1
|
Brivio F, Apollonio M, Anderwald P, Filli F, Bassano B, Bertolucci C, Grignolio S. Seeking temporal refugia to heat stress: increasing nocturnal activity despite predation risk. Proc Biol Sci 2024; 291:20231587. [PMID: 38228177 DOI: 10.1098/rspb.2023.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
Flexibility in activity timing may enable organisms to quickly adapt to environmental changes. Under global warming, diurnally adapted endotherms may achieve a better energy balance by shifting their activity towards cooler nocturnal hours. However, this shift may expose animals to new or increased environmental challenges (e.g. increased predation risk, reduced foraging efficiency). We analysed a large dataset of activity data from 47 ibex (Capra ibex) in two protected areas, characterized by varying levels of predation risk (presence versus absence of the wolf-Canis lupus). We found that ibex increased nocturnal activity following warmer days and during brighter nights. Despite the considerable sexual dimorphism typical of this species and the consequent different predation-risk perception, males and females demonstrated consistent responses to heat in both predator-present and predator-absent areas. This supports the hypothesis that shifting activity towards nighttime may be a common strategy adopted by diurnal endotherms in response to global warming. As nowadays different pressures are pushing mammals towards nocturnality, our findings emphasize the urgent need to integrate knowledge of temporal behavioural modifications into management and conservation planning.
Collapse
Affiliation(s)
- Francesca Brivio
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari 07100, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari 07100, Italy
| | | | | | - Bruno Bassano
- Gran Paradiso National Park, Via Pio VII 9, Torino 10135, Italy
| | - Cristiano Bertolucci
- Department of Life Science and Biotechnology, University of Ferrara, via Borsari 46, Ferrara, 44121, Italy
| | - Stefano Grignolio
- Department of Life Science and Biotechnology, University of Ferrara, via Borsari 46, Ferrara, 44121, Italy
| |
Collapse
|
2
|
Newman BA, D’Angelo GJ. A Review of Cervidae Visual Ecology. Animals (Basel) 2024; 14:420. [PMID: 38338063 PMCID: PMC10854973 DOI: 10.3390/ani14030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
This review examines the visual systems of cervids in relation to their ability to meet their ecological needs and how their visual systems are specialized for particular tasks. Cervidae encompasses a diverse group of mammals that serve as important ecological drivers within their ecosystems. Despite evidence of highly specialized visual systems, a large portion of cervid research ignores or fails to consider the realities of cervid vision as it relates to their ecology. Failure to account for an animal's visual ecology during research can lead to unintentional biases and uninformed conclusions regarding the decision making and behaviors for a species or population. Our review addresses core behaviors and their interrelationship with cervid visual characteristics. Historically, the study of cervid visual characteristics has been restricted to specific areas of inquiry such as color vision and contains limited integration into broader ecological and behavioral research. The purpose of our review is to bridge these gaps by offering a comprehensive review of cervid visual ecology that emphasizes the interplay between the visual adaptations of cervids and their interactions with habitats and other species. Ultimately, a better understanding of cervid visual ecology allows researchers to gain deeper insights into their behavior and ecology, providing critical information for conservation and management efforts.
Collapse
Affiliation(s)
- Blaise A. Newman
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
3
|
Günter A, Belhadj S, Seeliger MW, Mühlfriedel R. The Mongolian gerbil as an advanced model to study cone system physiology. Front Cell Neurosci 2024; 18:1339282. [PMID: 38333056 PMCID: PMC10850313 DOI: 10.3389/fncel.2024.1339282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
In this work, we introduce a diurnal rodent, the Mongolian gerbil (Meriones unguiculatus) (MG) as an alternative to study retinal cone system physiology and pathophysiology in mice. The cone system is of particular importance, as it provides high-acuity and color vision and its impairment in retinal disorders is thus especially disabling. Despite their nocturnal lifestyle, mice are currently the most popular animals to study cone-related diseases due to the high availability of genetically modified models. However, the potential for successful translation of any cone-related results is limited due to the substantial differences in retinal organization between mice and humans. Alternatively, there are diurnal rodents such as the MG with a higher retinal proportion of cones and a macula-like specialized region for improved visual resolution, the visual streak. The focus of this work was the evaluation of the MG's cone system functionality using full-field electroretinography (ERG), together with a morphological assessment of its retinal/visual streak organization via angiography, optical coherence tomography (OCT), and photoreceptor immunohistochemistry. We found that rod system responses in MGs were comparable or slightly inferior to mice, while in contrast, cone system responses were much larger, more sensitive, and also faster than those in the murine counterparts, and in addition, it was possible to record sizeable ON and OFF ERG components. Morphologically, MG cone photoreceptor opsins were evenly distributed throughout the retina, while mice show a dorsoventral M- and S-opsin gradient. Additionally, each cone expressed a single opsin, in contrast to the typical co-expression of opsins in mice. Particular attention was given to the visual streak region, featuring a higher density of cones, elongated cone and rod outer segments (OSs), and an increased thickness of the inner and outer retinal layers in comparison to peripheral regions. In summary, our data render the MG a supreme model to investigate cone system physiology, pathophysiology, and to validate potential therapeutic strategies in that context.
Collapse
Affiliation(s)
- Alexander Günter
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
4
|
Newman BA, Dyal JR, Miller KV, Cherry MJ, D'Angelo GJ. Influence of visual perception on movement decisions by an ungulate prey species. Biol Open 2023; 12:bio059932. [PMID: 37843403 PMCID: PMC10602006 DOI: 10.1242/bio.059932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Visual perception is dynamic and depends on physiological properties of a species' visual system and physical characteristics of the environment. White-tailed deer (Odocoileus virginianus) are most sensitive to short- and mid-wavelength light (e.g. blue and green). Wavelength enrichment varies spatially and temporally across the landscape. We assessed how the visual perception of deer influences their movement decisions. From August to September 2019, we recorded 10-min locations from 15 GPS-collared adult male deer in Central Florida. We used Hidden-Markov models to identify periods of movement by deer and subset these data into three time periods based on temporal changes in light environments. We modeled resource selection during movement using path-selection functions and simulated 10 available paths for every path used. We developed five a priori models and used 10-fold cross validation to assess our top model's performance for each time period. During the day, deer selected to move through woodland shade, avoided forest shade, and neither selected nor avoided small gaps. At twilight, deer avoided wetlands as cloud cover increased but neither selected nor avoided other cover types. Visual cues and signals are likely more conspicuous to deer in short-wavelength-enriched woodland shade during the day, while at twilight in long-wavelength-enriched wetlands during cloud cover, visual cues are likely less conspicuous. The nocturnal light environment did not influence resource selection and likely has little effect on deer movements because it's relatively homogenous. Our findings suggest visual perception relative to light environments is likely an underappreciated driver of behaviors and decision-making by an ungulate prey species.
Collapse
Affiliation(s)
- Blaise A. Newman
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA 30602, USA
| | - Jordan R. Dyal
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA 30602, USA
| | - Karl V. Miller
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA 30602, USA
| | - Michael J. Cherry
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, 700 University Blvd., Kingsville, TX 78363, USA
| | - Gino J. D'Angelo
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA 30602, USA
| |
Collapse
|
5
|
Nagloo N, Mountford JK, Gundry BJ, Hart NS, Davies WIL, Collin SP, Hemmi JM. Enhanced short-wavelength sensitivity in the blue-tongued skink, Tiliqua rugosa. J Exp Biol 2022; 225:275680. [PMID: 35582824 PMCID: PMC9234500 DOI: 10.1242/jeb.244317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
Abstract
Despite lizards using a wide range of color signals, the limited variation in photoreceptor spectral sensitivities across lizards suggests only weak selection for species-specific, spectral tuning of photoreceptors. Some species, however, have enhanced short wavelength sensitivity, which likely helps with the detection of signals rich in ultraviolet and short wavelengths. In this study, we examined the visual system of Tiliqua rugosa, which has a UV/blue tongue, to gain insight into this species' visual ecology. We used electroretinograms, opsin sequencing and immunohistochemical labelling to characterize whole eye spectral sensitivity and the elements that shape it. Our findings reveal that T. rugosa expresses all five opsins typically found in lizards (SWS1, SWS2, RH1, RH2 and LWS) but possesses greatly enhanced short wavelength sensitivity compared to other diurnal lizards. This enhanced short wavelength sensitivity is characterized by a broadening of the spectral sensitivity curve of the eye towards shorter wavelengths while the peak sensitivity of the eye at longer wavelengths (560 nm) remains similar to other diurnal lizards. While an increased abundance of SWS1 photoreceptors is thought to mediate elevated ultraviolet sensitivity in a couple of other lizard species, SWS1 photoreceptor abundance remains low in our species. Instead, our findings suggest that short-wavelength sensitivity is driven by multiple factors which include a potentially red-shifted SWS1 photoreceptor and the absence of short-wavelength absorbing oil droplets. Examining the coincidence of enhanced short-wavelength sensitivity with blue tongues among lizards of this genus will provide further insight into the co-evolution of conspecific signals and whole-eye spectral sensitivity.
