1
|
Pross A, Metwalli AH, Abellán A, Desfilis E, Medina L. Subpopulations of corticotropin-releasing factor containing neurons and internal circuits in the chicken central extended amygdala. J Comp Neurol 2024; 532:e25569. [PMID: 38104270 DOI: 10.1002/cne.25569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/18/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
In mammals, the central extended amygdala is critical for the regulation of the stress response. This regulation is extremely complex, involving multiple subpopulations of GABAergic neurons and complex networks of internal and external connections. Two neuron subpopulations expressing corticotropin-releasing factor (CRF), located in the central amygdala and the lateral bed nucleus of the stria terminalis (BSTL), play a key role in the long-term component of fear learning and in sustained fear responses akin to anxiety. Very little is known about the regulation of stress by the amygdala in nonmammals, hindering efforts for trying to improve animal welfare. In birds, one of the major problems relates to the high evolutionary divergence of the telencephalon, where the amygdala is located. In the present study, we aimed to investigate the presence of CRF neurons of the central extended amygdala in chicken and the local connections within this region. We found two major subpopulations of CRF cells in BSTL and the medial capsular central amygdala of chicken. Based on multiple labeling of CRF mRNA with different developmental transcription factors, all CRF neurons seem to originate within the telencephalon since they express Foxg1, and there are two subtypes with different embryonic origins that express Islet1 or Pax6. In addition, we demonstrated direct projections from Pax6 cells of the capsular central amygdala to BSTL and the oval central amygdala. We also found projections from Islet1 cells of the oval central amygdala to BSTL, which may constitute an indirect pathway for the regulation of BSTL output cells. Part of these projections may be mediated by CRF cells, in agreement with the expression of CRF receptors in both Ceov and BSTL. Our results show a complex organization of the central extended amygdala in chicken and open new venues for studying how different cells and circuits regulate stress in these animals.
Collapse
Affiliation(s)
- Alessandra Pross
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Alek H Metwalli
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| |
Collapse
|
2
|
Puelles L, Stühmer T, Rubenstein JLR, Diaz C. Critical test of the assumption that the hypothalamic entopeduncular nucleus of rodents is homologous with the primate internal pallidum. J Comp Neurol 2023; 531:1715-1750. [PMID: 37695031 PMCID: PMC11418882 DOI: 10.1002/cne.25536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023]
Abstract
The globus pallidus (GP) of primates is divided conventionally into distinct internal and external parts. The literature repeats since 1930 the opinion that the homolog of the primate internal pallidum in rodents is the hypothalamic entopeduncular nucleus (embedded within fiber tracts of the cerebral peduncle). To test this idea, we explored its historic fundaments, checked the development and genoarchitecture of mouse entopeduncular and pallidal neurons, and examined relevant comparative connectivity data. We found that the extratelencephalic mouse entopeduncular structure consists of four different components arrayed along a dorsoventral sequence in the alar hypothalamus. The ventral entopeduncular nucleus (EPV), with GABAergic neurons expressing Dlx5&6 and Nkx2-1, lies within the hypothalamic peduncular subparaventricular area. Three other formations-the dorsal entopeduncular nucleus (EPD), the prereticular entopeduncular nucleus (EPPRt ), and the preeminential entopeduncular nucleus (EPPEm )-lie within the overlying paraventricular area, under the subpallium. EPD contains glutamatergic neurons expressing Tbr1, Otp, and Pax6. The EPPRt has GABAergic cells expressing Isl1 and Meis2, whereas the EPPEm population expresses Foxg1 and may be glutamatergic. Genoarchitectonic observations on relevant areas of the mouse pallidal/diagonal subpallium suggest that the GP of rodents is constituted as in primates by two adjacent but molecularly and hodologically differentiable telencephalic portions (both expressing Foxg1). These and other reported data oppose the notion that the rodent extratelencephalic entopeduncular nucleus is homologous to the primate internal pallidum. We suggest instead that all mammals, including rodents, have dual subpallial GP components, whereas primates probably also have a comparable set of hypothalamic entopeduncular nuclei. Remarkably, there is close similarity in some gene expression properties of the telencephalic internal GP and the hypothalamic EPV. This apparently underlies their notable functional analogy, sharing GABAergic neurons and thalamopetal connectivity.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, El Palmar (Murcia), 30120, Spain
| | - Thorsten Stühmer
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Medical School, San Francisco, California
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Medical School, San Francisco, California
| | - Carmen Diaz
- School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Albacete, 02006, Spain
| |
Collapse
|
3
|
Metwalli AH, Pross A, Desfilis E, Abellán A, Medina L. Mapping of corticotropin-releasing factor, receptors, and binding protein mRNA in the chicken telencephalon throughout development. J Comp Neurol 2023. [PMID: 37393534 DOI: 10.1002/cne.25517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 06/10/2023] [Indexed: 07/03/2023]
Abstract
Understanding the neural mechanisms that regulate the stress response is critical to know how animals adapt to a changing world and is one of the key factors to be considered for improving animal welfare. Corticotropin-releasing factor (CRF) is crucial for regulating physiological and endocrine responses, triggering the activation of the sympathetic nervous system and the hypothalamo-pituitary-adrenal axis (HPA) during stress. In mammals, several telencephalic areas, such as the amygdala and the hippocampus, regulate the autonomic system and the HPA responses. These centers include subpopulations of CRF containing neurons that, by way of CRF receptors, play modulatory roles in the emotional and cognitive aspects of stress. CRF binding protein also plays a role, buffering extracellular CRF and regulating its availability. CRF role in activation of the HPA is evolutionary conserved in vertebrates, highlighting the relevance of this system to help animals cope with adversity. However, knowledge on CRF systems in the avian telencephalon is very limited, and no information exists on detailed expression of CRF receptors and binding protein. Knowing that the stress response changes with age, with important variations during the first week posthatching, the aim of this study was to analyze mRNA expression of CRF, CRF receptors 1 and 2, and CRF binding protein in chicken telencephalon throughout embryonic and early posthatching development, using in situ hybridization. Our results demonstrate an early expression of CRF and its receptors in pallial areas regulating sensory processing, sensorimotor integration and cognition, and a late expression in subpallial areas regulating the stress response. However, CRF buffering system develops earlier in the subpallium than in the pallium. These results help to understand the mechanisms underlying the negative effects of noise and light during prehatching stages in chicken, and suggest that stress regulation becomes more sophisticated with age.
