1
|
Turcu D, Zadina A, Abbott LF, Sawtell NB. An end-to-end model of active electrosensation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619741. [PMID: 39484381 PMCID: PMC11526905 DOI: 10.1101/2024.10.22.619741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Weakly electric fish localize and identify objects by sensing distortions in a self-generated electric field. Fish can determine the resistance and capacitance of an object, for example, even though the field distortions being sensed are small and highly-dependent on object distance and size. Here we construct a model of the responses of the fish's electroreceptors on the basis of experimental data, and we develop a model of the electric fields generated by the fish and the distortions due to objects of different resistances and capacitances. This provides us with an accurate and efficient method for generating large artificial data sets simulating fish interacting with a wide variety of objects. Using these sets, we train an artificial neural network (ANN), representing brain areas downstream of electroreceptors, to extract the 3D location, size, and electrical properties of objects. The model performs best if the ANN operates in two stages: first estimating object distance and size and then using this information to extract electrical properties. This suggests a specific form of modularity in the electrosensory system that can be tested experimentally and highlights the potential of end-to-end modeling for studies of sensory processing.
Collapse
Affiliation(s)
- Denis Turcu
- The Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, United States of America
- Kavli Institute for Brain Science, Columbia University, New York, New York, United States of America
| | - Abigail Zadina
- The Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - L F Abbott
- The Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, United States of America
- Kavli Institute for Brain Science, Columbia University, New York, New York, United States of America
| | - Nathaniel B Sawtell
- The Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, United States of America
- Kavli Institute for Brain Science, Columbia University, New York, New York, United States of America
| |
Collapse
|
2
|
Abstract
The electric organ discharges (EODs) produced by weakly electric fish have long been a source of scientific intrigue and inspiration. The study of these species has contributed to our understanding of the organization of fixed action patterns, as well as enriching general imaging theory by unveiling the dual impact of an agent's actions on the environment and its own sensory system during the imaging process. This Centenary Review firstly compares how weakly electric fish generate species- and sex-specific stereotyped electric fields by considering: (1) peripheral mechanisms, including the geometry, channel repertoire and innervation of the electrogenic units; (2) the organization of the electric organs (EOs); and (3) neural coordination mechanisms. Secondly, the Review discusses the threefold function of the fish-centered electric fields: (1) to generate electric signals that encode the material, geometry and distance of nearby objects, serving as a short-range sensory modality or 'electric touch'; (2) to mark emitter identity and location; and (3) to convey social messages encoded in stereotypical modulations of the electric field that might be considered as species-specific communication symbols. Finally, this Review considers a range of potential research directions that are likely to be productive in the future.
Collapse
Affiliation(s)
- Angel Ariel Caputi
- Sistema Nacional de Investigadores - Uruguay, Av. Wilson Ferreira Aldunate 1219, Pando, PC 15600, Uruguay
| |
Collapse
|
3
|
Zhaoping L. Peripheral and central sensation: multisensory orienting and recognition across species. Trends Cogn Sci 2023; 27:539-552. [PMID: 37095006 DOI: 10.1016/j.tics.2023.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023]
Abstract
Attentional bottlenecks force animals to deeply process only a selected fraction of sensory inputs. This motivates a unifying central-peripheral dichotomy (CPD), which separates multisensory processing into functionally defined central and peripheral senses. Peripheral senses (e.g., human audition and peripheral vision) select a fraction of the sensory inputs by orienting animals' attention; central senses (e.g., human foveal vision) allow animals to recognize the selected inputs. Originally used to understand human vision, CPD can be applied to multisensory processes across species. I first describe key characteristics of central and peripheral senses, such as the degree of top-down feedback and density of sensory receptors, and then show CPD as a framework to link ecological, behavioral, neurophysiological, and anatomical data and produce falsifiable predictions.
Collapse
Affiliation(s)
- Li Zhaoping
- University of Tübingen, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
4
|
Skeels S, von der Emde G, Burt de Perera T. Mormyrid fish as models for investigating sensory-motor integration: A behavioural perspective. J Zool (1987) 2023; 319:243-253. [PMID: 38515784 PMCID: PMC10953462 DOI: 10.1111/jzo.13046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 02/04/2023]
Abstract
Animals possess senses which gather information from their environment. They can tune into important aspects of this information and decide on the most appropriate response, requiring coordination of their sensory and motor systems. This interaction is bidirectional. Animals can actively shape their perception with self-driven motion, altering sensory flow to maximise the environmental information they are able to extract. Mormyrid fish are excellent candidates for studying sensory-motor interactions, because they possess a unique sensory system (the active electric sense) and exhibit notable behaviours that seem to be associated with electrosensing. This review will take a behavioural approach to unpicking this relationship, using active electrolocation as an example where body movements and sensing capabilities are highly related and can be assessed in tandem. Active electrolocation is the process where individuals will generate and detect low-voltage electric fields to locate and recognise nearby objects. We will focus on research in the mormyrid Gnathonemus petersii (G. petersii), given the extensive study of this species, particularly its object recognition abilities. By studying object detection and recognition, we can assess the potential benefits of self-driven movements to enhance selection of biologically relevant information. Finally, these findings are highly relevant to understanding the involvement of movement in shaping the sensory experience of animals that use other sensory modalities. Understanding the overlap between sensory and motor systems will give insight into how different species have become adapted to their environments.
Collapse
Affiliation(s)
- S. Skeels
- Department of BiologyUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
5
|
Kumar V, Yu C, McGinn CK, Perks KE, Thompson SM, Sawtell NB, Kymissis I. A Dense Conformal Electrode Array for High Spatial Resolution Stimulation of Electrosensory Systems. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2200354. [PMID: 37007916 PMCID: PMC10062704 DOI: 10.1002/admt.202200354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 06/19/2023]
Abstract
Studies of electrosensory systems have led to insights into to a number of general issues in biology. However, investigations of these systems have been limited by the inability to precisely control spatial patterns of electrosensory input. In this paper, an electrode array and a system to selectively stimulate spatially restricted regions of an electroreceptor array is presented. The array has 96 channels consisting of chrome/gold electrodes patterned on a flexible parylene-C substrate and encapsulated with another parylene-C layer. The conformability of the electrode array allows for optimal current driving and surface interface conditions. Recordings of neural activity at the first central processing stage in weakly electric mormyrid fish support the potential of this system for high spatial resolution stimulation and mapping of electrosensory systems.
Collapse
Affiliation(s)
- Vikrant Kumar
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Caroline Yu
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Christine K McGinn
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Krista E Perks
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Sarah M Thompson
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Nathaniel B Sawtell
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Ioannis Kymissis
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
6
|
Perks KE, Sawtell NB. Neural readout of a latency code in the active electrosensory system. Cell Rep 2022; 38:110605. [PMID: 35354029 PMCID: PMC9045710 DOI: 10.1016/j.celrep.2022.110605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
The latency of spikes relative to a stimulus conveys sensory information across modalities. However, in most cases, it remains unclear whether and how such latency codes are utilized by postsynaptic neurons. In the active electrosensory system of mormyrid fish, a latency code for stimulus amplitude in electroreceptor afferent nerve fibers (EAs) is hypothesized to be read out by a central reference provided by motor corollary discharge (CD). Here, we demonstrate that CD enhances sensory responses in postsynaptic granular cells of the electrosensory lobe but is not required for reading out EA input. Instead, diverse latency and spike count tuning across the EA population give rise to graded information about stimulus amplitude that can be read out by standard integration of converging excitatory synaptic inputs. Inhibitory control over the temporal window of integration renders two granular cell subclasses differentially sensitive to information derived from relative spike latency versus spike count.
Collapse
Affiliation(s)
- Krista E Perks
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Nathaniel B Sawtell
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
7
|
Peterson RD, Sullivan JP, Hopkins CD, Santaquiteria A, Dillman CB, Pirro S, Betancur-R R, Arcila D, Hughes LC, Ortí G. Phylogenomics of bonytongue fishes (Osteoglossomorpha) shed light on the craniofacial evolution and biogeography of the weakly electric clade Mormyridae. Syst Biol 2022; 71:1032-1044. [PMID: 35041001 DOI: 10.1093/sysbio/syac001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
Abstract
Bonytongues (Osteoglossomorpha) constitute an ancient clade of teleost fishes distributed in freshwater habitats throughout the world. The group includes well-known species such as arowanas, featherbacks, pirarucus, and the weakly electric fishes in the family Mormyridae. Their disjunct distribution, extreme morphologies, and electrolocating capabilities (Gymnarchidae and Mormyridae) have attracted much scientific interest, but a comprehensive phylogenetic framework for comparative analysis is missing, especially for the species-rich family Mormyridae. Of particular interest are disparate craniofacial morphologies among mormyrids which might constitute an exceptional model system to study convergent evolution. We present a phylogenomic analysis based on 546 exons of 179 species (out of 260), 28 out of 29 genera, and all six families of extant bonytongues. Based on a recent reassessment of the fossil record of osteoglossomorphs, we inferred dates of divergence among trans-continental clades and the major groups. The estimated ages of divergence among extant taxa (e.g., Osteoglossomorpha, Osteoglossiformes, Mormyroidea) are older than previous reports, but most of the divergence dates obtained for clades on separate continents are too young to be explained by simple vicariance hypotheses. Biogeographic analysis of mormyrids indicates that their high species diversity in the Congo Basin is a consequence of range reductions of previously widespread ancestors and that the highest diversity of craniofacial morphologies among mormyrids originated in this basin. Special emphasis on a taxon-rich representation for mormyrids revealed pervasive misalignment between our phylogenomic results and mormyrid taxonomy due to repeated instances of convergence for extreme craniofacial morphologies. Estimation of ancestral phenotypes revealed contingent evolution of snout elongation and unique projections from the lower jaw to form the distinctive Schnauzenorgan. Synthesis of comparative analyses suggests that the remarkable craniofacial morphologies of mormyrids evolved convergently due to niche partitioning, likely enabled by interactions between their exclusive morphological and electrosensory adaptations.