Collapse
Affiliation(s)
- Nicolas Nagloo
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,Department of Biology, Lund University, Lund, S-212263, Sweden.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia
| | - Jessica K Mountford
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia.,Oceans Graduate School, The University of Western Australia, 6009 WA, Australia.,Clinical Genetics and Epidemiology, and Centre for Ophthalmology and Visual Science incorporating the Lions Eye Institute, The University of Western Australia, 6009 WA, Australia
| | - Ben J Gundry
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia
| | - Nathan S Hart
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,School of Natural Sciences, Macquarie University, 2109 NSW, Australia
| | - Wayne I L Davies
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia.,Oceans Graduate School, The University of Western Australia, 6009 WA, Australia.,Clinical Genetics and Epidemiology, and Centre for Ophthalmology and Visual Science incorporating the Lions Eye Institute, The University of Western Australia, 6009 WA, Australia.,Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, S-90187, Sweden.,School of Agriculture, Biomedicine and Environment, La Trobe University Bundoora, Victoria 3086, Australia
| | - Shaun P Collin
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia.,Oceans Graduate School, The University of Western Australia, 6009 WA, Australia.,Clinical Genetics and Epidemiology, and Centre for Ophthalmology and Visual Science incorporating the Lions Eye Institute, The University of Western Australia, 6009 WA, Australia.,School of Agriculture, Biomedicine and Environment, La Trobe University Bundoora, Victoria 3086, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia
| |
Collapse
|
6
|
Sharpe ZJ, Shehu A, Ichinose T. Asymmetric Distributions of Achromatic Bipolar Cells in the Mouse Retina. Front Neuroanat 2022; 15:786142. [PMID: 35095431 PMCID: PMC8792968 DOI: 10.3389/fnana.2021.786142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
In the retina, evolutionary changes can be traced in the topography of photoreceptors. The shape of the visual streak depends on the height of the animal and its habitat, namely, woods, prairies, or mountains. Also, the distribution of distinct wavelength-sensitive cones is unique to each animal. For example, UV and green cones reside in the ventral and dorsal regions in the mouse retina, respectively, whereas in the rat retina these cones are homogeneously distributed. In contrast with the abundant investigation on the distribution of photoreceptors and the third-order neurons, the distribution of bipolar cells has not been well understood. We utilized two enhanced green fluorescent protein (EGFP) mouse lines, Lhx4-EGFP (Lhx4) and 6030405A18Rik-EGFP (Rik), to examine the topographic distributions of bipolar cells in the retina. First, we characterized their GFP-expressing cells using type-specific markers. We found that GFP was expressed by type 2, type 3a, and type 6 bipolar cells in the Rik mice and by type 3b, type 4, and type 5 bipolar cells in the Lhx4 mice. All these types are achromatic. Then, we examined the distributions of bipolar cells in the four cardinal directions and three different eccentricities of the retinal tissue. In the Rik mice, GFP-expressing bipolar cells were more highly observed in the nasal region than those in the temporal retina. The number of GFP cells was not different along with the ventral-dorsal axis. In contrast, in the Lhx4 mice, GFP-expressing cells occurred at a higher density in the ventral region than in the dorsal retina. However, no difference was observed along the nasal-temporal axis. Furthermore, we examined which type of bipolar cells contributed to the asymmetric distributions in the Rik mice. We found that type 3a bipolar cells occurred at a higher density in the temporal region, whereas type 6 bipolar cells were denser in the nasal region. The asymmetricity of these bipolar cells shaped the uneven distribution of the GFP cells in the Rik mice. In conclusion, we found that a subset of achromatic bipolar cells is asymmetrically distributed in the mouse retina, suggesting their unique roles in achromatic visual processing.
Collapse
|
7
|
Watson EM, Cohen BS, Osborn DA, Brown JM, Miller KV. Estimation of Visual Discrimination in the White-tailed Deer by Behavioral Assay. AMERICAN MIDLAND NATURALIST 2022. [DOI: 10.1674/0003-0031-187.1.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Eryn M. Watson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athen 30602
| | - Bradley S. Cohen
- Warnell School of Forestry and Natural Resources, University of Georgia, Athen 30602
| | - David A. Osborn
- Warnell School of Forestry and Natural Resources, University of Georgia, Athen 30602
| | - James M. Brown
- Department of Psychology, University of Georgia, Athens 30602
| | - Karl V. Miller
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens 30602
| |
Collapse
|
8
|
Ichinose T, Habib S. ON and OFF Signaling Pathways in the Retina and the Visual System. FRONTIERS IN OPHTHALMOLOGY 2022; 2:989002. [PMID: 36926308 PMCID: PMC10016624 DOI: 10.3389/fopht.2022.989002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Visual processing starts at the retina of the eye, and signals are then transferred primarily to the visual cortex and the tectum. In the retina, multiple neural networks encode different aspects of visual input, such as color and motion. Subsequently, multiple neural streams in parallel convey unique aspects of visual information to cortical and subcortical regions. Bipolar cells, which are the second order neurons of the retina, separate visual signals evoked by light and dark contrasts and encode them to ON and OFF pathways, respectively. The interplay between ON and OFF neural signals is the foundation for visual processing for object contrast which underlies higher order stimulus processing. ON and OFF pathways have been classically thought to signal in a mirror-symmetric manner. However, while these two pathways contribute synergistically to visual perception in some instances, they have pronounced asymmetries suggesting independent operation in other cases. In this review, we summarize the role of the ON-OFF dichotomy in visual signaling, aiming to contribute to the understanding of visual recognition.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Correspondence: Tomomi Ichinose, MD, PhD,
| | - Samar Habib
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Abstract
A retina completely devoid of topographic variations would be homogenous, encoding any given feature uniformly across the visual field. In a naive view, such homogeneity would appear advantageous. However, it is now clear that retinal topographic variations exist across mammalian species in a variety of forms and patterns. We briefly review some of the more established topographic variations in retinas of different mammalian species and focus on the recent discovery that cells belonging to a single neuronal subtype may exhibit distinct topographic variations in distribution, morphology, and even function. We concentrate on the mouse retina-originally viewed as homogenous-in which genetic labeling of distinct neuronal subtypes and other advanced techniques have revealed unexpected anatomical and physiological topographic variations. Notably, different subtypes reveal different patterns of nonuniformity, which may even be opposite or orthogonal to one another. These topographic variations in the encoding of visual space should be considered when studying visual processing in the retina and beyond.
Collapse
Affiliation(s)
- Alina Sophie Heukamp
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; , ,
| | - Rebekah Anne Warwick
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; , ,
| | - Michal Rivlin-Etzion
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; , ,
| |
Collapse
|
10
|
Heyward JL, Reynolds BD, Foster ML, Archibald KE, Stoskopf MK, Mowat FM. Retinal cone photoreceptor distribution in the American black bear (Ursus americanus). Anat Rec (Hoboken) 2020; 304:662-672. [PMID: 32510783 DOI: 10.1002/ar.24472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 11/06/2022]
Abstract
The distribution of cone photoreceptor subtypes (important for color vision and vision quality) varies widely in different carnivore species, but there have been limited studies on bear (ursid) cone distribution. A previous behavioral study suggests that American black bears (Ursus americanus) are dichromatic, indicating that they possess two cone subtypes, although the retinal distribution of cones is unknown. The purpose of this study was to examine the subtype and topography of cones in American black bear retinas to further predict the nature of their color vision and image resolution. We studied 10 eyes from seven individual legally hunted black bears in northeastern North Carolina. Cryosections and retinal wholemounts were labeled using antibodies targeting two cone opsin subtypes: long/medium (L/M) wavelength sensitive and short (S) wavelength sensitive. Cones in fluorescent microscopy images were counted and density maps were created for retinal wholemounts. The black bear retina contains both cone subtypes and L/M cones outnumber S cones by at least 3:1, a finding confirmed in retinal frozen sections. There are higher concentrations of S cones present than typically seen in other carnivores with some evidence for co-expression of L/M and S cones. A cone-dense area centralis is present dorsotemporal to the optic nerve, similar to other carnivores. These results confirm that American black bears are predicted to have a dichromatic vision with high acuity indicated by the presence of a dorsotemporally located area centralis.
