microtubule (MT) dynamics, concomitant with relocalization of EFA-6. EFA-6 relocalization and axon regrowth inhibition require a conserved 18-aa motif in its otherwise intrinsically disordered N-terminal domain. The EFA-6 N-terminus binds the MT-associated proteins TAC-1/Transforming-Acidic-Coiled-Coil, and ZYG-8/Doublecortin-Like-Kinase, both of which are required for regenerative growth cone formation, and which act downstream of EFA-6. After injury TAC-1 and EFA-6 transiently relocalize to sites marked by the MT minus end binding protein PTRN-1/Patronin. We propose that EFA-6 acts as a bifunctional injury-responsive regulator of axonal MT dynamics, acting at the cell cortex in the steady state and at MT minus ends after injury. DOI:http://dx.doi.org/10.7554/eLife.08695.001 In the nervous system, cells called neurons carry information around the body. These cells have long thin projections called axons that allow the information to pass very quickly along the cell to junctions with other neurons. Neurons in adult mammals are limited in their ability to regenerate, so any damage to axons, for example, due to a stroke or a brain injury, tends to be permanent. Therefore, an important goal in neuroscience research is to discover the genes and proteins that are involved in regenerating axons as this may make it possible to develop new therapies. An internal scaffold called the cytoskeleton supports the three-dimensional shape of the axons. Changes in the cytoskeleton are required to allow neurons to regenerate axons after injury, and drugs that stabilize filaments called microtubules in the cytoskeleton can promote these changes. Chen et al. used a technique called laser microsurgery to sever individual axons in a roundworm known as C. elegans and then observed whether these axons could regenerate. The experiments reveal that a protein called EFA-6 blocks the regeneration of neurons by preventing rearrangements in the cytoskeleton. EFA-6 is normally found at the membrane that surrounds the neuron. However, Chen et al. show that when the axon is damaged, this protein rapidly moves to areas near the ends of microtubule filaments. EFA-6 interacts with two other proteins that are associated with microtubules and are required for axons to be able to regenerate. Chen et al.'s findings demonstrate that several proteins that regulate microtubule filaments play a key role in regenerating axons. All three of these proteins are found in humans and other animals so they have the potential to be targeted by drug therapies in future. The next challenge is to understand the details of how EFA-6 activity is affected by axon injury, and how this alters the cytoskeleton. DOI:http://dx.doi.org/10.7554/eLife.08695.002
Collapse
Affiliation(s)
- Lizhen Chen
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States.,University of California, San Diego, La Jolla, United States
| | - Marian Chuang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Thijs Koorman
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Mike Boxem
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States.,University of California, San Diego, La Jolla, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States
| | - Andrew D Chisholm
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
10
|
The kinesin-2 family member KIF3C regulates microtubule dynamics and is required for axon growth and regeneration. J Neurosci 2013; 33:11329-45. [PMID: 23843507 DOI: 10.1523/jneurosci.5221-12.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axon regeneration after injury requires the extensive reconstruction, reorganization, and stabilization of the microtubule cytoskeleton in the growth cones. Here, we identify KIF3C as a key regulator of axonal growth and regeneration by controlling microtubule dynamics and organization in the growth cone. KIF3C is developmentally regulated. Rat embryonic sensory axons and growth cones contain undetectable levels of KIF3C protein that is locally translated immediately after injury. In adult neurons, KIF3C is axonally transported from the cell body and is enriched at the growth cone where it preferentially binds to tyrosinated microtubules. Functionally, the interaction of KIF3C with EB3 is necessary for its localization at the microtubule plus-ends in the growth cone. Depletion of KIF3C in adult neurons leads to an increase in stable, overgrown and looped microtubules because of a strong decrease in the microtubule frequency of catastrophes, suggesting that KIF3C functions as a microtubule-destabilizing factor. Adult axons lacking KIF3C, by RNA interference or KIF3C gene knock-out, display an impaired axonal outgrowth in vitro and a delayed regeneration after injury both in vitro and in vivo. Murine KIF3C knock-out embryonic axons grow normally but do not regenerate after injury because they are unable to locally translate KIF3C. These data show that KIF3C is an injury-specific kinesin that contributes to axon growth and regeneration by regulating and organizing the microtubule cytoskeleton in the growth cone.