Collapse
Affiliation(s)
- Rose D Peterson
- Department of Biological Sciences, The George Washington University, Washington, DC USA
| | - John P Sullivan
- Cornell University Museum of Vertebrates, Department of Ecology and Evolutionary Biology Ithaca, NY USA
| | - Carl D Hopkins
- Cornell University Museum of Vertebrates, Department of Ecology and Evolutionary Biology Ithaca, NY USA
| | | | - Casey B Dillman
- Cornell University Museum of Vertebrates, Department of Ecology and Evolutionary Biology Ithaca, NY USA
| | | | | | - Dahiana Arcila
- Department of Biology, University of Oklahoma, Norman, OK USA.,Department of Ichthyology, Sam Noble Oklahoma Museum of Natural History, Norman, OK, USA
| | - Lily C Hughes
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL USA
| | - Guillermo Ortí
- Department of Biological Sciences, The George Washington University, Washington, DC USA.,National Museum of Natural History, Smithsonian Institution, Washington, DC USA
| |
Collapse
|
8
|
Linking active sensing and spatial learning in weakly electric fish. Curr Opin Neurobiol 2021; 71:1-10. [PMID: 34392168 DOI: 10.1016/j.conb.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/17/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022]
Abstract
Weakly electric fish can learn the spatial layout of their environment using only their short-range electric sense. During spatial learning, active sensing motions are used to memorize landmark locations so that they can serve as anchors for idiothetic-based navigation. A hindbrain feedback circuit selectively amplifies the electrosensory input arising from these motions. The ascending electrolocation pathway preferentially transmits this information to the pallial regions involved in spatial learning and navigation. Similarities in both behavioral patterns and hindbrain circuitry of gymnotiform and mormyrid fish, two families that independently evolved their electrosense, suggest that amplification and transmission of active sensing motion inputs are fundamental mechanisms for spatial memory acquisition.
Collapse
|
9
|
Caputi AA, Aguilera PA. Strategies of object polarization and their role in electrosensory information gathering. BIOINSPIRATION & BIOMIMETICS 2020; 15:035008. [PMID: 31899911 DOI: 10.1088/1748-3190/ab6782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Weakly electric fish polarize the nearby environment with a stereotyped electric field and gain information by detecting the changes imposed by objects with tuned sensors. Here we focus on polarization strategies as paradigmatic bioinspiring mechanisms for sensing devices. We begin this research developing a toy model that describes three polarization strategies exhibited by three different groups of fish. We then report an experimental analysis which confirmed predictions of the model and in turn predicted functional consequences that were explored in behavioral experiments in the pulse fish Gymnotus omarorum. In the experiments, polarization was evaluated by estimating the object's stamp (i.e. the electric source that produces the same electric image as the object) as a function of object impedance, orientation, and position. Signal detection and discrimination was explored in G. omarorum by provoking novelty responses, which are known to reflect the increment in the electric image provoked by a change in nearby impedance. To achieve this, we stepped the longitudinal impedance of a cylindrical object between two impedances (either capacitive or resistive). Object polarization and novelty responses indicate that G. omarorum has two functional regions in the electrosensory field. At the front of the fish, there is a foveal field where object position and orientation are encoded in signal intensity, while the qualia associated with impedance is encoded in signal time course. On the side of the fish there is a peripheral field where the complexity of the polarizing field facilitates detection of objects oriented in any angle with respect to the fish´s longitudinal axis. These findings emphasize the importance of articulating field generation, sensor tuning and the repertoire of exploratory movements to optimize performance of artificial active electrosensory systems.
Collapse
Affiliation(s)
- Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | | |
Collapse
|
10
|
Amey-Özel M, Anders S, Grant K, von der Emde G. Central connections of the trigeminal motor command system in the weakly electric Elephantnose fish (Gnathonemus petersii). J Comp Neurol 2019; 527:2703-2729. [PMID: 30980526 DOI: 10.1002/cne.24701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/08/2022]
Abstract
The highly mobile chin appendage of Gnathonemus petersii, the Schnauzenorgan, is used to actively probe the environment and is known to be a fovea of the electrosensory system. It receives an important innervation from both the trigeminal sensory and motor systems. However, little is known about the premotor control pathways that coordinate the movements of the Schnauzenorgan, or about central pathways originating from the trigeminal motor nucleus. The present study focuses on the central connections of the trigeminal motor system to elucidate premotor centers controlling Schnauzenorgan movements, with particular interest in the possible connections between the electrosensory and trigeminal systems. Neurotracer injections into the trigeminal motor nucleus revealed bilateral, reciprocal connections between the two trigeminal motor nuclei and between the trigeminal sensory and motor nuclei by bilateral labeling of cells and terminals. Prominent afferent input to the trigeminal motor nucleus originates from the nucleus lateralis valvulae, the nucleus dorsalis mesencephali, the cerebellar corpus C1, the reticular formation, and the Raphe nuclei. Retrogradely labeled cells were also observed in the central pretectal nucleus, the dorsal anterior pretectal nucleus, the tectum, the ventroposterior nucleus of the torus semicircularis, the gustatory sensory and motor nuclei, and in the hypothalamus. Labeled terminals, but not cell bodies, were observed in the nucleus lateralis valvulae and the reticular formation. No direct connections were found between the electrosensory system and the V motor nucleus but the central connections identified would provide several multisynaptic pathways linking these two systems, including possible efference copy and corollary discharge mechanisms.
Collapse
Affiliation(s)
- Monique Amey-Özel
- Department of Neuroethology/Sensory Ecology, Institute for Zoology, University of Bonn, Bonn, Germany
| | - Stefanie Anders
- Centre National de la Recherche Scientifique (CNRS-UNIC), Gif sur Yvette, France
| | - Kirsty Grant
- Centre National de la Recherche Scientifique (CNRS-UNIC), Gif sur Yvette, France
| | - Gerhard von der Emde
- Department of Neuroethology/Sensory Ecology, Institute for Zoology, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Crampton WGR. Electroreception, electrogenesis and electric signal evolution. JOURNAL OF FISH BIOLOGY 2019; 95:92-134. [PMID: 30729523 DOI: 10.1111/jfb.13922] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by c. 16% of fish species, an animal uses low-frequency-tuned ampullary electroreceptors to detect microvolt-range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak (< 1 V) electric-organ discharge (EOD) and detecting distortions in the EOD-associated field using high-frequency-tuned tuberous electroreceptors. Tuberous electroreceptors also detect the EODs of neighbouring fishes, facilitating electrocommunication. Several other groups of elasmobranchs and teleosts generate weak (< 10 V) or strong (> 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic-electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non-adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal-receptor matching.