Collapse
Affiliation(s)
- Jennifer L Heyward
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | | | - Melanie L Foster
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Kate E Archibald
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA.,Environmental Medicine Consortium, North Carolina State University, Raleigh, North Carolina, USA.,The Maryland Zoo in Baltimore, Baltimore, Maryland, USA
| | - Michael K Stoskopf
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA.,Environmental Medicine Consortium, North Carolina State University, Raleigh, North Carolina, USA
| | - Freya M Mowat
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA.,Environmental Medicine Consortium, North Carolina State University, Raleigh, North Carolina, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Nadal-Nicolás FM, Kunze VP, Ball JM, Peng BT, Krishnan A, Zhou G, Dong L, Li W. True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field. eLife 2020; 9:e56840. [PMID: 32463363 PMCID: PMC7308094 DOI: 10.7554/elife.56840] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Color, an important visual cue for survival, is encoded by comparing signals from photoreceptors with different spectral sensitivities. The mouse retina expresses a short wavelength-sensitive and a middle/long wavelength-sensitive opsin (S- and M-opsin), forming opposing, overlapping gradients along the dorsal-ventral axis. Here, we analyzed the distribution of all cone types across the entire retina for two commonly used mouse strains. We found, unexpectedly, that 'true S-cones' (S-opsin only) are highly concentrated (up to 30% of cones) in ventral retina. Moreover, S-cone bipolar cells (SCBCs) are also skewed towards ventral retina, with wiring patterns matching the distribution of true S-cones. In addition, true S-cones in the ventral retina form clusters, which may augment synaptic input to SCBCs. Such a unique true S-cone and SCBC connecting pattern forms a basis for mouse color vision, likely reflecting evolutionary adaptation to enhance color coding for the upper visual field suitable for mice's habitat and behavior.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Vincent P Kunze
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - John M Ball
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Brian T Peng
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Akshay Krishnan
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Gaohui Zhou
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
12
|
Coimbra JP, Alagaili AN, Bennett NC, Mohammed OB, Manger PR. Unusual topographic specializations of retinal ganglion cell density and spatial resolution in a cliff-dwelling artiodactyl, the Nubian ibex (Capra nubiana). J Comp Neurol 2019; 527:2813-2825. [PMID: 31045240 DOI: 10.1002/cne.24709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 11/12/2022]
Abstract
The Nubian ibex (Capra nubiana) occurs in information-rich visual habitats including the edges of cliffs and escarpments. In addition to needing enhanced spatial resolution to find food and detect predators, enhanced visual sampling of the lower visual field would be advantageous for the control of locomotion in such precarious terrains. Using retinal wholemounts and stereology, we sought to measure how the ganglion cell density varies across the retina of the Nubian ibex to reveal which portions of its surroundings are sampled with high resolution. We estimated a total of ~1 million ganglion cells in the Nubian ibex retinal ganglion cell layer. Topographic variations of ganglion cell density reveal a temporal area, a horizontal streak, and a dorsotemporal extension, which are topographic retinal features also found in other artiodactyls. In contrast to savannah-dwelling artiodactyls, the horizontal streak of the Nubian ibex appears loosely organized possibly reflecting a reduced predation risk in mountainous habitats. Estimates of spatial resolving power (~17 cycles/degree) for the temporal area would be reasonable to facilitate foraging in the frontal visual field. Embedded in the dorsotemporal extension, we also found an unusual dorsotemporal area not yet reported in any other mammal. Given its location and spatial resolving power (~6 cycles/degree), this specialization enhances visual sampling toward the lower visual field, which would be advantageous for visually guided locomotion. This study expands our understanding of the retinal organization in artiodactyls and offers insights on the importance of vision for the Nubian ibex ecology.
Collapse
Affiliation(s)
- João Paulo Coimbra
- School of Anatomical Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Nigel C Bennett
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Osama B Mohammed
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Paul R Manger
- School of Anatomical Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| |
Collapse
|
13
|
Benten A, Balkenhol N, Vor T, Ammer C. Wildlife warning reflectors do not alter the behavior of ungulates to reduce the risk of wildlife-vehicle collisions. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1312-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Gower DJ, Sampaio FL, Peichl L, Wagner HJ, Loew ER, Mclamb W, Douglas RH, Orlov N, Grace MS, Hart NS, Hunt DM, Partridge JC, Simões BF. Evolution of the eyes of vipers with and without infrared-sensing pit organs. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Filipa L Sampaio
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Leo Peichl
- Max Planck Institute for Brain Research, Germany
- Dr. Senckenbergische Anatomie, Goethe University Frankfurt, Germany
| | | | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University, USA
| | - William Mclamb
- Department of Biological Sciences, Florida Institute of Technology, and Center for the Advancement of Science in Space, Melbourne, FL, USA
| | - Ronald H Douglas
- Department of Life Sciences, The Natural History Museum, London, UK
- Department of Optometry and Visual Science, City, University of London, London, UK
| | - Nikolai Orlov
- Department of Herpetology, Zoological Institute, Russian Academy of Sciences, Russia
| | - Michael S Grace
- College of Science, Florida Institute of Technology, Melbourne, FL, USA
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, Australia
| | - David M Hunt
- School of Biological Sciences, The University of Western Australia, Australia
- Centre for Ophthalmology and Vision Science, Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Julian C Partridge
- School of Biological Sciences, The University of Western Australia, Australia
- Oceans Institute, The University of Western Australia, Perth, WA, Australia
| | - Bruno F Simões
- Department of Life Sciences, The Natural History Museum, London, UK
- School of Earth Sciences, University of Bristol, Bristol, UK
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Lindenau W, Kuhrt H, Ulbricht E, Körner K, Bringmann A, Reichenbach A. Cone-to-Müller cell ratio in the mammalian retina: A survey of seven mammals with different lifestyle. Exp Eye Res 2019; 181:38-48. [PMID: 30641045 DOI: 10.1016/j.exer.2019.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 11/25/2022]
Abstract
Mammalian retinal glial (Müller) cells are known to guide light through the inner retina to photoreceptors (Franze et al., 2007; Proc Natl Acad Sci U S A 104:8287-8292). It was shown that Müller cells transmit predominantly red-green and less violet-blue light (Labin et al., 2014; Nat Commun 5:4319). It is not known whether this optical function is reflected in the cone-to-Müller cell ratio. To determine this ratio in the retinas of mammals with different lifestyle, we evaluated the local densities of cones and Müller cells in the retinas of guinea pigs, rabbits, sheep, red deer, roe deer, domestic pigs, and wild boars. Retinal wholemounts were labeled with peanut agglutinin to mark cones and anti-vimentin antibodies to identify Müller cells. Wholemounts of guinea pig and rabbit retinas were also labeled with anti-S-opsin-antibodies. With the exceptions of guinea pig and pig retinas that had cone-to-Müller cell ratios of above one, the local densities of cones and Müller cells in the retinas of the species investigated were roughly equal. Because the proportion of S-cones is usually low (for example, 5.3% of all cones in the dorsal guinea pig retina expressed S-opsin), it is suggested that Müller cells are mainly coupled to M-cones. Exceptions are the ventral peripheries of guinea pig and rabbit retinas which are specialized areas with high S-cone densities. Here, up to 50% of Müller cells may be coupled to S-cones, and 40% of S-cones may be not coupled to Müller cells. Among the species investigated, the density of Müller cells in the central retina was inversely correlated with the axial length of the eyes. It is suggested that (with the exception of specialized S-cone areas) Müller cells support high acuity vision by predominant guidance of red-green light to M-opsin expressing cones.
Collapse
Affiliation(s)
- Wilhelm Lindenau
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Heidrun Kuhrt
- Institute of Anatomy, Medical Faculty, University of Leipzig, Germany
| | - Elke Ulbricht
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Katrin Körner
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, Medical Faculty, University of Leipzig, Leipzig, Germany.