Collapse
|
11
|
Cell signaling experiments driven by optical manipulation. Int J Mol Sci 2013; 14:8963-84. [PMID: 23698758 PMCID: PMC3676767 DOI: 10.3390/ijms14058963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/08/2013] [Accepted: 04/14/2013] [Indexed: 01/09/2023] Open
Abstract
Cell signaling involves complex transduction mechanisms in which information released by nearby cells or extracellular cues are transmitted to the cell, regulating fundamental cellular activities. Understanding such mechanisms requires cell stimulation with precise control of low numbers of active molecules at high spatial and temporal resolution under physiological conditions. Optical manipulation techniques, such as optical tweezing, mechanical stress probing or nano-ablation, allow handling of probes and sub-cellular elements with nanometric and millisecond resolution. PicoNewton forces, such as those involved in cell motility or intracellular activity, can be measured with femtoNewton sensitivity while controlling the biochemical environment. Recent technical achievements in optical manipulation have new potentials, such as exploring the actions of individual molecules within living cells. Here, we review the progress in optical manipulation techniques for single-cell experiments, with a focus on force probing, cell mechanical stimulation and the local delivery of active molecules using optically manipulated micro-vectors and laser dissection.
Collapse
|
12
|
Ghosh-Roy A, Goncharov A, Jin Y, Chisholm AD. Kinesin-13 and tubulin posttranslational modifications regulate microtubule growth in axon regeneration. Dev Cell 2012; 23:716-28. [PMID: 23000142 DOI: 10.1016/j.devcel.2012.08.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 07/18/2012] [Accepted: 08/20/2012] [Indexed: 11/16/2022]
Abstract
The microtubule (MT) cytoskeleton of a mature axon is maintained in a stabilized steady state, yet after axonal injury it can be transformed into a dynamic structure capable of supporting axon regrowth. Using Caenorhabditis elegans mechanosensory axons and in vivo imaging, we find that, in mature axons, the growth of MTs is restricted in the steady state by the depolymerizing kinesin-13 family member KLP-7. After axon injury, we observe a two-phase process of MT growth upregulation. First, the number of growing MTs increases at the injury site, concomitant with local downregulation of KLP-7. A second phase of persistent MT growth requires the cytosolic carboxypeptidase CCPP-6, which promotes Δ2 modification of α-tubulin. Both phases of MT growth are coordinated by the DLK-1 MAP kinase cascade. Our results define how the stable MT cytoskeleton of a mature neuron is converted into the dynamically growing MT cytoskeleton of a regrowing axon.
Collapse
Affiliation(s)
- Anindya Ghosh-Roy
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
13
|
Kanamori A, Catrinescu MM, Belisle JM, Costantino S, Levin LA. Retrograde and Wallerian axonal degeneration occur synchronously after retinal ganglion cell axotomy. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:62-73. [PMID: 22642911 DOI: 10.1016/j.ajpath.2012.03.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 03/05/2012] [Accepted: 03/15/2012] [Indexed: 01/23/2023]
Abstract
Axonal injury and degeneration are pivotal pathological events in diseases of the nervous system. In the past decade, it has been recognized that the process of axonal degeneration is distinct from somal degeneration and that axoprotective strategies may be distinct from those that protect the soma. Preserving the cell body via neuroprotection cannot improve function if the axon is damaged, because the soma is still disconnected from its target. Therefore, understanding the mechanisms of axonal degeneration is critical for developing new therapeutic interventions for axonal disease treatment. We combined in vivo imaging with a multilaser confocal scanning laser ophthalmoscope and in vivo axotomy with a diode-pumped solid-state laser to assess the time course of Wallerian and retrograde degeneration of unmyelinated retinal ganglion cell axons in living rats for 4 weeks after intraretinal axotomy. Laser injury resulted in reproducible axon loss both distal and proximal to the site of injury. Longitudinal polarization-sensitive imaging of axons demonstrated that Wallerian and retrograde degeneration occurred synchronously. Neurofilament immunostaining of retinal whole-mounts confirmed axonal loss and demonstrated sparing of adjacent axons to the axotomy site. In vivo fluorescent imaging of axonal transport and photobleaching of labeled axons demonstrated that the laser axotomy model did not affect adjacent axon function. These results are consistent with a shared mechanism for Wallerian and retrograde degeneration.