Collapse
|
12
|
Zeymer M, von der Emde G, Wullimann MF. The Mormyrid Optic Tectum Is a Topographic Interface for Active Electrolocation and Visual Sensing. Front Neuroanat 2018; 12:79. [PMID: 30327593 PMCID: PMC6174230 DOI: 10.3389/fnana.2018.00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 01/14/2023] Open
Abstract
The African weakly electric fish Gnathonemus petersii is capable of cross-modal object recognition using its electric sense or vision. Thus, object features stored in the brain are accessible by multiple senses, either through connections between unisensory brain regions or because of multimodal representations in multisensory areas. Primary electrosensory information is processed in the medullary electrosensory lateral line lobe, which projects topographically to the lateral nucleus of the torus semicircularis (NL). Visual information reaches the optic tectum (TeO), which projects to various other brain regions. We investigated the neuroanatomical connections of these two major midbrain visual and electrosensory brain areas, focusing on the topographical relationship of interconnections between the two structures. Thus, the neural tracer DiI was injected systematically into different tectal quadrants, as well as into the NL. Tectal tracer injections revealed topographically organized retrograde and anterograde label in the NL. Rostral and caudal tectal regions were interconnected with rostral and caudal areas of the NL, respectively. However, dorsal and ventral tectal regions were represented in a roughly inverted fashion in NL, as dorsal tectal injections labeled ventral areas in NL and vice versa. In addition, tracer injections into TeO or NL revealed extensive inputs to both structures from ipsilateral (NL also contralateral) efferent basal cells in the valvula cerebelli; the NL furthermore projected back to the valvula. Additional tectal and NL connections were largely confirmatory to earlier studies. For example, the TeO received ipsilateral inputs from the central zone of the dorsal telencephalon, torus longitudinalis, nucleus isthmi, various tegmental, thalamic and pretectal nuclei, as well as other nuclei of the torus semicircularis. Also, the TeO projected to the dorsal preglomerular and dorsal posterior thalamic nuclei as well as to nuclei in the torus semicircularis and nucleus isthmi. Beyond the clear topographical relationship of NL and TeO interconnections established here, the known neurosensory upstream circuitry was used to suggest a model of how a defined spot in the peripheral sensory world comes to be represented in a common associated neural locus both in the NL and the TeO, thereby providing the neural substrate for cross-modal object recognition.
Collapse
Affiliation(s)
- Malou Zeymer
- Department of Neuroethology/Sensory Ecology, Institute for Zoology, University of Bonn, Bonn, Germany
| | - Gerhard von der Emde
- Department of Neuroethology/Sensory Ecology, Institute for Zoology, University of Bonn, Bonn, Germany
| | - Mario F Wullimann
- Biocenter, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
13
|
Physiological evidence of sensory integration in the electrosensory lateral line lobe of Gnathonemus petersii. PLoS One 2018; 13:e0194347. [PMID: 29641541 PMCID: PMC5894992 DOI: 10.1371/journal.pone.0194347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/01/2018] [Indexed: 01/04/2023] Open
Abstract
Mormyrid fish rely on reafferent input for active electrolocation. Their electrosensory input consists of phase and amplitude information. These are encoded by differently tuned receptor cells within the Mormyromasts, A- and B-cells, respectively, which are distributed over the animal’s body. These convey their information to two topographically ordered medullary zones in the electrosensory lateral line lobe (ELL). The so-called medial zone receives only amplitude information, while the dorsolateral zone receives amplitude and phase information. Using both sources of information, Mormyrid fish can disambiguate electrical impedances. Where and how this disambiguation takes place is presently unclear. We here investigate phase-sensitivity downstream from the electroreceptors. We provide first evidence of phase-sensitivity in the medial zone of ELL. In this zone I-cells consistently decreased their rate to positive phase-shifts (6 of 20 cells) and increased their rate to negative shifts (11/20), while E-cells of the medial zone (3/9) responded oppositely to I-cells. In the dorsolateral zone the responses of E- and I-cells were opposite to those found in the medial zone. Tracer injections revealed interzonal projections that interconnect the dorsolateral and medial zones in a somatotopic manner. In summary, we show that phase information is processed differently in the dorsolateral and the medial zones. This is the first evidence for a mechanism that enhances the contrast between two parallel sensory channels in Mormyrid fish. This could be beneficial for impedance discrimination that ultimately must rely on a subtractive merging of these two sensory streams.
Collapse
|
14
|
Sensory Flow as a Basis for a Novel Distance Cue in Freely Behaving Electric Fish. J Neurosci 2017; 37:302-312. [PMID: 28077710 DOI: 10.1523/jneurosci.1361-16.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 11/21/2022] Open
Abstract
The sensory input that an animal receives is directly linked to its motor activity. Behavior thus enables animals to influence their sensory input, a concept referred to as active sensing. How such behavior can serve as a scaffold for generating sensory information is of general scientific interest. In this article, we investigate how behavior can shape sensory information by using some unique features of the sensorimotor system of the weakly electric fish. Based on quantitative behavioral characterizations and computational reconstruction of sensory input, we show how electrosensory flow is actively created during highly patterned, spontaneous behavior in Gnathonemus petersii. The spatiotemporal structure of the sensory input provides information for the computation of a novel distance cue, which allows for a continuous estimation of distance. This has significant advantages over previously known nondynamic distance estimators as determined from electric image blur. Our investigation of the sensorimotor interactions in pulsatile electrolocation shows, for the first time, that the electrosensory flow contains behaviorally relevant information accessible only through active behavior. As patterned sensory behaviors are a shared feature of (active) sensory systems, our results have general implications for the understanding of (active) sensing, with the proposed sensory flow-based measure being potentially pertinent to a broad range of sensory modalities. SIGNIFICANCE STATEMENT Acquisition of sensory information depends on motion, as either an animal or its sensors move. Behavior can thus actively influence the sensory flow; and in this way, behavior can be seen as a manifestation of the brain's integrative functions. The properties of the active pulsatile electrolocation system in Gnathonemus petersii allow for the sensory input to be computationally reconstructed, enabling us to link the informational content of spatiotemporal sensory dynamics to behavior. Our study reveals a novel sensory cue for estimating depth that is actively generated by the fishes' behavior. The physical and behavioral similarities between electrolocation and other active sensory systems suggest that this may be a mechanism shared by (active) sensory systems.
Collapse
|
15
|
Abstract
Electric fish are privileged animals for bio-inspiring man-built autonomous systems since they have a multimodal sense that allows underwater navigation, object classification and intraspecific communication. Although there are taxon dependent variations adapted to different environments, this multimodal system can be schematically described as having four main components: active electroreception, passive electroreception, lateral line sense and, proprioception. Amongst these sensory modalities, proprioception and electroreception show 'active' systems that extrct information carried by self generated forms of energy. This ensemble of four sensory modalities is present in African mormyriformes and American gymnotiformes. The convergent evolution of similar imaging, peripheral encoding, and central processing mechanisms suggests that these mechanisms may be the most suitable for dealing with electric images in the context of the other and self generated actions. This review deals with the way in which biological organisms address three of the problems that are faced when designing a bioinspired electroreceptive agent: (a) body shape, material and mobility, (b) peripheral encoding of electric images, and (c) early processing of electrosensory signals. Taking into account biological solutions I propose that the new generation of underwater agents should have electroreceptive arms, use complex peripheral sensors for encoding the images and cerebellum like architecture for image feature extraction and implementing sensory-motor transformations.
Collapse
Affiliation(s)
- Angel Ariel Caputi
- Departamento de Neurociencias Integrativas y Computacionales Instituto de Investigaciones Biológicas Clemente Estable. Av. Italia 3318 Montevideo, Uruguay
| |
Collapse
|
16
|
Pedraja F, Perrone R, Silva A, Budelli R. Passive and active electroreception during agonistic encounters in the weakly electric fish Gymnotus omarorum. BIOINSPIRATION & BIOMIMETICS 2016; 11:065002. [PMID: 27767014 DOI: 10.1088/1748-3190/11/6/065002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Agonistic behaviour related to territorial defence is likely to be costly in terms of energy loss and risk of injury. Hence information about the fighting ability of a potential opponent could influence the outcome of the contest. We here study electric images of the territorial and aggressive weakly electric fish Gymnotus omarorum in the context of agonistic behaviour. We show that passive and active electric images may drive the approach towards an opponent. The likelihood of first attacks can be predicted in these fish based on electric image information, suggesting that aggressive interactions may in fact be triggered through the passive electrosensory information.
Collapse
Affiliation(s)
- Federico Pedraja
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo11400, Uruguay. AG Active Sensing, Faculty of Biology, Bielefeld University, Bielefeld D-33615, Germany
| | | | | | | |
Collapse
|
17
|
Engelmann J, Walther T, Grant K, Chicca E, Gómez-Sena L. Modeling latency code processing in the electric sense: from the biological template to its VLSI implementation. BIOINSPIRATION & BIOMIMETICS 2016; 11:055007. [PMID: 27623047 DOI: 10.1088/1748-3190/11/5/055007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding the coding of sensory information under the temporal constraints of natural behavior is not yet well resolved. There is a growing consensus that spike timing or latency coding can maximally exploit the timing of neural events to make fast computing elements and that such mechanisms are essential to information processing functions in the brain. The electric sense of mormyrid fish provides a convenient biological model where this coding scheme can be studied. The sensory input is a physically ordered spatial pattern of current densities, which is coded in the precise timing of primary afferent spikes. The neural circuits of the processing pathway are well known and the system exhibits the best known illustration of corollary discharge, which provides the reference to decoding the sensory afferent latency pattern. A theoretical model has been constructed from available electrophysiological and neuroanatomical data to integrate the principal traits of the neural processing structure and to study sensory interaction with motor-command-driven corollary discharge signals. This has been used to explore neural coding strategies at successive stages in the network and to examine the simulated network capacity to reproduce output neuron responses. The model shows that the network has the ability to resolve primary afferent spike timing differences in the sub-millisecond range, and that this depends on the coincidence of sensory and corollary discharge-driven gating signals. In the integrative and output stages of the network, corollary discharge sets up a proactive background filter, providing temporally structured excitation and inhibition within the network whose balance is then modulated locally by sensory input. This complements the initial gating mechanism and contributes to amplification of the input pattern of latencies, conferring network hyperacuity. These mechanisms give the system a robust capacity to extract behaviorally meaningful features of the electric image with high sensitivity over a broad working range. Since the network largely depends on spike timing, we finally discuss its suitability for implementation in robotic applications based on neuromorphic hardware.