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Benten A, Hothorn T, Vor T, Ammer C. Wildlife warning reflectors do not mitigate wildlife-vehicle collisions on roads. ACCIDENT; ANALYSIS AND PREVENTION 2018; 120:64-73. [PMID: 30096449 DOI: 10.1016/j.aap.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Wildlife-vehicle collisions cause human fatalities and enormous economic and ecological losses on roads worldwide. A variety of mitigation measures have been developed over the past decades to separate traffic and wildlife, warn humans, or prevent wildlife from entering a road while vehicles are passing by, but only few are economical enough to be applied comprehensively. One such measure, wildlife warning reflectors, has been implemented over the past five decades. However, their efficacy is questioned because of contradictory study results and the variety of applied study designs and reflector models. We used a prospective, randomized non-superiority cross-over study design to test our hypothesis of the inefficacy of modern wildlife warning reflectors. We analyzed wildlife-vehicle collisions on 151 testing sites of approximately 2 km in length each. During the 24-month study period, 1984 wildlife-vehicle collisions were recorded. Confirmatory primary and exploratory secondary analyses using a log-link Poisson mixed model with normal nested random intercepts of observation year in road segment, involved species, and variables of the road segment and the surrounding environment showed that reflectors did not lower the number of wildlife-vehicle collisions by a relevant amount. In addition, variables of the road segment and the surrounding environment did not indicate differential effects of wildlife warning reflectors. Based on our results, we conclude that wildlife warning reflectors are not an effective tool for mitigating wildlife-vehicle collisions on roads.
Collapse
Affiliation(s)
- Anke Benten
- Silviculture and Forest Ecology of the Temperate Zones, Forest Sciences, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany.
| | - Torsten Hothorn
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Hirschengraben 84, 8001 Zürich, Switzerland
| | - Torsten Vor
- Silviculture and Forest Ecology of the Temperate Zones, Forest Sciences, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, Forest Sciences, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Malkemper EP, Peichl L. Retinal photoreceptor and ganglion cell types and topographies in the red fox (Vulpes vulpes
) and Arctic fox (Vulpes lagopus
). J Comp Neurol 2018; 526:2078-2098. [DOI: 10.1002/cne.24493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Erich Pascal Malkemper
- Department of General Zoology; Faculty of Biology, University of Duisburg-Essen; Essen Germany
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences; Czech University of Life Sciences; Praha 6 Czech Republic
| | - Leo Peichl
- Max Planck Institute for Brain Research; Frankfurt am Main Germany
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie, Goethe University Frankfurt; Frankfurt am Main Germany
| |
Collapse
|
18
|
Douglas RH. The pupillary light responses of animals; a review of their distribution, dynamics, mechanisms and functions. Prog Retin Eye Res 2018; 66:17-48. [PMID: 29723580 DOI: 10.1016/j.preteyeres.2018.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 11/28/2022]
Abstract
The timecourse and extent of changes in pupil area in response to light are reviewed in all classes of vertebrate and cephalopods. Although the speed and extent of these responses vary, most species, except the majority of teleost fish, show extensive changes in pupil area related to light exposure. The neuromuscular pathways underlying light-evoked pupil constriction are described and found to be relatively conserved, although the precise autonomic mechanisms differ somewhat between species. In mammals, illumination of only one eye is known to cause constriction in the unilluminated pupil. Such consensual responses occur widely in other animals too, and their function and relation to decussation of the visual pathway is considered. Intrinsic photosensitivity of the iris muscles has long been known in amphibia, but is in fact widespread in other animals. The functions of changes in pupil area are considered. In the majority of species, changes in pupil area serve to balance the conflicting demands of high spatial acuity and increased sensitivity in different light levels. In the few teleosts in which pupil movements occur they do not serve a visual function but play a role in camouflaging the eye of bottom-dwelling species. The occurrence and functions of the light-independent changes in pupil size displayed by many animals are also considered. Finally, the significance of the variations in pupil shape, ranging from circular to various orientations of slits, ovals, and other shapes, is discussed.
Collapse
Affiliation(s)
- Ronald H Douglas
- Division of Optometry & Visual Science City, University of London, Northampton Square, London, EC1V 0HB, United Kingdom.
| |
Collapse
|
19
|
Stabio ME, Sondereker KB, Haghgou SD, Day BL, Chidsey B, Sabbah S, Renna JM. A novel map of the mouse eye for orienting retinal topography in anatomical space. J Comp Neurol 2018; 526:1749-1759. [PMID: 29633277 DOI: 10.1002/cne.24446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/01/2018] [Accepted: 03/19/2018] [Indexed: 12/24/2022]
Abstract
Functionally distinct retinal ganglion cells have density and size gradients across the mouse retina, and some degenerative eye diseases follow topographic-specific gradients of cell death. Hence, the anatomical orientation of the retina with respect to the orbit and head is important for understanding the functional anatomy of the retina in both health and disease. However, different research groups use different anatomical landmarks to determine retinal orientation (dorsal, ventral, temporal, nasal poles). Variations in the accuracy and reliability in marking these landmarks during dissection may lead to discrepancies in the identification and reporting of retinal topography. The goal of this study was to compare the accuracy and reliability of the canthus, rectus muscle, and choroid fissure landmarks in reporting retinal orientation. The retinal relieving cut angle made from each landmark during dissection was calculated based on its relationship to the opsin transition zone (OTZ), determined via a custom MATLAB script that aligns retinas from immunostained s-opsin. The choroid fissure and rectus muscle landmarks were the most accurate and reliable, while burn marks using the canthus as a reference were the least. These values were used to build an anatomical map that plots various ocular landmarks in relationship to one another, to the horizontal semicircular canals, to lambda-bregma, and to the earth's horizon. Surprisingly, during normal locomotion, the mouse's opsin gradient and the horizontal semicircular canals make equivalent 6° angles aligning the OTZ near the earth's horizon, a feature which may enhance the mouse's ability to visually navigate through its environment.
Collapse
Affiliation(s)
- Maureen E Stabio
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Sean D Haghgou
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Brittany L Day
- Department of Biology, The University of Akron, Akron, Ohio
| | - Berrien Chidsey
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Shai Sabbah
- Department of Neuroscience, Brown University, Providence, Rhode Island
| | - Jordan M Renna
- Department of Biology, The University of Akron, Akron, Ohio
| |
Collapse
|
20
|
Sondereker KB, Onyak JR, Islam SW, Ross CL, Renna JM. Melanopsin ganglion cell outer retinal dendrites: Morphologically distinct and asymmetrically distributed in the mouse retina. J Comp Neurol 2017; 525:3653-3665. [PMID: 28758193 PMCID: PMC5777477 DOI: 10.1002/cne.24293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 11/07/2022]
Abstract
A small population of retinal ganglion cells expresses the photopigment melanopsin and function as autonomous photoreceptors. They encode global luminance levels critical for light-mediated non-image forming visual processes including circadian rhythms and the pupillary light reflex. There are five melanopsin ganglion cell subtypes (M1-M5). M1 and displaced M1 (M1d) cells have dendrites that ramify within the outermost layer of the inner plexiform layer. It was recently discovered that some melanopsin ganglion cells extend dendrites into the outer retina. Outer Retinal Dendrites (ORDs) either ramify within the outer plexiform layer (OPL) or the inner nuclear layer, and while present in the mature retina, are most abundant postnatally. Anatomical evidence for synaptic transmission between cone photoreceptor terminals and ORDs suggests a novel photoreceptor to ganglion cell connection in the mammalian retina. While it is known that the number of ORDs in the retina is developmentally regulated, little is known about the morphology, the cells from which they originate, or their spatial distribution throughout the retina. We analyzed the morphology of melanopsin-immunopositive ORDs in the OPL at different developmental time points in the mouse retina and identified five types of ORDs originating from either M1 or M1d cells. However, a pattern emerges within these: ORDs from M1d cells are generally longer and more highly branched than ORDs from conventional M1 cells. Additionally, we found ORDs asymmetrically distributed to the dorsal retina. This morphological analysis provides the first step in identifying a potential role for biplexiform melanopsin ganglion cell ORDs.
Collapse
Affiliation(s)
| | - Jessica R. Onyak
- Department of Biology, The University of Akron, Akron, Ohio,
USA
| | - Shakib W. Islam
- Department of Biology, The University of Akron, Akron, Ohio,
USA
| | | | - Jordan M. Renna
- Department of Biology, The University of Akron, Akron, Ohio,
USA
| |
Collapse
|
21
|
Brieger F, Hagen R, Kröschel M, Hartig F, Petersen I, Ortmann S, Suchant R. Do roe deer react to wildlife warning reflectors? A test combining a controlled experiment with field observations. EUR J WILDLIFE RES 2017. [DOI: 10.1007/s10344-017-1130-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Mitkus M, Olsson P, Toomey MB, Corbo JC, Kelber A. Specialized photoreceptor composition in the raptor fovea. J Comp Neurol 2017; 525:2152-2163. [PMID: 28199005 PMCID: PMC6235456 DOI: 10.1002/cne.24190] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/13/2017] [Accepted: 02/07/2017] [Indexed: 11/08/2022]
Abstract
The retinae of many bird species contain a depression with high photoreceptor density known as the fovea. Many species of raptors have two foveae, a deep central fovea and a shallower temporal fovea. Birds have six types of photoreceptors: rods, active in dim light, double cones that are thought to mediate achromatic discrimination, and four types of single cones mediating color vision. To maximize visual acuity, the fovea should only contain photoreceptors contributing to high-resolution vision. Interestingly, it has been suggested that raptors might lack double cones in the fovea. We used transmission electron microscopy and immunohistochemistry to evaluate this claim in five raptor species: the common buzzard (Buteo buteo), the honey buzzard (Pernis apivorus), the Eurasian sparrowhawk (Accipiter nisus), the red kite (Milvus milvus), and the peregrine falcon (Falco peregrinus). We found that all species, except the Eurasian sparrowhawk, lack double cones in the center of the central fovea. The size of the double cone-free zone differed between species. Only the common buzzard had a double cone-free zone in the temporal fovea. In three species, we examined opsin expression in the central fovea and found evidence that rod opsin positive cells were absent and violet-sensitive cone and green-sensitive cone opsin positive cells were present. We conclude that not only double cones, but also single cones may contribute to high-resolution vision in birds, and that raptors may in fact possess high-resolution tetrachromatic vision in the central fovea.