Collapse
Affiliation(s)
- Akiyasu Kanamori
- Maisonneuve-Rosemont Hospital Research Center and Department of Ophthalmology, University of Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
14
|
Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat Rev Neurosci 2012; 13:183-93. [PMID: 22334213 DOI: 10.1038/nrn3176] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The assembly of a new growth cone is a prerequisite for axon regeneration after injury. Creation of a new growth cone involves multiple processes, including calcium signalling, restructuring of the cytoskeleton, transport of materials, local translation of messenger RNAs and the insertion of new membrane and cell surface molecules. In axons that have an intrinsic ability to regenerate, these processes are executed in a timely fashion. However, in axons that lack regenerative capacity, such as those of the mammalian CNS, several of the steps that are required for regeneration fail, and these axons do not begin the growth process. Identification of the points of failure can suggest targets for promoting regeneration.
Collapse
|
15
|
Rescue of neurons from undergoing hallmark tau-induced Alzheimer's disease cell pathologies by the antimitotic drug paclitaxel. Neurobiol Dis 2011; 43:163-75. [DOI: 10.1016/j.nbd.2011.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/14/2011] [Accepted: 03/06/2011] [Indexed: 11/18/2022] Open
|
16
|
Kuznetsov AV. Method of modelling intracellular transport in branching neurites: application to axons and dendrites of Drosophila sensory neurons. Comput Methods Biomech Biomed Engin 2011; 14:239-51. [PMID: 20419522 DOI: 10.1080/10255841003664727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This paper develops a method of calculating the transport of intracellular organelles in neurons with branching neurites which is based on the Smith-Simmons equations of motor-assisted transport. The method is aimed at understanding the effects of microtubule (MT) polarity orientation in branching neurites on transport of organelles at the fundamental level. The method is applied to calculating the organelle transport in axons and dendrites of Drosophila neurons, using the map of MT orientation in such neurons developed by Stone et al. (Mol Biol Cell 19:4122-4129, 2008). The proximal dendrite is assumed to branch and form two distal dendrites. Two different MT polarity arrangements in a proximal dendrite are considered, and implications of these MT arrangements on organelle transport are analysed. It is demonstrated that the MT arrangement found in Drosophila dendrites (MTs have their minus ends out in a proximal dendrite) results in much more efficient motor-driven transport than the structure with a mixed MT orientation in proximal dendrites.
Collapse
Affiliation(s)
- A V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA.
| |
Collapse
|
17
|
Kuznetsov AV. Effect of the degree of polar mismatching on traffic jam formation in fast axonal transport. Comput Methods Biomech Biomed Engin 2011; 13:711-22. [PMID: 20336560 DOI: 10.1080/10255840903505154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This paper simulates an axon with a region of reversed microtubule (MT) polarity, and investigates how the degree of polar mismatching in this region affects the formation of organelle traps in the axon. The model is based on modified Smith-Simmons equations governing molecular-motor-assisted transport in neurons. It is established that the structure that develops as a result of a region with disoriented MTs consists of two organelle traps, the trap to the left of this region accumulates plus-end-oriented organelles and the trap to the right of this region accumulates minus-end-oriented organelles. The presence of such a structure is shown to inhibit the transport of organelles down the axon. The degree by which the transport of organelles is inhibited depends on the degree of polar mismatching of MTs in the region between MT traps. Four cases with a different degree of polar mismatching are investigated.