Collapse
Affiliation(s)
- Alek H Metwalli
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Alessandra Pross
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| |
Collapse
|
4
|
Malungo IB, Mokale R, Bertelsen MF, Manger PR. Cholinergic, catecholaminergic, serotonergic, and orexinergic neuronal populations in the brain of the lesser hedgehog tenrec (Echinops telfairi). Anat Rec (Hoboken) 2023; 306:844-878. [PMID: 36179372 DOI: 10.1002/ar.25092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
The current study provides an analysis of the cholinergic, catecholaminergic, serotonergic, and orexinergic neuronal populations, or nuclei, in the brain of the lesser hedgehog tenrec, as revealed with immunohistochemical techniques. For all four of these neuromodulatory systems, the nuclear organization was very similar to that observed in other Afrotherian species and is broadly similar to that observed in other mammals. The cholinergic system shows the most variation, with the lesser hedgehog tenrec exhibiting palely immunopositive cholinergic neurons in the ventral portion of the lateral septal nucleus, and the possible absence of cholinergic neurons in the parabigeminal nucleus and the medullary tegmental field. The nuclear complement of the catecholaminergic, serotonergic and orexinergic systems showed no specific variances in the lesser hedgehog tenrec when compared to other Afrotherians, or broadly with other mammals. A striking feature of the lesser hedgehog tenrec brain is a significant mesencephalic flexure that is observed in most members of the Tenrecoidea, as well as the closely related Chrysochlorinae (golden moles), but is not present in the greater otter shrew, a species of the Potomogalidae lineage currently incorporated into the Tenrecoidea. In addition, the cholinergic neurons of the ventral portion of the lateral septal nucleus are observed in the golden moles, but not in the greater otter shrew. This indicates that either complex parallel evolution of these features occurred in the Tenrecoidea and Chrysochlorinae lineages, or that the placement of the Potomogalidae within the Tenrecoidea needs to be re-examined.
Collapse
Affiliation(s)
- Illke B Malungo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Reabetswe Mokale
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
5
|
Diaz C, de la Torre MM, Rubenstein JLR, Puelles L. Dorsoventral Arrangement of Lateral Hypothalamus Populations in the Mouse Hypothalamus: a Prosomeric Genoarchitectonic Analysis. Mol Neurobiol 2023; 60:687-731. [PMID: 36357614 PMCID: PMC9849321 DOI: 10.1007/s12035-022-03043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
The lateral hypothalamus (LH) has a heterogeneous cytoarchitectonic organization that has not been elucidated in detail. In this work, we analyzed within the framework of the prosomeric model the differential expression pattern of 59 molecular markers along the ventrodorsal dimension of the medial forebrain bundle in the mouse, considering basal and alar plate subregions of the LH. We found five basal (LH1-LH5) and four alar (LH6-LH9) molecularly distinct sectors of the LH with neuronal cell groups that correlate in topography with previously postulated alar and basal hypothalamic progenitor domains. Most peptidergic populations were restricted to one of these LH sectors though some may have dispersed into a neighboring sector. For instance, histaminergic Hdc-positive neurons were mostly contained within the basal LH3, Nts (neurotensin)- and Tac2 (tachykinin 2)-expressing cells lie strictly within LH4, Hcrt (hypocretin/orexin)-positive and Pmch (pro-melanin-concentrating hormone)-positive neurons appeared within separate LH5 subdivisions, Pnoc (prepronociceptin)-expressing cells were mainly restricted to LH6, and Sst (somatostatin)-positive cells were identified within the LH7 sector. The alar LH9 sector, a component of the Foxg1-positive telencephalo-opto-hypothalamic border region, selectively contained Satb2-expressing cells. Published studies of rodent LH subdivisions have not described the observed pattern. Our genoarchitectonic map should aid in systematic approaches to elucidate LH connectivity and function.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, 02006 Albacete, Spain
| | - Margaret Martinez de la Torre
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, 30100 Murcia, Spain
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Medical School, San Francisco, California USA
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
6
|
Santos-Durán GN, Ferreiro-Galve S, Mazan S, Anadón R, Rodríguez-Moldes I, Candal E. Developmental genoarchitectonics as a key tool to interpret the mature anatomy of the chondrichthyan hypothalamus according to the prosomeric model. Front Neuroanat 2022; 16:901451. [PMID: 35991967 PMCID: PMC9385951 DOI: 10.3389/fnana.2022.901451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
The hypothalamus is a key vertebrate brain region involved in survival and physiological functions. Understanding hypothalamic organization and evolution is important to deciphering many aspects of vertebrate biology. Recent comparative studies based on gene expression patterns have proposed the existence of hypothalamic histogenetic domains (paraventricular, TPa/PPa; subparaventricular, TSPa/PSPa; tuberal, Tu/RTu; perimamillary, PM/PRM; and mamillary, MM/RM), revealing conserved evolutionary trends. To shed light on the functional relevance of these histogenetic domains, this work aims to interpret the location of developed cell groups according to the prosomeric model in the hypothalamus of the catshark Scyliorhinus canicula, a representative of Chondrichthyans (the sister group of Osteichthyes, at the base of the gnathostome lineage). To this end, we review in detail the expression patterns of ScOtp, ScDlx2, and ScPitx2, as well as Pax6-immunoreactivity in embryos at stage 32, when the morphology of the adult catshark hypothalamus is already organized. We also propose homologies with mammals when possible. This study provides a comprehensive tool to better understand previous and novel data on hypothalamic development and evolution.