Collapse
Affiliation(s)
- Jacob Engelmann
- Bielefeld University, Faculty of Biology/CITEC, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
18
|
Sawyer EK, Catania KC. Somatosensory organ topography across the star of the star-nosed mole (Condylura cristata). J Comp Neurol 2016; 524:917-29. [PMID: 26659700 PMCID: PMC4731273 DOI: 10.1002/cne.23943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 11/06/2022]
Abstract
Quantifying somatosensory receptor distribution in glabrous skin is usually difficult because of the diversity of skin receptor subtypes and their location within the dermis and epidermis. However, the glabrous noses of moles are an exception. In most species of moles, the skin on the nose is covered with domed mechanosensory units known as an Eimer's organs. Eimer's organs contain a stereotyped array of different mechanosensory neurons, meaning that the distribution of mechanosensitive nerve endings can be inferred by visual inspection of the skin surface. Here we detail the distribution of Eimer's organs on the highly derived somatosensory star on the rostrum of the star-nosed mole (Condylura cristata). The star consists of 22 fleshy appendages, or rays, that are covered in Eimer's organs. We find that the density of Eimer's organs increases from proximal to distal locations along the length of the star's rays with a ratio of 1:2.3:3.1 from the surface nearest to the nostril, to the middle part of ray, to the ray tip, respectively. This ratio is comparable to the increase in receptor unit density reported for the human hand, from the palm, to the middle of the digits, to the distal fingertips. We also note that the tactile fovea of the star-nosed mole, located on the medial ventral ray, does not have increased sensory organ density, and we describe these findings in comparison with other sensory fovea.
Collapse
Affiliation(s)
- Eva K Sawyer
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, 37240
| | - Kenneth C Catania
- Department of Biological Science, Vanderbilt University, Nashville, Tennessee, 37232
| |
Collapse
|
19
|
Jun JJ, Longtin A, Maler L. Active sensing associated with spatial learning reveals memory-based attention in an electric fish. J Neurophysiol 2016; 115:2577-92. [PMID: 26961107 DOI: 10.1152/jn.00979.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/04/2016] [Indexed: 11/22/2022] Open
Abstract
Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region.
Collapse
Affiliation(s)
- James J Jun
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Hollmann V, Hofmann V, Engelmann J. Somatotopic map of the active electrosensory sense in the midbrain of the mormyridGnathonemus petersii. J Comp Neurol 2016; 524:2479-91. [DOI: 10.1002/cne.23963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Vanessa Hollmann
- Department of Biology, Active Sensing and Center of Excellence ‘Cognitive Interaction Technology,’; Bielefeld University; Bielefeld Germany
| | - Volker Hofmann
- Department of Biology, Active Sensing and Center of Excellence ‘Cognitive Interaction Technology,’; Bielefeld University; Bielefeld Germany
| | - Jacob Engelmann
- Department of Biology, Active Sensing and Center of Excellence ‘Cognitive Interaction Technology,’; Bielefeld University; Bielefeld Germany
| |
Collapse
|
21
|
Amey-Özel M, von der Emde G, Engelmann J, Grant K. More a finger than a nose: the trigeminal motor and sensory innervation of the Schnauzenorgan in the elephant-nose fish Gnathonemus petersii. J Comp Neurol 2014; 523:769-89. [PMID: 25388854 DOI: 10.1002/cne.23710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 11/02/2014] [Accepted: 11/03/2014] [Indexed: 11/11/2022]
Abstract
The weakly electric fish Gnathonemus petersii uses its electric sense to actively probe the environment. Its highly mobile chin appendage, the Schnauzenorgan, is rich in electroreceptors. Physical measurements have demonstrated the importance of the position of the Schnauzenorgan in funneling the fish's self-generated electric field. The present study focuses on the trigeminal motor pathway that controls Schnauzenorgan movement and on its trigeminal sensory innervation and central representation. The nerves entering the Schnauzenorgan are very large and contain both motor and sensory trigeminal components as well as an electrosensory pathway. With the use of neurotracer techniques, labeled Schnauzenorgan motoneurons were found throughout the ventral main body of the trigeminal motor nucleus but not among the population of larger motoneurons in its rostrodorsal region. The Schnauzenorgan receives no motor or sensory innervation from the facial nerve. There are many anastomoses between the peripheral electrosensory and trigeminal nerves, but these senses remain separate in the sensory ganglia and in their first central relays. Schnauzenorgan trigeminal primary afferent projections extend throughout the descending trigeminal sensory nuclei, and a few fibers enter the facial lobe. Although no labeled neurons could be identified in the brain as the trigeminal mesencephalic root, some Schnauzenorgan trigeminal afferents terminated in the trigeminal motor nucleus, suggesting a monosynaptic, possibly proprioceptive, pathway. In this first step toward understanding multimodal central representation of the Schnauzenorgan, no direct interconnections were found between the trigeminal sensory and electromotor command system, or the electrosensory and trigeminal motor command. The pathways linking perception to action remain to be studied.
Collapse
Affiliation(s)
- Monique Amey-Özel
- Department of Neuroethology/Sensory Ecology, Institute for Zoology, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
22
|
Moritz GL, Melin AD, Tuh Yit Yu F, Bernard H, Ong PS, Dominy NJ. Niche convergence suggests functionality of the nocturnal fovea. Front Integr Neurosci 2014; 8:61. [PMID: 25120441 PMCID: PMC4110675 DOI: 10.3389/fnint.2014.00061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/08/2014] [Indexed: 11/24/2022] Open
Abstract
The fovea is a declivity of the retinal surface associated with maximum visual acuity. Foveae are widespread across vertebrates, but among mammals they are restricted to haplorhine primates (tarsiers, monkeys, apes, and humans), which are primarily diurnal. Thus primates have long contributed to the view that foveae are functional adaptations to diurnality. The foveae of tarsiers, which are nocturnal, are widely interpreted as vestigial traits and therefore evidence of a diurnal ancestry. This enduring premise is central to adaptive hypotheses on the origins of anthropoid primates; however, the question of whether tarsier foveae are functionless anachronisms or nocturnal adaptations remains open. To explore this question, we compared the diets of tarsiers (Tarsius) and scops owls (Otus), taxa united by numerous anatomical homoplasies, including foveate vision. A functional interpretation of these homoplasies predicts dietary convergence. We tested this prediction by analyzing stable isotope ratios that integrate dietary information. In Borneo and the Philippines, the stable carbon isotope compositions of Tarsius and Otus were indistinguishable, whereas the stable nitrogen isotope composition of Otus was marginally higher than that of Tarsius. Our results indicate that species in both genera consumed mainly ground-dwelling prey. Taken together, our findings support a functional interpretation of the many homoplasies shared by tarsiers and scops owls, including a retinal fovea. We suggest that the fovea might function similarly in tarsiers and scops owls by calibrating the auditory localization pathway. The integration of auditory localization and visual fixation during prey detection and acquisition might be critical at low light levels.