Collapse
Affiliation(s)
- A V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA.
| |
Collapse
|
18
|
Wang Z, Jin Y. Genetic dissection of axon regeneration. Curr Opin Neurobiol 2010; 21:189-96. [PMID: 20832288 DOI: 10.1016/j.conb.2010.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 07/28/2010] [Accepted: 08/15/2010] [Indexed: 01/19/2023]
Abstract
Axon regeneration has long been studied in vertebrate model organisms and neuronal cultures. Recent development of axon regeneration paradigms in genetic model organisms, such as Caenorhabditis elegans, Drosophila and zebrafish, has opened an exciting field for in vivo functional dissection of regeneration pathways. Studies in these organisms have discovered essential genes and pathways for axon regrowth. The conservation of these genes crossing animal phyla suggests mechanistic relevance to higher organisms. The power of genetic approaches in these organisms makes large-scale genetic and pharmacological screens feasible and can greatly accelerate the mechanistic understanding of axon regeneration.
Collapse
Affiliation(s)
- Zhiping Wang
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, CA 92093, USA.
| | | |
Collapse
|
19
|
Hellman AN, Vahidi B, Kim HJ, Mismar W, Steward O, Jeon NL, Venugopalan V. Examination of axonal injury and regeneration in micropatterned neuronal culture using pulsed laser microbeam dissection. LAB ON A CHIP 2010; 10:2083-92. [PMID: 20532390 PMCID: PMC3380453 DOI: 10.1039/b927153h] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We describe the integrated use of pulsed laser microbeam irradiation and microfluidic cell culture methods to examine the dynamics of axonal injury and regeneration in vitro. Microfabrication methods are used to place high purity dissociated central nervous system neurons in specific regions that allow the axons to interact with permissive and inhibitory substrates. Acute injury to neuron bundles is produced via the delivery of single 180 ps duration, lambda = 532 nm laser pulses. Laser pulse energies of 400 nJ and 800 nJ produce partial and complete transection of the axons, respectively, resulting in elliptical lesions 25 mum and 50 mum in size. The dynamics of the resulting degeneration and regrowth of proximal and distal axonal segments are examined for up to 8 h using time-lapse microscopy. We find the proximal and distal dieback distances from the site of laser microbeam irradiation to be roughly equal for both partial and complete transection of the axons. In addition, distinct growth cones emerge from the proximal neurite segments within 1-2 h post-injury, followed by a uniform front of regenerating axons that originate from the proximal segment and traverse the injury site within 8 h. We also examine the use of EGTA to chelate the extracellular calcium and potentially reduce the severity of the axonal degeneration following injury. While we find the addition of EGTA to reduce the severity of the initial dieback, it also hampers neurite repair and interferes with the formation of neuronal growth cones to traverse the injury site. This integrated use of laser microbeam dissection within a micropatterned cell culture system to produce precise zones of neuronal injury shows potential for high-throughput screening of agents to promote neuronal regeneration.