Collapse
Affiliation(s)
- Gabriel N. Santos-Durán
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Susana Ferreiro-Galve
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Sylvie Mazan
- CNRS-UMR 7232, Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, Paris, France
| | - Ramón Anadón
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Isabel Rodríguez-Moldes
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Eva Candal
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
- *Correspondence: Eva Candal,
| |
Collapse
|
7
|
Imam A, Bhagwandin A, Ajao MS, Manger PR. The brain of the tree pangolin (Manis tricuspis). VIII. The subpallial telencephalon. J Comp Neurol 2022; 530:2611-2644. [PMID: 35708120 PMCID: PMC9543335 DOI: 10.1002/cne.25353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
The current study provides a detailed architectural analysis of the subpallial telencephalon of the tree pangolin. In the tree pangolin, the subpallial telencephalon was divided into septal and striatopallidal regions. The septal region contained the septal nuclear complex, diagonal band of Broca, and the bed nuclei of the stria terminalis. The striatopallidal region comprised of the dorsal (caudate, putamen, internal and external globus pallidus) and ventral (nucleus accumbens, olfactory tubercle, ventral pallidum, nucleus basalis, basal part of the substantia innominata, lateral stripe of the striatum, navicular nucleus, and the major island of Calleja) striatopallidal complexes. In the tree pangolin, the organization and numbers of nuclei forming these regions and complexes, their topographical relationships to each other, and the cyto‐, myelo‐, and chemoarchitecture, were found to be very similar to that observed in commonly studied mammals. Minor variations, such as less nuclear parcellation in the bed nuclei of the stria terminalis, may represent species‐specific variations, or may be the result of the limited range of stains used. Given the overall similarity across mammalian species, it appears that the subpallial telencephalon of the mammalian brain is highly conserved in terms of evolutionary changes detectable with the methods used. It is also likely that the functions associated with these nuclei in other mammals can be translated directly to the tree pangolin, albeit with the understanding that the stimuli that produce activity within these regions may be specific to the life history requirements of the tree pangolin.
Collapse
Affiliation(s)
- Aminu Imam
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa.,Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - Moyosore S Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| |
Collapse
|
8
|
Metwalli AH, Abellán A, Freixes J, Pross A, Desfilis E, Medina L. Distinct Subdivisions in the Transition Between Telencephalon and Hypothalamus Produce Otp and Sim1 Cells for the Extended Amygdala in Sauropsids. Front Neuroanat 2022; 16:883537. [PMID: 35645737 PMCID: PMC9133795 DOI: 10.3389/fnana.2022.883537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Based on the coexpression of the transcription factors Foxg1 and Otp, we recently identified in the mouse a new radial embryonic division named the telencephalon-opto-hypothalamic (TOH) domain that produces the vast majority of glutamatergic neurons found in the medial extended amygdala. To know whether a similar division exists in other amniotes, we carried out double labeling of Foxg1 and Otp in embryonic brain sections of two species of sauropsids, the domestic chicken (Gallus gallus domesticus), and the long-tailed lacertid lizard (Psammodromus algirus). Since in mice Otp overlaps with the transcription factor Sim1, we also analyzed the coexpression of Foxg1 and Sim1 and compared it to the glutamatergic cell marker VGLUT2. Our results showed that the TOH domain is also present in sauropsids and produces subpopulations of Otp/Foxg1 and Sim1/Foxg1 cells for the medial extended amygdala. In addition, we found Sim1/Foxg1 cells that invade the central extended amygdala, and other Otp and Sim1 cells not coexpressing Foxg1 that invade the extended and the pallial amygdala. These different Otp and Sim1 cell subpopulations, with or without Foxg1, are likely glutamatergic. Our results highlight the complex divisional organization of telencephalon-hypothalamic transition, which contributes to the heterogeneity of amygdalar cells. In addition, our results open new venues to study further the amygdalar cells derived from different divisions around this transition zone and their relationship to other cells derived from the pallium or the subpallium.