Collapse
Affiliation(s)
- Mindaugas Mitkus
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22364, Lund, Sweden
| | - Peter Olsson
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22364, Lund, Sweden
| | - Matthew B. Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22364, Lund, Sweden
| |
Collapse
|
23
|
Coimbra JP, Bertelsen MF, Manger PR. Retinal ganglion cell topography and spatial resolving power in the river hippopotamus (Hippopotamus amphibius
). J Comp Neurol 2017; 525:2499-2513. [DOI: 10.1002/cne.24179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/10/2022]
Affiliation(s)
- João Paulo Coimbra
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg South Africa
| | - Mads F. Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo; Fredericksberg Denmark
| | - Paul R. Manger
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg South Africa
| |
Collapse
|
24
|
Kuhrt H, Bringmann A, Härtig W, Wibbelt G, Peichl L, Reichenbach A. The Retina of Asian and African Elephants: Comparison of Newborn and Adult. BRAIN, BEHAVIOR AND EVOLUTION 2017; 89:84-103. [PMID: 28437785 DOI: 10.1159/000464097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/14/2017] [Indexed: 11/19/2022]
Abstract
Elephants are precocial mammals that are relatively mature as newborns and mobile shortly after birth. To determine whether the retina of newborn elephants is capable of supporting the mobility of elephant calves, we compared the retinal structures of 2 newborn elephants (1 African and 1 Asian) and 2 adult animals of both species by immunohistochemical and morphometric methods. For the first time, we present here a comprehensive qualitative and quantitative characterization of the cellular composition of the newborn and the adult retinas of 2 elephant species. We found that the retina of elephants is relatively mature at birth. All retinal layers were well discernible, and various retinal cell types were detected in the newborns, including Müller glial cells (expressing glutamine synthetase and cellular retinal binding protein; CRALBP), cone photoreceptors (expressing S-opsin or M/L-opsin), protein kinase Cα-expressing bipolar cells, tyrosine hydroxylase-, choline acetyltransferase (ChAT)-, calbindin-, and calretinin-expressing amacrine cells, and calbindin-expressing horizontal cells. The retina of newborn elephants contains discrete horizontal cells which coexpress ChAT, calbindin, and calretinin. While the overall structure of the retina is very similar between newborn and adult elephants, various parameters change after birth. The postnatal thickening of the retinal ganglion cell axons and the increase in ganglion cell soma size are explained by the increase in body size after birth, and the decreases in the densities of neuronal and glial cells are explained by the postnatal expansion of the retinal surface area. The expression of glutamine synthetase and CRALBP in the Müller cells of newborn elephants suggests that the cells are already capable of supporting the activities of photoreceptors and neurons. As a peculiarity, the elephant retina contains both normally located and displaced giant ganglion cells, with single cells reaching a diameter of more than 50 µm in adults and therefore being almost in the range of giant retinal ganglion cells found in aquatic mammals. Some of these ganglion cells are displaced into the inner nuclear layer, a unique feature of terrestrial mammals. For the first time, we describe here the occurrence of many bistratified rod bipolar cells in the elephant retina. These bistratified bipolar cells may improve nocturnal contrast perception in elephants given their arrhythmic lifestyle.
Collapse
Affiliation(s)
- Heidrun Kuhrt
- Paul Flechsig Institute of Brain Research, University of Leipzig Medical Faculty, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Peichl L, Kaiser A, Rakotondraparany F, Dubielzig RR, Goodman SM, Kappeler PM. Diversity of photoreceptor arrangements in nocturnal, cathemeral and diurnal Malagasy lemurs. J Comp Neurol 2017; 527:13-37. [DOI: 10.1002/cne.24167] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Leo Peichl
- Max Planck Institute for Brain Research; Max-von-Laue-Straße 4, 60438 Frankfurt am Main Germany
- Ernst Strüngmann Institute for Neuroscience; Deutschordenstraße 46, 60528 Frankfurt am Main Germany
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie, Goethe University Frankfurt; Theodor-Stern-Kai 7, 60590 Frankfurt am Main Germany
| | - Alexander Kaiser
- Department Biology II; Ludwig-Maximilians University Munich; Großhaderner Straße 2-4, 82152 Martinsried-Planegg Germany
- Institute of Zoology; University of Veterinary Medicine Hannover; Bünteweg 17, 30559 Hannover Germany
| | - Felix Rakotondraparany
- Département de Zoologie et Biodiversité Animale; Université d’Antananarivo; BP 906, Antananarivo 101 Madagascar
| | - Richard R. Dubielzig
- School of Veterinary Medicine; University of Wisconsin; 2015 Linden Drive Madison Wisconsin 53706
| | - Steven M. Goodman
- The Field Museum of Natural History; 1400 South Lake Shore Drive, Chicago Illinois 60605
- Association Vahatra; BP 3972, Antananarivo 101 Madagascar
| | - Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center; Kellnerweg 4, 37077 Göttingen Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology; University Göttingen; Kellnerweg 6, 37077 Göttingen Germany
| |
Collapse
|
26
|
Brieger F, Kämmerle JL, Martschuk N, Ortmann S, Hagen R. No evidence for a ‘warning effect’ of blue light in roe deer. WILDLIFE BIOLOGY 2017. [DOI: 10.2981/wlb.00331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Falko Brieger
- F. Brieger , J.-L. Kämmerle and R. Hagen, Forest Res. Inst. of Baden-Württemberg, Division of Wildlife Ecology, Wonnhaldestraße 4, DE-79100 Freiburg, Germany. FB and JLK also at: Chair of Wildlife Ecology and Management, Univ. of Freiburg, Freiburg, Germany
| | - Jim-Lino Kämmerle
- F. Brieger , J.-L. Kämmerle and R. Hagen, Forest Res. Inst. of Baden-Württemberg, Division of Wildlife Ecology, Wonnhaldestraße 4, DE-79100 Freiburg, Germany. FB and JLK also at: Chair of Wildlife Ecology and Management, Univ. of Freiburg, Freiburg, Germany
| | - Nadja Martschuk
- N. Martschuk, Inst. of Biology I (Zoology), Univ. of Freiburg, Freiburg, Germany
| | - Sylvia Ortmann
- S. Ortmann, Dept. Evolutionary Ecology, Leibniz Inst. for Zoo and Wildlife Research, Berlin, Germany
| | - Robert Hagen
- F. Brieger , J.-L. Kämmerle and R. Hagen, Forest Res. Inst. of Baden-Württemberg, Division of Wildlife Ecology, Wonnhaldestraße 4, DE-79100 Freiburg, Germany. FB and JLK also at: Chair of Wildlife Ecology and Management, Univ. of Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Williams EM. Giraffe Stature and Neck Elongation: Vigilance as an Evolutionary Mechanism. BIOLOGY 2016; 5:biology5030035. [PMID: 27626454 PMCID: PMC5037354 DOI: 10.3390/biology5030035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 11/16/2022]
Abstract
Giraffe (Giraffa camelopardalis), with their long neck and legs, are unique amongst mammals. How these features evolved is a matter of conjecture. The two leading ideas are the high browse and the sexual-selection hypotheses. While both explain many of the characteristics and the behaviour of giraffe, neither is fully supported by the available evidence. The extended viewing horizon afforded by increased height and a need to maintain horizon vigilance, as a mechanism favouring the evolution of increased height is reviewed. In giraffe, vigilance of predators whilst feeding and drinking are important survival factors, as is the ability to interact with immediate herd members, young and male suitors. The evidence regarding giraffe vigilance behaviour is sparse and suggests that over-vigilance has a negative cost, serving as a distraction to feeding. In woodland savannah, increased height allows giraffe to see further, allowing each giraffe to increase the distance between its neighbours while browsing. Increased height allows the giraffe to see the early approach of predators, as well as bull males. It is postulated that the wider panorama afforded by an increase in height and longer neck has improved survival via allowing giraffe to browse safely over wider areas, decreasing competition within groups and with other herbivores.