Collapse
Affiliation(s)
- Amy N. Hellman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA 92697
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine, CA 92697
| | - Behrad Vahidi
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
- Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul 151-742, KOREA
| | - Hyung Joon Kim
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
| | - Wael Mismar
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
| | - Oswald Steward
- Reeve-Irvine Research Center for Spinal Cord Injury, University of California, Irvine, CA 92697
| | - Noo Li Jeon
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
- Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul 151-742, KOREA
| | - Vasan Venugopalan
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA 92697
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine, CA 92697
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
- Correspondence:
| |
Collapse
|
20
|
Shemesh OA, Spira ME. Hallmark cellular pathology of Alzheimer's disease induced by mutant human tau expression in cultured Aplysia neurons. Acta Neuropathol 2010; 120:209-22. [PMID: 20422200 DOI: 10.1007/s00401-010-0689-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 04/07/2010] [Accepted: 04/11/2010] [Indexed: 11/29/2022]
Abstract
The mechanisms underlying neurodegenerative diseases are the outcome of pathological alterations of evolutionary conserved molecular and cellular cascades. For this reason, Drosophila and C. elegans serve as useful model systems to study various aspects of neurodegenerative diseases. Here, we introduce the advantageous use of cultured Aplysia neurons (which express over 100 disease-related gene homologs shared with mammals), as a platform to study cell biological processes underlying the generation of tauopathy. Using live confocal imaging to follow cytoskeletal elements, autophagosomes, lysosomes, anterogradely and retrogradely transported organelles, complemented with electron microscopy, we demonstrate that the expression of mutant human tau in cultured Aplysia neurons leads to the development of hallmark Alzheimer disease (AD) pathologies. These include a reduction in the number of microtubules and their redistribution, impaired organelle transport, a dramatic accumulation of macro-autophagosomes and lysosomes, compromised neurite morphology and degeneration. Our study demonstrates the accessibility of the platform for long-term live imaging and quantification of subcellular pathological cascades leading to tauopathy. Based on the present study, it is conceivable that this system can also be used to screen for reagents that alter the pathological cascades.
Collapse
Affiliation(s)
- Or A Shemesh
- Department of Neurobiology, Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
21
|
Kuznetsov AV. Modeling organelle transport in branching dendrites with a variable cross-sectional area. J Biol Phys 2010; 36:385-403. [PMID: 21886345 DOI: 10.1007/s10867-010-9191-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022] Open
Abstract
The purpose of this paper is to develop a method for calculating organelle transport in dendrites with a non-uniform cross-sectional area that depends on the distance from the neuron soma. The model is based on modified Smith-Simmons equations governing molecular motor-assisted organelle transport. The developed method is then applied to simulating organelle transport in branching dendrites with two particular microtubule (MT) orientations reported from experiments. It is found that the rate of organelle transport toward a dendrite's growth cone heavily depends on the MT orientation, and since there is experimental evidence that the MT orientation in a particular region of a dendrite may depend on the dendrite's developmental stage, the obtained results suggest that a rearrangement of the MT structure may depend on the amount of organelles needed at the growth cone.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC 27695-7910 USA
| |
Collapse
|
22
|
Kuznetsov AV. Effect of vesicle traps on traffic jam formation in fast axonal transport. Math Biosci 2010; 226:147-55. [PMID: 20580726 DOI: 10.1016/j.mbs.2010.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 05/12/2010] [Accepted: 05/16/2010] [Indexed: 01/18/2023]
Abstract
The purpose of this paper is to develop a model for simulation of the formation of organelle traps in fast axonal transport. Such traps may form in the regions of microtubule polar mismatching. Depending on the orientation of microtubules pointing toward the trap region, these traps can accumulate either plus-end or minus-end oriented vesicles. The model predicts that the maximum concentrations of organelles occur at the boundaries of the trap regions; the overall concentration of organelles in the axon with traps is greatly increased compared to that in a healthy axon, which is expected to contribute to mechanical damages of the axon. The organelle traps induce hindrance to organelle transport down the axon; the total organelle flux down the axon with traps is found to be significantly reduced compared to that in a healthy axon.
Collapse
Affiliation(s)
- A V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC 27695-7910, USA.