Collapse
Affiliation(s)
- Alek H. Metwalli
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Júlia Freixes
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
| | - Alessandra Pross
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- *Correspondence: Loreta Medina,
| |
Collapse
|
9
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Siskos N, Ververidis C, Skavdis G, Grigoriou ME. Genoarchitectonic Compartmentalization of the Embryonic Telencephalon: Insights From the Domestic Cat. Front Neuroanat 2022; 15:785541. [PMID: 34975420 PMCID: PMC8716433 DOI: 10.3389/fnana.2021.785541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The telencephalon develops from the alar plate of the secondary prosencephalon and is subdivided into two distinct divisions, the pallium, which derives solely from prosomere hp1, and the subpallium which derives from both hp1 and hp2 prosomeres. In this first systematic analysis of the feline telencephalon genoarchitecture, we apply the prosomeric model to compare the expression of a battery of genes, including Tbr1, Tbr2, Pax6, Mash1, Dlx2, Nkx2-1, Lhx6, Lhx7, Lhx2, and Emx1, the orthologs of which alone or in combination, demarcate molecularly distinct territories in other species. We characterize, within the pallium and the subpallium, domains and subdomains topologically equivalent to those previously described in other vertebrate species and we show that the overall genoarchitectural map of the E26/27 feline brain is highly similar to that of the E13.5/E14 mouse. In addition, using the same approach at the earlier (E22/23 and E24/25) or later (E28/29 and E34/35) stages we further analyze neurogenesis, define the timing and duration of several developmental events, and compare our data with those from similar mouse studies; our results point to a complex pattern of heterochronies and show that, compared with the mouse, developmental events in the feline telencephalon span over extended periods suggesting that cats may provide a useful animal model to study brain patterning in ontogenesis and evolution.
Collapse
Affiliation(s)
- Nikistratos Siskos
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Charalampos Ververidis
- Obstetrics and Surgery Unit, Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Skavdis
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria E Grigoriou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
11
|
Smulders TV. Telencephalic regulation of the HPA axis in birds. Neurobiol Stress 2021; 15:100351. [PMID: 34189191 PMCID: PMC8220096 DOI: 10.1016/j.ynstr.2021.100351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis is one of the major output systems of the vertebrate stress response. It controls the release of cortisol or corticosterone from the adrenal gland. These hormones regulate a range of processes throughout the brain and body, with the main function of mobilizing energy reserves to improve coping with a stressful situation. This axis is regulated in response to both physical (e.g., osmotic) and psychological (e.g., social) stressors. In mammals, the telencephalon plays an important role in the regulation of the HPA axis response in particular to psychological stressors, with the amygdala and part of prefrontal cortex stimulating the stress response, and the hippocampus and another part of prefrontal cortex inhibiting the response to return it to baseline. Birds also mount HPA axis responses to psychological stressors, but much less is known about the telencephalic areas that control this response. This review summarizes which telencephalic areas in birds are connected to the HPA axis and are known to respond to stressful situations. The conclusion is that the telencephalic control of the HPA axis is probably an ancient system that dates from before the split between sauropsid and synapsid reptiles, but more research is needed into the functional relationships between the brain areas reviewed in birds if we want to understand the level of this conservation.
Collapse
Affiliation(s)
- Tom V. Smulders
- Centre for Behaviour & Evolution, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
12
|
Medina L, Abellán A, Desfilis E. Evolving Views on the Pallium. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:181-199. [PMID: 34657034 DOI: 10.1159/000519260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
The pallium is the largest part of the telencephalon in amniotes, and comparison of its subdivisions across species has been extremely difficult and controversial due to its high divergence. Comparative embryonic genoarchitecture studies have greatly contributed to propose models of pallial fundamental divisions, which can be compared across species and be used to extract general organizing principles as well as to ask more focused and insightful research questions. The use of these models is crucial to discern between conservation, convergence or divergence in the neural populations and networks found in the pallium. Here we provide a critical review of the models proposed using this approach, including tetrapartite, hexapartite and double-ring models, and compare them to other models. While recognizing the power of these models for understanding brain architecture, development and evolution, we also highlight limitations and comment on aspects that require attention for improvement. We also discuss on the use of transcriptomic data for understanding pallial evolution and advise for better contextualization of these data by discerning between gene regulatory networks involved in the generation of specific units and cell populations versus genes expressed later, many of which are activity dependent and their expression is more likely subjected to convergent evolution.