Collapse
Affiliation(s)
- Edgar M Williams
- Faculty of Life Sciences and Education, University of South Wales, Wales CF37 1DL, UK; ; Tel.: +44-1443-483-893.
| |
Collapse
|
28
|
Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals. Sci Rep 2016; 6:21848. [PMID: 26898837 PMCID: PMC4761878 DOI: 10.1038/srep21848] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/01/2016] [Indexed: 11/16/2022] Open
Abstract
Cryptochromes are a ubiquitous group of blue-light absorbing flavoproteins that in the mammalian retina have an important role in the circadian clock. In birds, cryptochrome 1a (Cry1a), localized in the UV/violet-sensitive S1 cone photoreceptors, is proposed to be the retinal receptor molecule of the light-dependent magnetic compass. The retinal localization of mammalian Cry1, homologue to avian Cry1a, is unknown, and it is open whether mammalian Cry1 is also involved in magnetic field sensing. To constrain the possible role of retinal Cry1, we immunohistochemically analysed 90 mammalian species across 48 families in 16 orders, using an antiserum against the Cry1 C-terminus that in birds labels only the photo-activated conformation. In the Carnivora families Canidae, Mustelidae and Ursidae, and in some Primates, Cry1 was consistently labeled in the outer segment of the shortwave-sensitive S1 cones. This finding would be compatible with a magnetoreceptive function of Cry1 in these taxa. In all other taxa, Cry1 was not detected by the antiserum that likely also in mammals labels the photo-activated conformation, although Western blots showed Cry1 in mouse retinal cell nuclei. We speculate that in the mouse and the other negative-tested mammals Cry1 is involved in circadian functions as a non-light-responsive protein.
Collapse
|
29
|
Lisney TJ, Wylie DR, Kolominsky J, Iwaniuk AN. Eye Morphology and Retinal Topography in Hummingbirds (Trochilidae: Aves). BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:176-90. [DOI: 10.1159/000441834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022]
Abstract
Hummingbirds are a group of small, highly specialized birds that display a range of adaptations to their nectarivorous lifestyle. Vision plays a key role in hummingbird feeding and hovering behaviours, yet very little is known about the visual systems of these birds. In this study, we measured eye morphology in 5 hummingbird species. For 2 of these species, we used stereology and retinal whole mounts to study the topographic distribution of neurons in the ganglion cell layer. Eye morphology (expressed as the ratio of corneal diameter to eye transverse diameter) was similar among all 5 species and was within the range previously documented for diurnal birds. Retinal topography was similar in Amazilia tzacatl and Calypte anna. Both species had 2 specialized retinal regions of high neuron density: a central region located slightly dorso-nasal to the superior pole of the pecten, where densities reached ∼45,000 cells·mm-2, and a temporal area with lower densities (38,000-39,000 cells·mm-2). A weak visual streak bridged the two high-density areas. A retina from Phaethornis superciliosus also had a central high-density area with a similar peak neuron density. Estimates of spatial resolving power for all 3 species were similar, at approximately 5-6 cycles·degree-1. Retinal cross sections confirmed that the central high-density region in C. anna contains a fovea, but not the temporal area. We found no evidence of a second, less well-developed fovea located close to the temporal retina margin. The central and temporal areas of high neuron density allow for increased spatial resolution in the lateral and frontal visual fields, respectively. Increased resolution in the frontal field in particular may be important for mediating feeding behaviors such as aerial docking with flowers and catching small insects.
Collapse
|
30
|
Mitchell G, Roberts D, van Sittert S. The digestive morphophysiology of wild, free-living, giraffes. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:119-29. [DOI: 10.1016/j.cbpa.2015.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 11/25/2022]
|
31
|
Larsson ML. Binocular vision, the optic chiasm, and their associations with vertebrate motor behavior. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Garza-Gisholt E, Kempster RM, Hart NS, Collin SP. Visual Specializations in Five Sympatric Species of Stingrays from the Family Dasyatidae. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:217-32. [DOI: 10.1159/000381091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/17/2015] [Indexed: 11/19/2022]
Abstract
The eyes of five ray species (Taeniura lymma, Neotrygon kuhlii, Pastinachus atrus, Himantura uarnak and Urogymnus asperrimus) from the same taxonomic family (Dasyatidae) and the same geographic region (Ningaloo Reef, Western Australia) were studied to identify differences in retinal specializations that may reflect niche specialization. The topographic distributions of photoreceptors (rods and all cones) and ganglion cells were assessed and used to identify localized peaks in cell densities that indicate specializations for acute vision. These data were also used to calculate summation ratios of photoreceptors to ganglion cells in each species and estimate the anatomical spatial resolving power of the eye. Subtle differences in the distribution of retinal neurons appear to be related to the ecology of these closely related species of stingrays. The main specialization in the retinal cell density distribution is the dorsal streak that allows these animals to scan the substrate for potential prey. The blue-spotted fantail ray, T. lymma, showed the highest peak density of rods (86,700 rods mm-2) suggesting a specialization for scotopic vision. The highest peak density of cones (9,970 cones mm-2) was found in H. uarnak, and the highest peak density of ganglion cells (4,500 cells mm-2) was found in P. atrus. The proportion of rods to cones in the dorsal streak was higher in the two smaller species (12.5-14:1 in T. lymma and N. kuhlii) than the larger stingrays (6-8:1 in P. atrus, H. uarnak and U. asperrimus). Visual specializations in different sympatric species are subtle but may reflect specializations to specific ecological niches.
Collapse
|
33
|
Cohn BA, Collin SP, Wainwright PC, Schmitz L. Retinal topography maps in R: new tools for the analysis and visualization of spatial retinal data. J Vis 2015; 15:19. [PMID: 26230981 PMCID: PMC4527213 DOI: 10.1167/15.9.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/03/2015] [Indexed: 12/29/2022] Open
Abstract
Retinal topography maps are a widely used tool in vision science, neuroscience, and visual ecology, providing an informative visualization of the spatial distribution of cell densities across the retinal hemisphere. Here, we introduce Retina, an R package for computational mapping, inspection of topographic model fits, and generation of average maps. Functions in Retina take cell count data obtained from retinal wholemounts using stereology software. Accurate visualizations and comparisons between different eyes have been difficult in the past, because of deformation and incisions of retinal wholemounts. We account for these issues by incorporation of the R package Retistruct, which results in a retrodeformation of the wholemount into a hemispherical shape, similar to the original eyecup. The maps are generated by thin plate splines, after the data were transformed into a two-dimensional space with an azimuthal equidistant plot projection. Retina users can compute retinal topography maps independent of stereology software choice and assess model fits with a variety of diagnostic plots. Functionality of Retina also includes species average maps, an essential feature for interspecific analyses. The Retina package will facilitate rigorous comparative studies in visual ecology by providing a robust quantitative approach to generate retinal topography maps.
Collapse
|
34
|
Coimbra JP, Collin SP, Hart NS. Topographic specializations in the retinal ganglion cell layer correlate with lateralized visual behavior, ecology, and evolution in cockatoos. J Comp Neurol 2014; 522:3363-85. [DOI: 10.1002/cne.23637] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022]
Affiliation(s)
- João Paulo Coimbra
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
- School of Anatomical Sciences, The University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| | - Shaun P. Collin
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
| | - Nathan S. Hart
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
| |
Collapse
|
35
|
Garcia Garrido M, Beck SC, Mühlfriedel R, Julien S, Schraermeyer U, Seeliger MW. Towards a quantitative OCT image analysis. PLoS One 2014; 9:e100080. [PMID: 24927180 PMCID: PMC4057353 DOI: 10.1371/journal.pone.0100080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/21/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Optical coherence tomography (OCT) is an invaluable diagnostic tool for the detection and follow-up of retinal pathology in patients and experimental disease models. However, as morphological structures and layering in health as well as their alterations in disease are complex, segmentation procedures have not yet reached a satisfactory level of performance. Therefore, raw images and qualitative data are commonly used in clinical and scientific reports. Here, we assess the value of OCT reflectivity profiles as a basis for a quantitative characterization of the retinal status in a cross-species comparative study. METHODS Spectral-Domain Optical Coherence Tomography (OCT), confocal Scanning-Laser Ophthalmoscopy (SLO), and Fluorescein Angiography (FA) were performed in mice (Mus musculus), gerbils (Gerbillus perpadillus), and cynomolgus monkeys (Macaca fascicularis) using the Heidelberg Engineering Spectralis system, and additional SLOs and FAs were obtained with the HRA I (same manufacturer). Reflectivity profiles were extracted from 8-bit greyscale OCT images using the ImageJ software package (http://rsb.info.nih.gov/ij/). RESULTS Reflectivity profiles obtained from OCT scans of all three animal species correlated well with ex vivo histomorphometric data. Each of the retinal layers showed a typical pattern that varied in relative size and degree of reflectivity across species. In general, plexiform layers showed a higher level of reflectivity than nuclear layers. A comparison of reflectivity profiles from specialized retinal regions (e.g. visual streak in gerbils, fovea in non-human primates) with respective regions of human retina revealed multiple similarities. In a model of Retinitis Pigmentosa (RP), the value of reflectivity profiles for the follow-up of therapeutic interventions was demonstrated. CONCLUSIONS OCT reflectivity profiles provide a detailed, quantitative description of retinal layers and structures including specialized retinal regions. Our results highlight the potential of this approach in the long-term follow-up of therapeutic strategies.