Collapse
Affiliation(s)
- Gillian L. Moritz
- Department of Biological Sciences, The Class of 1978 Life Sciences Center, Dartmouth CollegeHanover, NH, USA
| | - Amanda D. Melin
- Department of Anthropology, Washington University, St. LouisMO, USA
| | - Fred Tuh Yit Yu
- Research and Education Division, Zoology and EntomologyKota Kinabalu, Malaysia
| | - Henry Bernard
- Institute for Tropical Biology and Conservation, Universiti Malaysia SabahKota Kinabalu, Malaysia
| | - Perry S. Ong
- Institute of Biology, University of the Philippines DilimanQuezon City, Philippines
| | - Nathaniel J. Dominy
- Department of Biological Sciences, The Class of 1978 Life Sciences Center, Dartmouth CollegeHanover, NH, USA
- Department of Anthropology, Dartmouth CollegeHanover, NH, USA
| |
Collapse
|
23
|
Pedraja F, Aguilera P, Caputi AA, Budelli R. Electric imaging through evolution, a modeling study of commonalities and differences. PLoS Comput Biol 2014; 10:e1003722. [PMID: 25010765 PMCID: PMC4091691 DOI: 10.1371/journal.pcbi.1003722] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 05/30/2014] [Indexed: 11/23/2022] Open
Abstract
Modeling the electric field and images in electric fish contributes to a better understanding of the pre-receptor conditioning of electric images. Although the boundary element method has been very successful for calculating images and fields, complex electric organ discharges pose a challenge for active electroreception modeling. We have previously developed a direct method for calculating electric images which takes into account the structure and physiology of the electric organ as well as the geometry and resistivity of fish tissues. The present article reports a general application of our simulator for studying electric images in electric fish with heterogeneous, extended electric organs. We studied three species of Gymnotiformes, including both wave-type (Apteronotus albifrons) and pulse-type (Gymnotus obscurus and Gymnotus coropinae) fish, with electric organs of different complexity. The results are compared with the African (Gnathonemus petersii) and American (Gymnotus omarorum) electric fish studied previously. We address the following issues: 1) how to calculate equivalent source distributions based on experimental measurements, 2) how the complexity of the electric organ discharge determines the features of the electric field and 3) how the basal field determines the characteristics of electric images. Our findings allow us to generalize the hypothesis (previously posed for G. omarorum) in which the perioral region and the rest of the body play different sensory roles. While the "electrosensory fovea" appears suitable for exploring objects in detail, the rest of the body is likened to a "peripheral retina" for detecting the presence and movement of surrounding objects. We discuss the commonalities and differences between species. Compared to African species, American electric fish show a weaker field. This feature, derived from the complexity of distributed electric organs, may endow Gymnotiformes with the ability to emit site-specific signals to be detected in the short range by a conspecific and the possibility to evolve predator avoidance strategies.
Collapse
Affiliation(s)
- Federico Pedraja
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pedro Aguilera
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Angel A. Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ruben Budelli
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
24
|
Hofmann V, Geurten BRH, Sanguinetti-Scheck JI, Gómez-Sena L, Engelmann J. Motor patterns during active electrosensory acquisition. Front Behav Neurosci 2014; 8:186. [PMID: 24904337 PMCID: PMC4036139 DOI: 10.3389/fnbeh.2014.00186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/07/2014] [Indexed: 11/24/2022] Open
Abstract
Motor patterns displayed during active electrosensory acquisition of information seem to be an essential part of a sensory strategy by which weakly electric fish actively generate and shape sensory flow. These active sensing strategies are expected to adaptively optimize ongoing behavior with respect to either motor efficiency or sensory information gained. The tight link between the motor domain and sensory perception in active electrolocation make weakly electric fish like Gnathonemus petersii an ideal system for studying sensory-motor interactions in the form of active sensing strategies. Analyzing the movements and electric signals of solitary fish during unrestrained exploration of objects in the dark, we here present the first formal quantification of motor patterns used by fish during electrolocation. Based on a cluster analysis of the kinematic values we categorized the basic units of motion. These were then analyzed for their associative grouping to identify and extract short coherent chains of behavior. This enabled the description of sensory behavior on different levels of complexity: from single movements, over short behaviors to more complex behavioral sequences during which the kinematics alter between different behaviors. We present detailed data for three classified patterns and provide evidence that these can be considered as motor components of active sensing strategies. In accordance with the idea of active sensing strategies, we found categorical motor patterns to be modified by the sensory context. In addition these motor patterns were linked with changes in the temporal sampling in form of differing electric organ discharge frequencies and differing spatial distributions. The ability to detect such strategies quantitatively will allow future research to investigate the impact of such behaviors on sensing.
Collapse
Affiliation(s)
- Volker Hofmann
- Active Sensing, Faculty of Biology, Cognitive Interaction Technology - Center of Excellence, Bielefeld University Bielefeld, Germany
| | - Bart R H Geurten
- Cellular Neurobiology, Schwann-Schleiden Research Centre, Georg-August-Universität Göttingen, Germany
| | - Juan I Sanguinetti-Scheck
- Sección Biomatemática, Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la Republica Montevideo, Uruguay ; Bernstein Center for Computational Neuroscience, Humboldt Universität Berlin Berlin, Germany
| | - Leonel Gómez-Sena
- Sección Biomatemática, Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la Republica Montevideo, Uruguay
| | - Jacob Engelmann
- Active Sensing, Faculty of Biology, Cognitive Interaction Technology - Center of Excellence, Bielefeld University Bielefeld, Germany
| |
Collapse
|
25
|
Lewicki MS, Olshausen BA, Surlykke A, Moss CF. Scene analysis in the natural environment. Front Psychol 2014; 5:199. [PMID: 24744740 PMCID: PMC3978336 DOI: 10.3389/fpsyg.2014.00199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/20/2014] [Indexed: 12/21/2022] Open
Abstract
The problem of scene analysis has been studied in a number of different fields over the past decades. These studies have led to important insights into problems of scene analysis, but not all of these insights are widely appreciated, and there remain critical shortcomings in current approaches that hinder further progress. Here we take the view that scene analysis is a universal problem solved by all animals, and that we can gain new insight by studying the problems that animals face in complex natural environments. In particular, the jumping spider, songbird, echolocating bat, and electric fish, all exhibit behaviors that require robust solutions to scene analysis problems encountered in the natural environment. By examining the behaviors of these seemingly disparate animals, we emerge with a framework for studying scene analysis comprising four essential properties: (1) the ability to solve ill-posed problems, (2) the ability to integrate and store information across time and modality, (3) efficient recovery and representation of 3D scene structure, and (4) the use of optimal motor actions for acquiring information to progress toward behavioral goals.
Collapse
Affiliation(s)
- Michael S Lewicki
- Department of Electrical Engineering and Computer Science, Case Western Reserve University Cleveland, OH, USA
| | - Bruno A Olshausen
- Helen Wills Neuroscience Institute, School of Optometry, Redwood Center for Theoretical Neuroscience, University of California at Berkeley Berkeley, CA, USA
| | | | - Cynthia F Moss
- Department of Psychology and Institute for Systems Research, University of Maryland College Park, MD, USA
| |
Collapse
|
26
|
Jun JJ, Longtin A, Maler L. Long-term behavioral tracking of freely swimming weakly electric fish. J Vis Exp 2014. [PMID: 24637642 DOI: 10.3791/50962] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Long-term behavioral tracking can capture and quantify natural animal behaviors, including those occurring infrequently. Behaviors such as exploration and social interactions can be best studied by observing unrestrained, freely behaving animals. Weakly electric fish (WEF) display readily observable exploratory and social behaviors by emitting electric organ discharge (EOD). Here, we describe three effective techniques to synchronously measure the EOD, body position, and posture of a free-swimming WEF for an extended period of time. First, we describe the construction of an experimental tank inside of an isolation chamber designed to block external sources of sensory stimuli such as light, sound, and vibration. The aquarium was partitioned to accommodate four test specimens, and automated gates remotely control the animals' access to the central arena. Second, we describe a precise and reliable real-time EOD timing measurement method from freely swimming WEF. Signal distortions caused by the animal's body movements are corrected by spatial averaging and temporal processing stages. Third, we describe an underwater near-infrared imaging setup to observe unperturbed nocturnal animal behaviors. Infrared light pulses were used to synchronize the timing between the video and the physiological signal over a long recording duration. Our automated tracking software measures the animal's body position and posture reliably in an aquatic scene. In combination, these techniques enable long term observation of spontaneous behavior of freely swimming weakly electric fish in a reliable and precise manner. We believe our method can be similarly applied to the study of other aquatic animals by relating their physiological signals with exploratory or social behaviors.
Collapse
Affiliation(s)
- James J Jun
- Department of Physics, University of Ottawa; Department of Cellular and Molecular Medicine, University of Ottawa; Centre for Neural Dynamics, University of Ottawa;
| | - André Longtin
- Department of Physics, University of Ottawa; Department of Cellular and Molecular Medicine, University of Ottawa; Centre for Neural Dynamics, University of Ottawa
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa; Centre for Neural Dynamics, University of Ottawa
| |
Collapse
|
27
|
Nogueira J, Caputi AA. From the intrinsic properties to the functional role of a neuron phenotype: an example from electric fish during signal trade-off. ACTA ACUST UNITED AC 2014; 216:2380-92. [PMID: 23761463 DOI: 10.1242/jeb.082651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review deals with the question: what is the relationship between the properties of a neuron and the role that the neuron plays within a given neural circuit? Answering this kind of question requires collecting evidence from multiple neuron phenotypes and comparing the role of each type in circuits that perform well-defined computational tasks. The focus here is on the spherical neurons in the electrosensory lobe of the electric fish Gymnotus omarorum. They belong to the one-spike-onset phenotype expressed at the early stages of signal processing in various sensory modalities and diverse taxa. First, we refer to the one-spike neuron intrinsic properties, their foundation on a low-threshold K(+) conductance, and the potential roles of this phenotype in different circuits within a comparative framework. Second, we present a brief description of the active electric sense of weakly electric fish and the particularities of spherical one-spike-onset neurons in the electrosensory lobe of G. omarorum. Third, we introduce one of the specific tasks in which these neurons are involved: the trade-off between self- and allo-generated signals. Fourth, we discuss recent evidence indicating a still-undescribed role for the one-spike phenotype. This role deals with the blockage of the pathway after being activated by the self-generated electric organ discharge and how this blockage favors self-generated electrosensory information in the context of allo-generated interference. Based on comparative analysis we conclude that one-spike-onset neurons may play several functional roles in animal sensory behavior. There are specific adaptations of the neuron's 'response function' to the circuit and task. Conversely, the way in which a task is accomplished depends on the intrinsic properties of the neurons involved. In short, the role of a neuron within a circuit depends on the neuron and its functional context.