Collapse
Affiliation(s)
- Loreta Medina
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| |
Collapse
|
13
|
Jiménez S, Moreno N. Analysis of the Expression Pattern of Cajal-Retzius Cell Markers in the Xenopus laevis Forebrain. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:263-282. [PMID: 34614492 DOI: 10.1159/000519025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/09/2021] [Indexed: 01/26/2023]
Abstract
Cajal-Retzius cells are essential for cortical development in mammals, and their involvement in the evolution of this structure has been widely postulated, but very little is known about their progenitor domains in non-mammalian vertebrates. Using in situhybridization and immunofluorescence techniques we analyzed the expression of some of the main Cajal-Retzius cell markers such as Dbx1, Ebf3, ER81, Lhx1, Lhx5, p73, Reelin, Wnt3a, Zic1, and Zic2 in the forebrain of the anuran Xenopus laevis, because amphibians are the only class of anamniote tetrapods and show a tetrapartite evaginated pallium, but no layered or nuclear organization. Our results suggested that the Cajal-Retzius cell progenitor domains were comparable to those previously described in amniotes. Thus, at dorsomedial telencephalic portions a region comparable to the cortical hem was defined in Xenopus based on the expression of Wnt3a, p73, Reelin, Zic1, and Zic2. In the septum, two different domains were observed: a periventricular dorsal septum, at the limit between the pallium and the subpallium, expressing Reelin, Zic1, and Zic2, and a related septal domain, expressing Ebf3, Zic1, and Zic2. In the lateral telencephalon, the ventral pallium next to the pallio-subpallial boundary, the lack of Dbx1 and the unique expression of Reelin during development defined this territory as the most divergent with respect to mammals. Finally, we also analyzed the expression of these markers at the prethalamic eminence region, suggested as Cajal-Retzius progenitor domain in amniotes, observing there Zic1, Zic2, ER81, and Lhx1 expression. Our data show that in anurans there are different subtypes and progenitor domains of Cajal-Retzius cells, which probably contribute to the cortical regional specification and territory-specific properties. This supports the notion that the basic organization of pallial derivatives in vertebrates follows a comparable fundamental arrangement, even in those that do not have a sophisticated stratified cortical structure like the mammalian cerebral cortex.
Collapse
Affiliation(s)
- Sara Jiménez
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| |
Collapse
|
14
|
Causeret F, Moreau MX, Pierani A, Blanquie O. The multiple facets of Cajal-Retzius neurons. Development 2021; 148:268379. [PMID: 34047341 DOI: 10.1242/dev.199409] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cajal-Retzius neurons (CRs) are among the first-born neurons in the developing cortex of reptiles, birds and mammals, including humans. The peculiarity of CRs lies in the fact they are initially embedded into the immature neuronal network before being almost completely eliminated by cell death at the end of cortical development. CRs are best known for controlling the migration of glutamatergic neurons and the formation of cortical layers through the secretion of the glycoprotein reelin. However, they have been shown to play numerous additional key roles at many steps of cortical development, spanning from patterning and sizing functional areas to synaptogenesis. The use of genetic lineage tracing has allowed the discovery of their multiple ontogenetic origins, migratory routes, expression of molecular markers and death dynamics. Nowadays, single-cell technologies enable us to appreciate the molecular heterogeneity of CRs with an unprecedented resolution. In this Review, we discuss the morphological, electrophysiological, molecular and genetic criteria allowing the identification of CRs. We further expose the various sources, migration trajectories, developmental functions and death dynamics of CRs. Finally, we demonstrate how the analysis of public transcriptomic datasets allows extraction of the molecular signature of CRs throughout their transient life and consider their heterogeneity within and across species.
Collapse
Affiliation(s)
- Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
| | - Matthieu X Moreau
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
| | - Alessandra Pierani
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France.,Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, F-75014 Paris, France
| | - Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, D-55128 Mainz, Germany
| |
Collapse
|
15
|
Alonso A, Trujillo CM, Puelles L. Quail-chick grafting experiments corroborate that Tbr1-positive eminential prethalamic neurons migrate along three streams into hypothalamus, subpallium and septocommissural areas. Brain Struct Funct 2021; 226:759-785. [PMID: 33544184 PMCID: PMC7981335 DOI: 10.1007/s00429-020-02206-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
The prethalamic eminence (PThE), a diencephalic caudal neighbor of the telencephalon and alar hypothalamus, is frequently described in mammals and birds as a transient embryonic structure, undetectable in the adult brain. Based on descriptive developmental analysis of Tbr1 gene brain expression in chick embryos, we previously reported that three migratory cellular streams exit the PThE rostralward, targeting multiple sites in the hypothalamus, subpallium and septocommissural area, where eminential cells form distinct nuclei or disperse populations. These conclusions needed experimental corroboration. In this work, we used the homotopic quail-chick chimeric grafting procedure at stages HH10/HH11 to demonstrate by fate-mapping the three predicted tangential migration streams. Some chimeric brains were processed for Tbr1 in situ hybridization, for correlation with our previous approach. Evidence supporting all three postulated migration streams is presented. The results suggested a slight heterochrony among the juxtapeduncular (first), the peripeduncular (next), and the eminentio-septal (last) streams, each of which followed differential routes. A possible effect of such heterochrony on the differential selection of medial to lateral habenular hodologic targets by the migrated neurons is discussed.