| |
Collapse
|
23
|
Shemesh OA, Spira ME. Paclitaxel induces axonal microtubules polar reconfiguration and impaired organelle transport: implications for the pathogenesis of paclitaxel-induced polyneuropathy. Acta Neuropathol 2010; 119:235-48. [PMID: 19727778 DOI: 10.1007/s00401-009-0586-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/18/2009] [Accepted: 08/18/2009] [Indexed: 12/01/2022]
Abstract
In differentiated axons almost all microtubules (MTs) uniformly point their plus ends towards the axonal tip. The uniform polar pattern provides the structural substrate for efficient organelle transport along axons. It is generally believed that the mass and pattern of MTs polar orientation remain unchanged in differentiated neurons. Here we examined long-term effects of the MTs stabilizing reagent paclitaxel (taxol) over MTs polar orientation and organelle transport in cultured Aplysia neurons. Unexpectedly, we found that rather than stabilizing the MTs, paclitaxel leads to their massive polar reconfiguration, accompanied by impaired organelle transport. Washout of paclitaxel does not lead to recovery of the polar orientation indicating that the new pattern is self-maintained. Taken together the data suggest that MTs in differentiated neurons maintain the potential to be reconfigured. Such reconfiguration may serve physiological functions or lead to degeneration. In addition, our observations offer a novel mechanism that could account for the development of peripheral neuropathy in patients receiving paclitaxel as an antitumor drug.
Collapse
Affiliation(s)
- Or A Shemesh
- Department of Neurobiology, Institute of Life Science, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | |
Collapse
|
24
|
Walters ET, Moroz LL. Molluscan memory of injury: evolutionary insights into chronic pain and neurological disorders. BRAIN, BEHAVIOR AND EVOLUTION 2009; 74:206-18. [PMID: 20029184 PMCID: PMC2855280 DOI: 10.1159/000258667] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molluscan preparations have yielded seminal discoveries in neuroscience, but the experimental advantages of this group have not, until now, been complemented by adequate molecular or genomic information for comparisons to genetically defined model organisms in other phyla. The recent sequencing of the transcriptome and genome of Aplysia californica, however, will enable extensive comparative studies at the molecular level. Among other benefits, this will bring the power of individually identifiable and manipulable neurons to bear upon questions of cellular function for evolutionarily conserved genes associated with clinically important neural dysfunction. Because of the slower rate of gene evolution in this molluscan lineage, more homologs of genes associated with human disease are present in Aplysia than in leading model organisms from Arthropoda (Drosophila) or Nematoda (Caenorhabditis elegans). Research has hardly begun in molluscs on the cellular functions of gene products that in humans are associated with neurological diseases. On the other hand, much is known about molecular and cellular mechanisms of long-term neuronal plasticity. Persistent nociceptive sensitization of nociceptors in Aplysia displays many functional similarities to alterations in mammalian nociceptors associated with the clinical problem of chronic pain. Moreover, in Aplysia and mammals the same cell signaling pathways trigger persistent enhancement of excitability and synaptic transmission following noxious stimulation, and these highly conserved pathways are also used to induce memory traces in neural circuits of diverse species. This functional and molecular overlap in distantly related lineages and neuronal types supports the proposal that fundamental plasticity mechanisms important for memory, chronic pain, and other lasting alterations evolved from adaptive responses to peripheral injury in the earliest neurons. Molluscan preparations should become increasingly useful for comparative studies across phyla that can provide insight into cellular functions of clinically important genes.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Tex. 77030, USA.
| | | |
Collapse
|
25
|
Staal JA, Dickson TC, Gasperini R, Liu Y, Foa L, Vickers JC. Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. J Neurochem 2009; 112:1147-55. [PMID: 19968758 DOI: 10.1111/j.1471-4159.2009.06531.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute axonal shear and stretch in the brain induces an evolving form of axonopathy and is a major cause of ongoing motor, cognitive and emotional dysfunction. We have utilized an in vitro model of mild axon bundle stretch injury, in cultured primary cortical neurons, to determine potential early critical cellular alterations leading to secondary axonal degeneration. We determined that transient axonal stretch injury induced an initial acute increase in intracellular calcium, principally derived from intracellular stores, which was followed by a delayed increase in calcium over 48 h post-injury (PI). This progressive and persistent increase in intracellular calcium was also associated with increased frequency of spontaneous calcium fluxes as well as cytoskeletal abnormalities. Additionally, at 48 h post-injury, stretch-injured axon bundles demonstrated filopodia-like sprout formation that preceded secondary axotomy and degeneration. Pharmacological inhibition of the calcium-activated phosphatase, calcineurin, resulted in reduced secondary axotomy (p < 0.05) and increased filopodial sprout length. In summary, these results demonstrate that stretch injury of axons induced an initial substantial release of calcium from intracellular stores with elevated intracellular calcium persisting over 2 days. These long-lasting calcium alterations may provide new insight into the earliest neuronal abnormalities that follow traumatic brain injury as well as the key cellular changes that lead to the development of diffuse axonal injury and secondary degeneration.