Collapse
Affiliation(s)
- Javier Nogueira
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Avenida General Flores, 2125 Montevideo, Uruguay
| | | |
Collapse
|
28
|
Hofmann V, Sanguinetti-Scheck JI, Künzel S, Geurten B, Gómez-Sena L, Engelmann J. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish. J Exp Biol 2013; 216:2487-500. [DOI: 10.1242/jeb.082420] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Goal-directed behavior in most cases is composed of a sequential order of elementary motor patterns shaped by sensorimotor contingencies. The sensory information acquired thus is structured in both space and time. Here we review the role of motion during the generation of sensory flow focusing on how animals actively shape information by behavioral strategies. We use the well-studied examples of vision in insects and echolocation in bats to describe commonalities of sensory-related behavioral strategies across sensory systems, and evaluate what is currently known about comparable active sensing strategies in electroreception of electric fish. In this sensory system the sensors are dispersed across the animal's body and the carrier source emitting energy used for sensing, the electric organ, is moved while the animal moves. Thus ego-motions strongly influence sensory dynamics. We present, for the first time, data of electric flow during natural probing behavior in Gnathonemus petersii (Mormyridae), which provide evidence for this influence. These data reveal a complex interdependency between the physical input to the receptors and the animal's movements, posture and objects in its environment. Although research on spatiotemporal dynamics in electrolocation is still in its infancy, the emerging field of dynamical sensory systems analysis in electric fish is a promising approach to the study of the link between movement and acquisition of sensory information.
Collapse
Affiliation(s)
- Volker Hofmann
- Bielefeld University, Faculty of Biology/CITEC, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Juan I. Sanguinetti-Scheck
- Universidad de la Republica, Facultad de Ciencias, Laboratorio de Neurociencias, Igua 4225, Montevideo, Uruguay
| | - Silke Künzel
- Bielefeld University, Faculty of Biology/CITEC, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Bart Geurten
- Göttingen University, Abt. Zelluläre Neurobiologie, Schwann-Schleiden Forschungszentrum, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Leonel Gómez-Sena
- Universidad de la Republica, Facultad de Ciencias, Laboratorio de Neurociencias, Igua 4225, Montevideo, Uruguay
| | - Jacob Engelmann
- Bielefeld University, Faculty of Biology/CITEC, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
29
|
Caputi AA, Aguilera PA, Carolina Pereira A, Rodríguez-Cattáneo A. On the haptic nature of the active electric sense of fish. Brain Res 2013; 1536:27-43. [PMID: 23727613 DOI: 10.1016/j.brainres.2013.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/18/2022]
Abstract
Electroreception is a sensory modality present in chondrichthyes, actinopterygii, amphibians, and mammalian monotremes. The study of this non-intuitive sensory modality has provided insights for better understanding of sensory systems in general and inspired the development of innovative artificial devices. Here we review evidence obtained from the analysis of electrosensory images, neurophysiological data from the recording of unitary activity in the electrosensory lobe, and psychophysical data from analysis of novelty responses provoked in well-defined stimulus conditions, which all confirm that active electroreception has a short range, and that the influence of exploratory movements on object identification is strong. In active electric images two components can be identified: a "global" image profile depending on the volume, shape and global impedance of an object and a "texture" component depending on its surface attributes. There is a short range of the active electric sense and the progressive "blurring" of object image with distance. Consequently, the lack of precision regarding object location, considered together, challenge the current view of this sense as serving long range electrolocation and the commonly used metaphor of "electric vision". In fact, the active electric sense shares more commonalities with human active touch than with teleceptive senses as vision or audition. Taking into account that other skin exteroceptors and proprioception may be congruently stimulated during fish exploratory movements we propose that electric, mechanoceptive and proprioceptive sensory modalities found in electric fish could be considered together as a single haptic sensory system. This article is part of a Special Issue entitled Neural Coding 2012.
Collapse
Affiliation(s)
- Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay.
| | | | | | | |
Collapse
|
30
|
Hofmann V, Sanguinetti-Scheck JI, Gómez-Sena L, Engelmann J. From static electric images to electric flow: towards dynamic perceptual cues in active electroreception. ACTA ACUST UNITED AC 2012; 107:95-106. [PMID: 22781955 DOI: 10.1016/j.jphysparis.2012.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Active electroreception is an ancestral trait found in many aquatic vertebrates and has evolved independently in two teleost lineages, the Gymnotiformes and the Mormyriformes. Unique to these so-called weakly electric fish is their ability to actively generate electrical currents in the water and sense the electrical properties of the environment. How natural behavior contributes to this sensory system has been of interest to neuroethologists since the pioneering works of Lissmann. Here we report on a mutual modeling and experimental study of the stimuli available during active electrolocation of Gnathonemus petersii (Mormyridae). We show the validity of the model (I) by demonstrating that localized spatial patterns of object induced modulations in the electric field (electric images) are comparable to experimentally mapped 2-dimensional electric images and (II) by replicating earlier key findings showing that a normalized metric of electric image width provides an unambiguous cue for distance estimation. We then show that electric images and the distance metric vary systematically when an object is moved along the trunk. These potential ambiguities with regard to localization lead us to a spatiotemporal analysis of electric images. We introduce a new temporal metric for distance estimation that is based on the normalized spatial properties of electrical images. Finally, based on a survey of exploratory behavior, we show how objects situated at the tail, a region previously neglected, cast global electric images that extend over the whole sensory epithelium of the animals.
Collapse
Affiliation(s)
- Volker Hofmann
- Bielefeld University, Faculty of Biology, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Juan I Sanguinetti-Scheck
- Universidad de la Republica, Facultad de Ciencias, Laboratorio de Neurociencias, Igua 4225, Montevideo, Uruguay
| | - Leonel Gómez-Sena
- Universidad de la Republica, Facultad de Ciencias, Laboratorio de Neurociencias, Igua 4225, Montevideo, Uruguay
| | - Jacob Engelmann
- Bielefeld University, Faculty of Biology, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
31
|
Identifying self- and nonself-generated signals: lessons from electrosensory systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:107-25. [PMID: 22399398 DOI: 10.1007/978-1-4614-1704-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
This chapter provides a short review of the mechanisms used by electroreceptive fish to discriminate self- from nonself-generated signals. Electroreception is used by animals to detect objects of electric impedance different from the water, to detect natural electrogenic sources and to communicate signals between conspecifics. Electroreceptive animals may generate electric fields either with the purpose of electrically illuminating the neighborhood or as an epiphenomenon of other functions. In addition, the presence of the fish body as a conductive object in a scene funnels the current flow and, consequently, animal movements also generate signals by changing the body shape or the spatial relationship of the body with the surrounding objects. Therefore, mechanisms for discrimination between self and externally generated signals are very important for constructing a coherent representation of the environment. Some mechanisms facilitate and stream the flow of signals carried by the self-generated electric field. Others are designed to reject unwanted interference coming from self-generated movements or even the self-generated electric field. Finally, more complex operations involving sensory motor integration are used for discriminating between self- and conspecific- generated communication signals. Despite the evolutionary distance between animals endowed with electric sense, mechanisms for self-identification reappear with few differences between species. This suggests that many of the possible strategies are present in vertebrates may be found in these fish. Therefore, we have much to learn about self recognition from the study of electroreception.