Collapse
Affiliation(s)
- Antonia Alonso
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, School of Medicine, University of Murcia, 30100, Murcia, Spain. .,Biomedical Research Laboratory (LAIB), Health Campus, Murcia Biomedical Research Institute (IMIB-Arrixaca), El Palmar, 30120, Murcia, Spain.
| | - Carmen María Trujillo
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Faculty of Sciences, School of Biology, University of La Laguna, 38200, La Laguna, Canary Islands, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, School of Medicine, University of Murcia, 30100, Murcia, Spain.,Biomedical Research Laboratory (LAIB), Health Campus, Murcia Biomedical Research Institute (IMIB-Arrixaca), El Palmar, 30120, Murcia, Spain
| |
Collapse
|
16
|
Puelles L, Diaz C, Stühmer T, Ferran JL, Martínez‐de la Torre M, Rubenstein JLR. LacZ-reporter mapping of Dlx5/6 expression and genoarchitectural analysis of the postnatal mouse prethalamus. J Comp Neurol 2021; 529:367-420. [PMID: 32420617 PMCID: PMC7671952 DOI: 10.1002/cne.24952] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
We present here a thorough and complete analysis of mouse P0-P140 prethalamic histogenetic subdivisions and corresponding nuclear derivatives, in the context of local tract landmarks. The study used as fundamental material brains from a transgenic mouse line that expresses LacZ under the control of an intragenic enhancer of Dlx5 and Dlx6 (Dlx5/6-LacZ). Subtle shadings of LacZ signal, jointly with pan-DLX immunoreaction, and several other ancillary protein or RNA markers, including Calb2 and Nkx2.2 ISH (for the prethalamic eminence, and derivatives of the rostral zona limitans shell domain, respectively) were mapped across the prethalamus. The resulting model of the prethalamic region postulates tetrapartite rostrocaudal and dorsoventral subdivisions, as well as a tripartite radial stratification, each cell population showing a characteristic molecular profile. Some novel nuclei are proposed, and some instances of potential tangential cell migration were noted.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB‐Arrixaca InstituteUniversity of MurciaMurciaSpain
| | - Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological DisabilitiesUniversity of Castilla‐La ManchaAlbaceteSpain
| | - Thorsten Stühmer
- Nina Ireland Laboratory of Developmental Neurobiology, Department of PsychiatryUCSF Medical SchoolSan FranciscoCaliforniaUSA
| | - José L. Ferran
- Department of Human Anatomy and Psychobiology and IMIB‐Arrixaca InstituteUniversity of MurciaMurciaSpain
| | | | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of PsychiatryUCSF Medical SchoolSan FranciscoCaliforniaUSA
| |
Collapse
|
17
|
Garcia-Calero E, Puelles L. Development of the mouse anterior amygdalar radial unit marked by Lhx9-expression. Brain Struct Funct 2021; 226:575-600. [PMID: 33515280 PMCID: PMC7910270 DOI: 10.1007/s00429-020-02201-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
The amygdala in mammals plays a key role in emotional processing and learning, being subdivided in pallial and subpallial derivatives. Recently, the cortical ring model and the pallial amygdalar radial model (Puelles et al. 2019; Garcia-Calero et al. 2020) described the pallial amygdala as an histogenetic field external to the allocortical ring, and subdivided it in five major radial domains called lateral, basal, anterior, posterior and retroendopiriform units. The anterior radial unit, whose cells typically express the Lhx9 gene (see molecular profile in Garcia-Calero et al. 2020), is located next to the pallial/subpallial boundary. This radial domain shows massive radial translocation and accumulation of its derivatives into its intermediate and superficial strata, with only a glial palisade representing its final periventricular domain. To better understand the development of this singular radial domain, not described previously, we followed the expression of Lhx9 during mouse amygdalar development in the context of the postulated radial subdivisions of the pallial amygdala and other telencephalic developmental features.
Collapse
Affiliation(s)
- Elena Garcia-Calero
- Department of Human Anatomy, School of Medicine and IMIB-Arrixaca Institute, University of Murcia, 30120, Murcia, Spain.
| | - Luis Puelles
- Department of Human Anatomy, School of Medicine and IMIB-Arrixaca Institute, University of Murcia, 30120, Murcia, Spain
| |
Collapse
|
18
|
Morales L, Castro-Robles B, Abellán A, Desfilis E, Medina L. A novel telencephalon-opto-hypothalamic morphogenetic domain coexpressing Foxg1 and Otp produces most of the glutamatergic neurons of the medial extended amygdala. J Comp Neurol 2021; 529:2418-2449. [PMID: 33386618 DOI: 10.1002/cne.25103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Deficits in social cognition and behavior are a hallmark of many psychiatric disorders. The medial extended amygdala, including the medial amygdala and the medial bed nucleus of the stria terminalis, is a key component of functional networks involved in sociality. However, this nuclear complex is highly heterogeneous and contains numerous GABAergic and glutamatergic neuron subpopulations. Deciphering the connections of different neurons is essential in order to understand how this structure regulates different aspects of sociality, and it is necessary to evaluate their differential implication in distinct mental disorders. Developmental studies in different vertebrates are offering new venues to understand neuronal diversity of the medial extended amygdala and are helping to establish a relation between the embryonic origin and molecular signature of distinct neurons with the functional subcircuits in which they are engaged. These studies have provided many details on the distinct GABAergic neurons of the medial extended amygdala, but information on the glutamatergic neurons is still scarce. Using an Otp-eGFP transgenic mouse and multiple fluorescent labeling, we show that most glutamatergic neurons of the medial extended amygdala originate in a distinct telencephalon-opto-hypothalamic embryonic domain (TOH), located at the transition between telencephalon and hypothalamus, which produces Otp-lineage neurons expressing the telencephalic marker Foxg1 but not Nkx2.1 during development. These glutamatergic cells include a subpopulation of projection neurons of the medial amygdala, which activation has been previously shown to promote autistic-like behavior. Our data open new venues for studying the implication of this neuron subtype in neurodevelopmental disorders producing social deficits.