Collapse
Affiliation(s)
- Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
- * E-mail:
| | - Susanne C. Beck
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| | - Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| | - Sylvie Julien
- Section of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Tuebingen, Germany
| | - Ulrich Schraermeyer
- Section of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Tuebingen, Germany
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| |
Collapse
|
36
|
Garza-Gisholt E, Hemmi JM, Hart NS, Collin SP. A comparison of spatial analysis methods for the construction of topographic maps of retinal cell density. PLoS One 2014; 9:e93485. [PMID: 24747568 PMCID: PMC3998654 DOI: 10.1371/journal.pone.0093485] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 03/05/2014] [Indexed: 11/18/2022] Open
Abstract
Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed 'by eye'. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation 'respects' the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the 'noise' caused by artefacts and permits a clearer representation of the dominant, 'real' distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome.
Collapse
Affiliation(s)
- Eduardo Garza-Gisholt
- School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| | - Jan M. Hemmi
- School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nathan S. Hart
- School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Shaun P. Collin
- School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
37
|
Hauzman E, Bonci DM, Grotzner SR, Mela M, Liber AM, Martins SL, Ventura DF. Comparative Study of Photoreceptor and Retinal Ganglion Cell Topography and Spatial Resolving Power in Dipsadidae Snakes. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:197-213. [DOI: 10.1159/000365275] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 06/16/2014] [Indexed: 11/19/2022]
|
38
|
Retinal cone photoreceptors of the deer mouse Peromyscus maniculatus: development, topography, opsin expression and spectral tuning. PLoS One 2013; 8:e80910. [PMID: 24260509 PMCID: PMC3829927 DOI: 10.1371/journal.pone.0080910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
A quantitative analysis of photoreceptor properties was performed in the retina of the nocturnal deer mouse, Peromyscus maniculatus, using pigmented (wildtype) and albino animals. The aim was to establish whether the deer mouse is a more suitable model species than the house mouse for photoreceptor studies, and whether oculocutaneous albinism affects its photoreceptor properties. In retinal flatmounts, cone photoreceptors were identified by opsin immunostaining, and their numbers, spectral types, and distributions across the retina were determined. Rod photoreceptors were counted using differential interference contrast microscopy. Pigmented P. maniculatus have a rod-dominated retina with rod densities of about 450.000/mm2 and cone densities of 3000 - 6500/mm2. Two cone opsins, shortwave sensitive (S) and middle-to-longwave sensitive (M), are present and expressed in distinct cone types. Partial sequencing of the S opsin gene strongly supports UV sensitivity of the S cone visual pigment. The S cones constitute a 5-15% minority of the cones. Different from house mouse, S and M cone distributions do not have dorsoventral gradients, and coexpression of both opsins in single cones is exceptional (<2% of the cones). In albino P. maniculatus, rod densities are reduced by approximately 40% (270.000/mm2). Overall, cone density and the density of cones exclusively expressing S opsin are not significantly different from pigmented P. maniculatus. However, in albino retinas S opsin is coexpressed with M opsin in 60-90% of the cones and therefore the population of cones expressing only M opsin is significantly reduced to 5-25%. In conclusion, deer mouse cone properties largely conform to the general mammalian pattern, hence the deer mouse may be better suited than the house mouse for the study of certain basic cone properties, including the effects of albinism on cone opsin expression.
Collapse
|
39
|
Stokkan KA, Folkow L, Dukes J, Neveu M, Hogg C, Siefken S, Dakin SC, Jeffery G. Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer. Proc Biol Sci 2013; 280:20132451. [PMID: 24174115 PMCID: PMC3826237 DOI: 10.1098/rspb.2013.2451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Arctic reindeer experience extreme changes in environmental light from continuous summer daylight to continuous winter darkness. Here, we show that they may have a unique mechanism to cope with winter darkness by changing the wavelength reflection from their tapetum lucidum (TL). In summer, it is golden with most light reflected back directly through the retina, whereas in winter it is deep blue with less light reflected out of the eye. The blue reflection in winter is associated with significantly increased retinal sensitivity compared with summer animals. The wavelength of reflection depends on TL collagen spacing, with reduced spacing resulting in shorter wavelengths, which we confirmed in summer and winter animals. Winter animals have significantly increased intra-ocular pressure, probably produced by permanent pupil dilation blocking ocular drainage. This may explain the collagen compression. The resulting shift to a blue reflection may scatter light through photoreceptors rather than directly reflecting it, resulting in elevated retinal sensitivity via increased photon capture. This is, to our knowledge, the first description of a retinal structural adaptation to seasonal changes in environmental light. Increased sensitivity occurs at the cost of reduced acuity, but may be an important adaptation in reindeer to detect moving predators in the dark Arctic winter.
Collapse
Affiliation(s)
- Karl-Arne Stokkan
- Department of Arctic and Marine Biology, University of Tromsø, , Tromsø, Norway, Institute of Ophthalmology, University College London, , 11-43 Bath Street, London EC1V 9EL, UK, Moorfields Eye Hospital, , London, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lisney TJ, Stecyk K, Kolominsky J, Graves GR, Wylie DR, Iwaniuk AN. Comparison of eye morphology and retinal topography in two species of New World vultures (Aves: Cathartidae). Anat Rec (Hoboken) 2013; 296:1954-70. [PMID: 24249399 DOI: 10.1002/ar.22815] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 08/11/2013] [Accepted: 08/26/2013] [Indexed: 11/08/2022]
Abstract
Vultures are highly reliant on their sensory systems for the rapid detection and localization of carrion before other scavengers can exploit the resource. In this study, we compared eye morphology and retinal topography in two species of New World vultures (Cathartidae), turkey vultures (Cathartes aura), with a highly developed olfactory sense, and black vultures (Coragyps atratus), with a less developed sense of olfaction. We found that eye size relative to body mass was the same in both species, but that black vultures have larger corneas relative to eye size than turkey vultures. However, the overall retinal topography, the total number of cells in the retinal ganglion cell layer, peak and average cell densities, cell soma area frequency distributions, and the theoretical peak anatomical spatial resolving power were the same in both species. This suggests that the visual systems of these two species are similar and that vision plays an equally important role in the biology of both species, despite the apparently greater reliance on olfaction for finding carrion in turkey vultures.
Collapse
Affiliation(s)
- Thomas J Lisney
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
AbstractS cones expressing the short wavelength-sensitive type 1 (SWS1) class of visual pigment generally form only a minority type of cone photoreceptor within the vertebrate duplex retina. Hence, their primary role is in color vision, not in high acuity vision. In mammals, S cones may be present as a constant fraction of the cones across the retina, may be restricted to certain regions of the retina or may form a gradient across the retina, and in some species, there is coexpression of SWS1 and the long wavelength-sensitive (LWS) class of pigment in many cones. During retinal development, SWS1 opsin expression generally precedes that of LWS opsin, and evidence from genetic studies indicates that the S cone pathway may be the default pathway for cone development. With the notable exception of the cartilaginous fishes, where S cones appear to be absent, they are present in representative species from all other vertebrate classes. S cone loss is not, however, uncommon; they are absent from most aquatic mammals and from some but not all nocturnal terrestrial species. The peak spectral sensitivity of S cones depends on the spectral characteristics of the pigment present. Evidence from the study of agnathans and teleost fishes indicates that the ancestral vertebrate SWS1 pigment was ultraviolet (UV) sensitive with a peak around 360 nm, but this has shifted into the violet region of the spectrum (>380 nm) on many separate occasions during vertebrate evolution. In all cases, the shift was generated by just one or a few replacements in tuning-relevant residues. Only in the avian lineage has tuning moved in the opposite direction, with the reinvention of UV-sensitive pigments.