Collapse
|
32
|
Amey-Özel M, Hollmann M, von der Emde G. From the Schnauzenorgan to the back: Morphological comparison of mormyromast electroreceptor organs at different skin regions of Gnathonemus petersii. J Morphol 2012; 273:629-38. [DOI: 10.1002/jmor.20009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/22/2011] [Accepted: 11/29/2011] [Indexed: 11/08/2022]
|
33
|
Caputi AA, Aguilera PA, Pereira AC. Active electric imaging: body-object interplay and object's "electric texture". PLoS One 2011; 6:e22793. [PMID: 21876730 PMCID: PMC3158059 DOI: 10.1371/journal.pone.0022793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/29/2011] [Indexed: 11/24/2022] Open
Abstract
This article deals with the role of fish's body and object's geometry on determining the image spatial shape in pulse Gymnotiforms. This problem was explored by measuring local electric fields along a line on the skin in the presence and absence of objects. We depicted object's electric images at different regions of the electrosensory mosaic, paying particular attention to the perioral region where a fovea has been described. When sensory surface curvature increases relative to the object's curvature, the image details depending on object's shape are blurred and finally disappear. The remaining effect of the object on the stimulus profile depends on the strength of its global polarization. This depends on the length of the object's axis aligned with the field, in turn depending on fish body geometry. Thus, fish's body and self-generated electric field geometries are embodied in this "global effect" of the object. The presence of edges or local changes in impedance at the nearest surface of closely located objects adds peaks to the image profiles ("local effect" or "object's electric texture"). It is concluded that two cues for object recognition may be used by active electroreceptive animals: global effects (informing on object's dimension along the field lines, conductance, and position) and local effects (informing on object's surface). Since the field has fish's centered coordinates, and electrosensory fovea is used for exploration of surfaces, fish fine movements are essential to perform electric perception. We conclude that fish may explore adjacent objects combining active movements and electrogenesis to represent them using electrosensory information.
Collapse
Affiliation(s)
- Angel A Caputi
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | | | | |
Collapse
|
34
|
Cilleruelo ER, Caputi AA. Encoding electric signals by Gymnotus omarorum: heuristic modeling of tuberous electroreceptor organs. Brain Res 2011; 1434:102-14. [PMID: 21835395 DOI: 10.1016/j.brainres.2011.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
The role of different substructures of electroreceptor organs in signal encoding was explored using a heuristic computational model. This model consists of four modules representing the pre-receptor structures, the transducer cells, the synapses and the afferent fiber, respectively. Simulations reproduced previously obtained experimental data. We showed that different electroreceptor types described in the literature can be qualitative modeled with the same set of equations by changing only two parameters, one affecting the filtering properties of the pre-receptor, and the other affecting the transducer module. We studied the responses of different electroreceptor types to natural stimuli using simulations derived from an experimentally-obtained database in which the fish were exposed to resistive or capacitive objects. Our results indicate that phase and frequency spectra are differentially encoded by different subpopulations of tuberous electroreceptors. A different type of receptor responses to the same input is a necessary condition for encoding a multidimensional space of stimuli as in the waveform of the EOD. Our simulation analysis suggested that the electroreceptive mosaic may perform a waveform analysis of electrosensory signals. As in color vision or tactile texture perception, a secondary attribute, "electric color" may be encoded as a parallel activity of various electroreceptor types. This article is part of a Special Issue entitled Neural Coding.
Collapse
Affiliation(s)
- Esteban R Cilleruelo
- Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318 Montevideo, Uruguay
| | | |
Collapse
|
35
|
Imaging in electrosensory systems. Interdiscip Sci 2010; 2:291-307. [PMID: 21153776 DOI: 10.1007/s12539-010-0049-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 10/18/2022]
Abstract
This review addresses the biophysical mechanisms of image formation in electrosensory systems. These electrical images are used for navigation and object detection by many species of fish, some amphibians, and some mammals. In the active electrosensory systems of fish these images are formed by the fish's own electric organ discharge. In the passive electrosensory systems of fish, amphibians and mammals the images are formed by external electrical sources. In this review we describe the biophysics of image formation, the effects of the organism's passive electrical properties, the role of exploration, and the influence of context on electroreception. We suggest that the basic principles established in these specialized systems be useful for understanding other more common sensory systems.
Collapse
|
36
|
Engelmann J, Gertz S, Goulet J, Schuh A, von der Emde G. Coding of Stimuli by Ampullary Afferents in Gnathonemus petersii. J Neurophysiol 2010; 104:1955-68. [DOI: 10.1152/jn.00503.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Weakly electric fish use electroreception for both active and passive electrolocation and for electrocommunication. While both active and passive electrolocation systems are prominent in weakly electric Mormyriform fishes, knowledge of their passive electrolocation ability is still scarce. To better estimate the contribution of passive electric sensing to the orientation toward electric stimuli in weakly electric fishes, we investigated frequency tuning applying classical input-output characterization and stimulus reconstruction methods to reveal the encoding capabilities of ampullary receptor afferents. Ampullary receptor afferents were most sensitive (threshold: 40 μV/cm) at low frequencies (<10 Hz) and appear to be tuned to a mix of amplitude and slope of the input signals. The low-frequency tuning was corroborated by behavioral experiments, but behavioral thresholds were one order of magnitude higher. The integration of simultaneously recorded afferents of similar frequency-tuning resulted in strongly enhanced signal-to-noise ratios and increased mutual information rates but did not increase the range of frequencies detectable by the system. Theoretically the neuronal integration of input from receptors experiencing opposite polarities of a stimulus (left and right side of the fish) was shown to enhance encoding of such stimuli, including an increase of bandwidth. Covariance and coherence analysis showed that spiking of ampullary afferents is sufficiently explained by the spike-triggered average, i.e., receptors respond to a single linear feature of the stimulus. Our data support the notion of a division of labor of the active and passive electrosensory systems in weakly electric fishes based on frequency tuning. Future experiments will address the role of central convergence of ampullary input that we expect to lead to higher sensitivity and encoding power of the system.
Collapse
Affiliation(s)
- J. Engelmann
- University of Bonn, Institute for Zoology, Neuroethology—Sensory Ecology, Bonn, Germany
- University of Bielefeld, Faculty of Biology, Active Sensing, Bielefeld, Germany; and
| | - S. Gertz
- University of Bonn, Institute for Zoology, Neuroethology—Sensory Ecology, Bonn, Germany
| | - J. Goulet
- Physik Department, TU München and Bernstein Center for Computational Neuroscience, Garching, Germany
- Radboud University Nijmegen, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - A. Schuh
- University of Bonn, Institute for Zoology, Neuroethology—Sensory Ecology, Bonn, Germany
| | - G. von der Emde
- University of Bonn, Institute for Zoology, Neuroethology—Sensory Ecology, Bonn, Germany
| |
Collapse
|
37
|
von der Emde G, Behr K, Bouton B, Engelmann J, Fetz S, Folde C. 3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish. Front Behav Neurosci 2010; 4:26. [PMID: 20577635 PMCID: PMC2889722 DOI: 10.3389/fnbeh.2010.00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/04/2010] [Indexed: 11/17/2022] Open
Abstract
Weakly electric fish use active electrolocation for object detection and orientation in their environment even in complete darkness. The African mormyrid Gnathonemus petersii can detect object parameters, such as material, size, shape, and distance. Here, we tested whether individuals of this species can learn to identify 3-dimensional objects independently of the training conditions and independently of the object's position in space (rotation-invariance; size-constancy). Individual G. petersii were trained in a two-alternative forced-choice procedure to electrically discriminate between a 3-dimensional object (S+) and several alternative objects (S−). Fish were then tested whether they could identify the S+ among novel objects and whether single components of S+ were sufficient for recognition. Size-constancy was investigated by presenting the S+ together with a larger version at different distances. Rotation-invariance was tested by rotating S+ and/or S− in 3D. Our results show that electrolocating G. petersii could (1) recognize an object independently of the S− used during training. When only single components of a complex S+ were offered, recognition of S+ was more or less affected depending on which part was used. (2) Object-size was detected independently of object distance, i.e. fish showed size-constancy. (3) The majority of the fishes tested recognized their S+ even if it was rotated in space, i.e. these fishes showed rotation-invariance. (4) Object recognition was restricted to the near field around the fish and failed when objects were moved more than about 4 cm away from the animals. Our results indicate that even in complete darkness our G. petersii were capable of complex 3-dimensional scene perception using active electrolocation.
Collapse
Affiliation(s)
- Gerhard von der Emde
- Neuroethology/Sensory Ecology, Institute of Zoology, University of Bonn Bonn, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Maler L. Receptive field organization across multiple electrosensory maps. I. Columnar organization and estimation of receptive field size. J Comp Neurol 2009; 516:376-93. [DOI: 10.1002/cne.22124] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
39
|
Maler L. Receptive field organization across multiple electrosensory maps. II. Computational analysis of the effects of receptive field size on prey localization. J Comp Neurol 2009; 516:394-422. [DOI: 10.1002/cne.22120] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Engelmann J, Nöbel S, Röver T, Emde GVD. The Schnauzenorgan-response of Gnathonemus petersii. Front Zool 2009; 6:21. [PMID: 19772622 PMCID: PMC2760544 DOI: 10.1186/1742-9994-6-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 09/22/2009] [Indexed: 11/21/2022] Open
Abstract
Background Electric fish navigate and explore their dark and turbid environment with a specialised electric sense. This active electrolocation involves the generation and perception of an electric signal and fish have proven to be useful model systems for the investigation of sensory-motor interactions. A well studied example is the elephantnose fish, Gnathonemus petersii, which has a characteristic and unique elongated chin covered with hundreds of electroreceptor organs. This highly moveable so-called Schnauzenorgan constitutes the main fovea of the active electrosensory system. Here we present first evidence for a sensory-motor loop relating active electrical sensing to active motor exploration of the environment. Results Both anatomical and behavioural evidence have shown that the moveable Schnauzenorgan is crucial for prey localization. Here we show for the first time that a motor response (Schnauzenorgan-response, SOR) can be elicited by novel electrosensory stimuli. The SOR could be triggered with highest reliability by novel electrical stimuli near the Schnauzenorgan and, to a lesser extend, near the head of the animal. The probability of evoking the response depended on the magnitude of the amplitude change of the electric input, with bigger changes eliciting SORs more reliably. Similarly, increasing the distance of the stimulus reduced the response. In this respect the SOR is comparable to the well described novelty response, a transient acceleration of the production rate of electric signals, although the latter occurs at a shorter delay and can also be evoked by non-electrical stimuli. Conclusion Our experiments show a novel motor response that is mediated by the active electric sense of Gnathonemus petersii. This response will allow a detailed analysis of the neural system underlying direct interaction between sensory and motor processes in future experiments.