Collapse
Affiliation(s)
- Lorena Morales
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| | - Beatriz Castro-Robles
- Laboratory of Cerebrovascular, Neurodegenerative and Neuro-oncology Diseases, Research Unit, Complejo Hospitalario Universitario de Albacete, Castilla-La Mancha, Spain
| | - Antonio Abellán
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| | - Ester Desfilis
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| | - Loreta Medina
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| |
Collapse
|
19
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
20
|
Longitudinal developmental analysis of prethalamic eminence derivatives in the chick by mapping of Tbr1 in situ expression. Brain Struct Funct 2020; 225:481-510. [DOI: 10.1007/s00429-019-02015-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
|
21
|
School level of children carrying a HNF1B variant or a deletion. Eur J Hum Genet 2019; 28:56-63. [PMID: 31481685 DOI: 10.1038/s41431-019-0490-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 11/08/2022] Open
Abstract
The prevalence of neurological involvement in patients with a deletion of or a variant in the HNF1B gene remains discussed. The aim of this study was to investigate the neuropsychological outcomes in a large cohort of children carrying either a HNF1B whole-gene deletion or a disease-associated variant, revealed by the presence of kidney anomalies. The neuropsychological development-based on school level-of 223 children included in this prospective cohort was studied. Data from 180 children were available for analysis. Patients mean age was 9.6 years, with 39.9% of girls. Among these patients, 119 carried a HNF1B deletion and 61 a disease-associated variant. In the school-aged population, 12.7 and 3.6% of patients carrying a HNF1B deletion and a disease-associated variant had special educational needs, respectively. Therefore, the presence of a HNF1B deletion increases the risk to present with a neuropsychiatric involvement when compared with the general population. On the other hand, almost 90% of patients carrying a HNF1B disease-associated variant or deletion have a normal schooling in a general educational environment. Even if these findings do not predict the risk of neuropsychiatric disease at adulthood, most patients diagnosed secondary to kidney anomalies do not show a neurological outcome severe enough to impede standard schooling at elementary school. These results should be taken into account in prenatal counseling.
Collapse
|
22
|
Sarkar S, Atoji Y. Distribution of vesicular glutamate transporters in the brain of the turtle (Pseudemys scripta elegans). J Comp Neurol 2018; 526:1690-1702. [PMID: 29603220 DOI: 10.1002/cne.24439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
The distribution of glutamatergic neurons has been extensively studied in mammalian and avian brains, but its distribution in a reptilian brain remains unknown. In the present study, the distribution of subpopulations of glutamatergic neurons in the turtle brain was examined by in situ hybridization using probes for vesicular glutamate transporter (VGLUT) 1-3. Strong VGLUT1 expression was observed in the telencephalic pallium; the mitral cells of the olfactory bulb, the medial, dorsomedial, dorsal, and lateral parts of the cerebral cortex, pallial thickening, and dorsal ventricular ridge; and also, in granule cells of the cerebellar cortex. Moderate to weak expression was found in the lateral and medial amygdaloid nuclei, the periventricular cellular layer of the optic tectum, and in some brainstem nuclei. VGLUT2 was weakly expressed in the telencephalon but was intensely expressed in the dorsal thalamic nuclei, magnocellular part of the isthmic nucleus, brainstem nuclei, and the rostral cervical segment of the spinal cord. The cerebellar cortex was devoid of VGLUT2 expression. The central amygdaloid nucleus did not express VGLUT1 or VGLUT2. VGLUT3 was localized in the parvocellular part of the isthmic nucleus, superior and inferior raphe nuclei, and cochlear nucleus. Our results indicate that the distribution of VGLUTs in the turtle brain is similar to that in the mammalian brain rather than that in the avian brain.
Collapse
Affiliation(s)
- Sonjoy Sarkar
- Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yasuro Atoji
- Laboratory of Veterinary anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
23
|
Santos-Durán GN, Ferreiro-Galve S, Menuet A, Mazan S, Rodríguez-Moldes I, Candal E. The Shark Basal Hypothalamus: Molecular Prosomeric Subdivisions and Evolutionary Trends. Front Neuroanat 2018; 12:17. [PMID: 29593505 PMCID: PMC5861214 DOI: 10.3389/fnana.2018.00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 02/21/2018] [Indexed: 11/30/2022] Open
Abstract
The hypothalamus is a key integrative center of the vertebrate brain. To better understand its ancestral morphological organization and evolution, we previously analyzed the segmental organization of alar subdivisions in the catshark Scyliorhinus canicula, a cartilaginous fish and thus a basal representative of gnathostomes (jawed vertebrates). With the same aim, we deepen here in the segmental organization of the catshark basal hypothalamus by revisiting previous data on ScOtp, ScDlx2/5, ScNkx2.1, ScShh expression and Shh immunoreactivity jointly with new data on ScLhx5, ScEmx2, ScLmx1b, ScPitx2, ScPitx3a, ScFoxa1, ScFoxa2 and ScNeurog2 expression and proliferating cell nuclear antigen (PCNA) immunoreactivity. Our study reveals a complex genoarchitecture for chondrichthyan basal hypothalamus on which a total of 21 microdomains were identified. Six belong to the basal acroterminal region, the rostral-most point of the basal neural tube; seven are described in the tuberal region (Tu/RTu); four in the perimamillar region (PM/PRM) and four in the mamillar one (MM/RM). Interestingly, the same set of genes does not necessarily describe the same microdomains in mice, which in part contributes to explain how forebrain diversity is achieved. This study stresses the importance of analyzing data from basal vertebrates to better understand forebrain diversity and hypothalamic evolution.