Collapse
|
42
|
Landwehr K, Brendel E, Hecht H. Luminance and contrast in visual perception of time to collision. Vision Res 2013; 89:18-23. [PMID: 23851263 DOI: 10.1016/j.visres.2013.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 04/18/2013] [Accepted: 06/27/2013] [Indexed: 02/01/2023]
Abstract
Many animals avoid dark, approaching objects seen against a lighter background but show no or weaker reactions to stimuli with inverted contrast. We investigated whether human observers would respond differently to such stimuli in terms of estimated time-to-arrival. We varied luminances of an approaching, light or dark disk and a plain, grey background, and for several conditions, continuously adjusted calibrations so as to keep contrast and/or overall lightness constant. Since no effects were found, we conclude that humans are able to discard luminance and contrast for the task at hand. Generally, however, performance was affected by different, consecutive regimes of feedback: Initially, without feedback, observers responded inconsistently and much too late; they improved after correct feedback, and in a third block of trials with pseudo-random feedback, they responded increasingly early without reverting to the initial level of uncertainty. We discuss our findings with regard to implications for neural mechanisms, put them in the context of evolutionary considerations, and propose continuative animal behavioral studies.
Collapse
Affiliation(s)
- Klaus Landwehr
- Psychologisches Institut, Johannes Gutenberg-Universität Mainz, Wallstraße 3, 55122 Mainz, Germany.
| | | | | |
Collapse
|
43
|
Zabouri N, Haverkamp S. Calcium channel-dependent molecular maturation of photoreceptor synapses. PLoS One 2013; 8:e63853. [PMID: 23675510 PMCID: PMC3652833 DOI: 10.1371/journal.pone.0063853] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 04/08/2013] [Indexed: 01/08/2023] Open
Abstract
Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The CaV1.4(α1F) knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the CaV1.4(α1F) knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the CaV1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the CaV1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the CaV1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.
Collapse
Affiliation(s)
- Nawal Zabouri
- Neuroanatomy, Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany.
| | | |
Collapse
|
44
|
Coimbra JP, Hart NS, Collin SP, Manger PR. Scene from above: Retinal ganglion cell topography and spatial resolving power in the giraffe (Giraffa camelopardalis). J Comp Neurol 2013; 521:2042-57. [DOI: 10.1002/cne.23271] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 11/16/2012] [Accepted: 11/20/2012] [Indexed: 01/31/2023]
|
45
|
Lisney TJ, Stecyk K, Kolominsky J, Schmidt BK, Corfield JR, Iwaniuk AN, Wylie DR. Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:385-402. [DOI: 10.1007/s00359-013-0802-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/24/2022]
|
46
|
Denzau S, Nießner C, Rogers L, Wiltschko W. Ontogenetic development of magnetic compass orientation in domestic chickens (Gallus gallus). J Exp Biol 2013; 216:3143-7. [DOI: 10.1242/jeb.088815] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Domestic chickens (Gallus gallus) can be trained to search for a social stimulus in a specific magnetic direction, and cryptochrome 1a found in the retina has been proposed as a receptor molecule mediating magnetic directions. The present study combines immuno-histochemical and behavioural data to analyse the ontogenetic development of this ability. Newly hatched chicks already have a small amount of cryptochrome 1a in their violet cones; on day 5, the amount of cryptochrome 1a has reached the same level as in adult chickens, suggesting that the physical basis for magnetoreception is present. In behavioural tests, however, young chicks 5 to 7 days old failed to show a preference of the training direction; on days 8, 9 and 12, they could be successfully trained to search along a specific magnetic axis. Trained and tested again a week later, the chicks that had not shown a directional preference on day 5 to 7 continued to search randomly, while the chicks tested from day 8 onward preferred the correct magnetic axis when tested one week later. The observation that the magnetic compass is not functional before day 8 suggests that certain maturation processes in the magnetosensitive system in the brain are not yet complete before that day. The reasons why chicks that have been trained before that day fail to learn the task later remain unclear.
Collapse
|
47
|
Coimbra JP, Nolan PM, Collin SP, Hart NS. Retinal Ganglion Cell Topography and Spatial Resolving Power in Penguins. BRAIN, BEHAVIOR AND EVOLUTION 2012; 80:254-68. [DOI: 10.1159/000341901] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 06/29/2012] [Indexed: 11/19/2022]
|
48
|
Moore BA, Baumhardt P, Doppler M, Randolet J, Blackwell BF, DeVault TL, Loew ER, Fernández-Juricic E. Oblique color vision in an open-habitat bird: spectral sensitivity, photoreceptor distribution and behavioral implications. J Exp Biol 2012; 215:3442-52. [PMID: 22956248 DOI: 10.1242/jeb.073957] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Color vision is not uniform across the retina because of differences in photoreceptor density and distribution. Retinal areas with a high density of cone photoreceptors may overlap with those with a high density of ganglion cells, increasing hue discrimination. However, there are some exceptions to this cell distribution pattern, particularly in species with horizontal visual streaks (bands of high ganglion cell density across the retina) that live in open habitats. We studied the spectral sensitivity and distribution of cone photoreceptors involved in chromatic and achromatic vision in the Canada goose (Branta canadiensis), which possesses an oblique rather than horizontal visual streak at the ganglion cell layer. Using microspectrophotometry, we found that the Canada goose has a violet-sensitive visual system with four visual pigments with absorbance peaks at 409, 458, 509 and 580 nm. The density of most cones involved in chromatic and achromatic vision peaked along a band across the retina that matched the oblique orientation of the visual streak. With the information on visual sensitivity, we calculated chromatic and achromatic contrasts of different goose plumage regions. The regions with the highest visual saliency (cheek, crown, neck and upper tail coverts) were the ones involved in visual displays to maintain flock cohesion. The Canada goose oblique visual streak is the retinal center for chromatic and achromatic vision, allowing individuals to sample the sky and the ground simultaneously or the horizon depending on head position. Overall, our results show that the Canada goose visual system has features that make it rather different from that of other vertebrates living in open habitats.
Collapse
Affiliation(s)
- Bret A. Moore
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Patrice Baumhardt
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Megan Doppler
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Jacquelyn Randolet
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Bradley F. Blackwell
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Ohio Field Station, Sandusky, OH 44870, USA
| | - Travis L. DeVault
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Ohio Field Station, Sandusky, OH 44870, USA
| | - Ellis R. Loew
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Esteban Fernández-Juricic
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
49
|
Kuhrt H, Gryga M, Wolburg H, Joffe B, Grosche J, Reichenbach A, Noori HR. Postnatal mammalian retinal development: quantitative data and general rules. Prog Retin Eye Res 2012; 31:605-21. [PMID: 22982602 DOI: 10.1016/j.preteyeres.2012.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022]
Abstract
This article is aimed at providing comparative quantitative data about postnatal mammalian retina development, and at searching for some general rules at both the descriptive and the mechanistic level. In mammals the eye continues to grow, and the retina continues to expand, much after the end of retinal cytogenesis. Thus, although the total number of retinal cells remains constant after cessation of mitotic activity (and the end of 'physiological cell death'), the retinal surface area increases by a factor of two or more. In most mammals, ocular growth exceeds retinal expansion: the neural retina lines 70-80% of the inner ocular surface at the beginning but only about 40-60% in adults. Differential local expansion of the retina (the peripheral area increases more than the central one) can be explained by 'passive stretching' of the retinal tissue by the growing eyeball; it depends on the different biomechanical properties of the peripheral vs. central retinal tissue. The increasing retinal surface area allows for a re-distribution of cells such that the thickness of the (particularly, outer) nuclear layer(s) decreases proportional to the areal expansion. This causes a considerable developmental reduction of the number of cell nuclei 'stacked above each other' by a factor of more than two, and requires a translocation of the somata against their neighbors. We provide a physico-mathematical model of these oblique 'down-sliding' movements of the photoreceptor cell somata along the Müller cell process in the center of their columnar cell unit.
Collapse
Affiliation(s)
- Heidrun Kuhrt
- Paul Flechsig Institute of Brain Research, University of Leipzig, D-04109 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Interspecifc variation in eye shape and retinal topography in seven species of galliform bird (Aves: Galliformes: Phasianidae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:717-31. [DOI: 10.1007/s00359-012-0742-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/05/2012] [Accepted: 06/20/2012] [Indexed: 12/24/2022]
|