Collapse
Affiliation(s)
- Jacob Engelmann
- University of Bonn, Institute for Zoology, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Sabine Nöbel
- University of Bonn, Institute for Zoology, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Timo Röver
- University of Bonn, Institute for Zoology, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Gerhard von der Emde
- University of Bonn, Institute for Zoology, Endenicher Allee 11-13, 53115 Bonn, Germany
| |
Collapse
|
41
|
Castelló ME, Rodríguez-Cattáneo A, Aguilera PA, Iribarne L, Pereira AC, Caputi AA. Waveform generation in the weakly electric fish Gymnotus coropinae (Hoedeman): the electric organ and the electric organ discharge. J Exp Biol 2009; 212:1351-64. [DOI: 10.1242/jeb.022566] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
This article deals with the electric organ and its discharge in Gymnotus coropinae, a representative species of one of the three main clades of the genus. Three regions with bilateral symmetry are described: (1)subopercular (medial and lateral columns of complex shaped electrocytes); (2)abdominal (medial and lateral columns of cuboidal and fusiform electrocytes);and (3) main [four columns, one dorso-lateral (containing fusiform electrocytes) and three medial (containing cuboidal electrocytes)]. Subopercular electrocytes are all caudally innervated whereas two of the medial subopercular ones are also rostrally innervated. Fusiform electrocytes are medially innervated at the abdominal portion, and at their rostral and caudal poles at the main portion. Cuboidal electrocytes are always caudally innervated. The subopercular portion generates a slow head-negative wave(V1r) followed by a head-positive spike (V3r). The abdominal and main portions generate a fast tetra-phasic complex(V2345ct). Since subopercular components prevail in the near field and the rest in the far field, time coincidence of V3r with V2 leads to different waveforms depending on the position of the receiver. This confirms the splitting hypothesis of communication and exploration channels based on the different timing, frequency band and reach of the regional waveforms. The following hypothesis is compatible with the observed anatomo-functional organization: V1r corresponds to the rostral activation of medial subopercular electrocytes and V3r to the caudal activation of all subopercular electrocytes; V2, and part of V3ct, corresponds to the successive activation of the rostral and caudal poles of dorso-lateral fusiform electrocytes; and V345ct is initiated in the caudal face of cuboidal electrocytes by synaptic activation (V3ct) and it is completed (V45ct)by the successive activation of rostral and caudal faces by the action currents evoked in the opposite face.
Collapse
Affiliation(s)
- María E. Castelló
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Alejo Rodríguez-Cattáneo
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Pedro A. Aguilera
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Leticia Iribarne
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Ana Carolina Pereira
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Ángel A. Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| |
Collapse
|
42
|
von der Emde G, Amey M, Engelmann J, Fetz S, Folde C, Hollmann M, Metzen M, Pusch R. Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems. ACTA ACUST UNITED AC 2008; 102:279-90. [PMID: 18992334 DOI: 10.1016/j.jphysparis.2008.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Weakly electric fish can serve as model systems for active sensing because they actively emit electric signals into the environment, which they also perceive with more than 2000 electroreceptor organs (mormyromasts) distributed over almost their entire skin surface. In a process called active electrolocation, animals are able to detect and analyse objects in their environment, which allows them to perceive a detailed electrical picture of their surroundings even in complete darkness. The African mormyrid fish Gnathonemus petersii can not only detect nearby objects, but in addition can perceive other properties such as their distance, their complex electrical impedance, and their three-dimensional shape. Because most of the sensory signals the fish perceive during their nightly activity period are self-produced, evolution has shaped and adapted the mechanisms for signal production, signal perception and signal analysis by the brain. Like in many other sensory systems, so-called prereceptor mechanisms exist, which passively improve the sensory signals in such a way that the signal carrier is optimized for the extraction of relevant sensory information. In G. petersii prereceptor mechanisms include properties of the animal's skin and internal tissue and the shape of the fish's body. These lead to a specific design of the signal carrier at different skin regions of the fish, preparing them to perform certain detection tasks. Prereceptor mechanisms also ensure that the moveable skin appendix of G. petersii, the 'Schnauzenorgan', receives an optimal sensory signal during all stages of its movement. Another important aspect of active sensing in G. petersii concerns the locomotor strategies during electrolocation. When foraging, the animals adopt a particular position with the body slanted forward bringing the so-called 'nasal region' in a position to examine the environment in front of and at the side of the fish. Simultaneously, the Schnauzenorgan performs rhythmic left-right searching movements. When an object of interest is encountered, the Schnauzenorgan is brought in a twitching movement towards the object and is moved over it for further exploration. The densities of electroreceptor organs is extraordinary high at the Schnauzenorgan and, to a lesser extend, at the nasal region. In these so-called foveal regions, the mormyromasts have a different morphology compared to other parts of the electroreceptive skin. Our results on mormyromast density and morphology, prereceptor mechanisms and electric images, central processing of electroreceptive information, and on behavioural strategies of G. petersii lead us to formulate the hypothesis that these fish possess two separate electric foveae, each of which is specialized for certain perceptional tasks.
Collapse
Affiliation(s)
- Gerhard von der Emde
- Universität Bonn, Institut für Zoologie, Neuroethology/Sensory Ecology, Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Caputi AA, Castelló ME, Aguilera PA, Pereira C, Nogueira J, Rodríguez-Cattaneo A, Lezcano C. Active electroreception in Gymnotus omari: imaging, object discrimination, and early processing of actively generated signals. ACTA ACUST UNITED AC 2008; 102:256-71. [PMID: 18992336 DOI: 10.1016/j.jphysparis.2008.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Weakly electric fishes "electrically illuminate" the environment in two forms: pulse fishes emit a succession of discrete electric discharges while wave fishes emit a continuous wave. These strategies are present in both taxonomic groups of weakly electric fishes, mormyrids and gymnotids. As a consequence one can distinguish four major types of active electrosensory strategies evolving in parallel. Pulse gymnotids have an electrolocating strategy common with pulse mormyrids, but brains of pulse and wave gymnotids are alike. The beating strategy associated to other differences in the electrogenic system and electrosensory responses suggests that similar hardware might work in a different mode for processing actively generated electrosensory images. In this review we summarize our findings in pulse gymnotids' active electroreception and outline a primary agenda for the next research.
Collapse
Affiliation(s)
- Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo CP 11600, Uruguay.
| | | | | | | | | | | | | |
Collapse
|
44
|
Receptive field properties of neurons in the electrosensory lateral line lobe of the weakly electric fish, Gnathonemus petersii. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:1063-75. [PMID: 18855000 DOI: 10.1007/s00359-008-0377-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 09/09/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
The receptive field of a sensory neuron is known as that region in sensory space where a stimulus will alter the response of the neuron. We determined the spatial dimensions and the shape of receptive fields of electrosensitive neurons in the medial zone of the electrosensory lateral line lobe of the African weakly electric fish, Gnathonemus petersii, by using single cell recordings. The medial zone receives input from sensory cells which encode the stimulus amplitude. We analysed the receptive fields of 71 neurons. The size and shape of the receptive fields were determined as a function of spike rate and first spike latency and showed differences for the two analysis methods used. Spatial diameters ranged from 2 to 36 mm (spike rate) and from 2.45 to 14.12 mm (first spike latency). Some of the receptive fields were simple consisting only of one uniform centre, whereas most receptive fields showed a complex and antagonistic centre-surround organisation. Several units had a very complex structure with multiple centres and surrounding-areas. While receptive field size did not correlate with peripheral receptor location, the complexity of the receptive fields increased from rostral to caudal along the fish's body.
Collapse
|
45
|
Hollmann M, Engelmann J, von der Emde G. Distribution, density and morphology of electroreceptor organs in mormyrid weakly electric fish: anatomical investigations of a receptor mosaic. J Zool (1987) 2008. [DOI: 10.1111/j.1469-7998.2008.00465.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|