Collapse
Affiliation(s)
- Jerome A Staal
- NeuroRepair Group and Wicking Dementia Research and Education Centre, Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Kamber D, Erez H, Spira ME. Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone. Exp Neurol 2009; 219:112-25. [DOI: 10.1016/j.expneurol.2009.05.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 05/03/2009] [Accepted: 05/05/2009] [Indexed: 12/19/2022]
|
27
|
Khoutorsky A, Spira ME. Activity-dependent calpain activation plays a critical role in synaptic facilitation and post-tetanic potentiation. Learn Mem 2009; 16:129-41. [DOI: 10.1101/lm.1275709] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Neurite retraction and regrowth regulated by membrane retrieval, membrane supply, and actin dynamics. Brain Res 2009; 1251:65-79. [DOI: 10.1016/j.brainres.2008.10.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/06/2008] [Accepted: 10/13/2008] [Indexed: 11/20/2022]
|
29
|
Emergence of highly neurofilament-immunoreactive zipper-like axon segments at the transection site in scalpel-cordotomized adult rats. Neuroscience 2008; 155:90-103. [PMID: 18571867 DOI: 10.1016/j.neuroscience.2008.04.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 04/28/2008] [Accepted: 04/28/2008] [Indexed: 01/10/2023]
Abstract
Following transection of the spinal cord, severed axonal ends retract from the lesion site and attempt regeneration within 24 h of injury. Molecular mechanisms underlying such rapid axonal reactions after severance are not fully characterized so far. To better understand the early axonal degenerating and regenerating processes, we examined the immunohistological expression of axonal cytoskeletal proteins from 5 min to 48 h after scalpel-transection of adult rat spinal cord white matter. Within 30 min of transection, expression of neurofilament (NF)- and peripherin-like immunoreactivity (-IR) was enhanced in severed axonal ends, which conversely lost beta-III-tubulin-IR expression, indicating differential expression of beta-III-tubulin-IR and NF/peripherin-IR. During the next few hours, the strongly-NF/peripherin-IR-positive severed axonal ends adhered to each other and these cytoskeletal alterations expanded bi-directionally (rostro-caudally) 100-300 microm away from the transection point. Within 6 h of transection, secondary axotomy occurred at about 300 microm-rostral and -caudal to the primary transection point, which finally formed strongly-NF/peripherin-IR-positive zipper-like axon segments at the transection site. Notably, sprouting of secondarily severed axons was observed within 6 h of injury. The regenerative axons, which extended toward the transection site, could not traverse the transection site where the zipper-like axon segments resided. The zipper-like axon segments showed abnormal axolemmal permeability through the leakage of an axonal tracer. Western blot analysis revealed a slight increase in peripherin content in transected spinal cord. Local treatment with cycloheximide suppressed the axotomy-induced peripherin-IR-enhancement in severed ends, suggesting the occurrence of intra-axonal peripherin synthesis in vivo. Treatment with calpain inhibitors frequently formed abnormally swollen microtubule-free ends, which suggests that calpain-activation is critical for functional growth cone formation in adult rat spinal cord. These observations indicate that adult rat cordotomy with a scalpel results in the rapid formation of intensely NF-IR-positive zipper-like axon segments at the transection site, which are similar to "preserved fibers" reported by Ramon y Cajal [Ramon y Cajal S (1928) Degeneration and regeneration in the nervous system. New York: Hafner]. On the other hand, axonal regenerative responses start within 6 h of injury, which may be supported by calpain-activation and intra-axonal protein synthesis.
Collapse
|