Collapse
Affiliation(s)
- Gabriel N Santos-Durán
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Susana Ferreiro-Galve
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Arnaud Menuet
- UMR7355, CNRS, University of Orleans, Orleans, France
| | - Sylvie Mazan
- CNRS, Sorbonne Université, Biologie Intégrative des Organismes Marins, UMR7232, Banyuls-sur-Mer, France
| | - Isabel Rodríguez-Moldes
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Candal
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
24
|
Ruiz-Reig N, Andrés B, Huilgol D, Grove EA, Tissir F, Tole S, Theil T, Herrera E, Fairén A. Lateral Thalamic Eminence: A Novel Origin for mGluR1/Lot Cells. Cereb Cortex 2018; 27:2841-2856. [PMID: 27178193 DOI: 10.1093/cercor/bhw126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A unique population of cells, called "lot cells," circumscribes the path of the lateral olfactory tract (LOT) in the rodent brain and acts to restrict its position at the lateral margin of the telencephalon. Lot cells were believed to originate in the dorsal pallium (DP). We show that Lhx2 null mice that lack a DP show a significant increase in the number of mGluR1/lot cells in the piriform cortex, indicating a non-DP origin of these cells. Since lot cells present common developmental features with Cajal-Retzius (CR) cells, we analyzed Wnt3a- and Dbx1-reporter mouse lines and found that mGluR1/lot cells are not generated in the cortical hem, ventral pallium, or septum, the best characterized sources of CR cells. Finally, we identified a novel origin for the lot cells by combining in utero electroporation assays and histochemical characterization. We show that mGluR1/lot cells are specifically generated in the lateral thalamic eminence and that they express mitral cell markers, although a minority of them express ΔNp73 instead. We conclude that most mGluR1/lot cells are prospective mitral cells migrating to the accessory olfactory bulb (OB), whereas mGluR1+, ΔNp73+ cells are CR cells that migrate through the LOT to the piriform cortex and the OB.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Belén Andrés
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.,Current address: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Brussels, Belgium
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Thomas Theil
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Eloisa Herrera
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Alfonso Fairén
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| |
Collapse
|
25
|
Desfilis E, Abellán A, Sentandreu V, Medina L. Expression of regulatory genes in the embryonic brain of a lizard and implications for understanding pallial organization and evolution. J Comp Neurol 2017; 526:166-202. [PMID: 28891227 PMCID: PMC5765483 DOI: 10.1002/cne.24329] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/13/2017] [Accepted: 09/01/2017] [Indexed: 02/03/2023]
Abstract
The comparison of gene expression patterns in the embryonic brain of mouse and chicken is being essential for understanding pallial organization. However, the scarcity of gene expression data in reptiles, crucial for understanding evolution, makes it difficult to identify homologues of pallial divisions in different amniotes. We cloned and analyzed the expression of the genes Emx1, Lhx2, Lhx9, and Tbr1 in the embryonic telencephalon of the lacertid lizard Psammodromus algirus. The comparative expression patterns of these genes, critical for pallial development, are better understood when using a recently proposed six‐part model of pallial divisions. The lizard medial pallium, expressing all genes, includes the medial and dorsomedial cortices, and the majority of the dorsal cortex, except the region of the lateral cortical superposition. The latter is rich in Lhx9 expression, being excluded as a candidate of dorsal or lateral pallia, and may belong to a distinct dorsolateral pallium, which extends from rostral to caudal levels. Thus, the neocortex homolog cannot be found in the classical reptilian dorsal cortex, but perhaps in a small Emx1‐expressing/Lhx9‐negative area at the front of the telencephalon, resembling the avian hyperpallium. The ventral pallium, expressing Lhx9, but not Emx1, gives rise to the dorsal ventricular ridge and appears comparable to the avian nidopallium. We also identified a distinct ventrocaudal pallial sector comparable to the avian arcopallium and to part of the mammalian pallial amygdala. These data open new venues for understanding the organization and evolution of the pallium.
Collapse
Affiliation(s)
- Ester Desfilis
- Laboratory of Evolutionary and Developmental Neurobiology, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), 25198, Lleida, Spain
| | - Antonio Abellán
- Laboratory of Evolutionary and Developmental Neurobiology, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), 25198, Lleida, Spain
| | - Vicente Sentandreu
- Servicio Central de Apoyo a la Investigación Experimental (SCSIE), Sección de Genómica, University of València, 46100, València, Spain
| | - Loreta Medina
- Laboratory of Evolutionary and Developmental Neurobiology, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), 25198, Lleida, Spain
| |
Collapse
|
26
|
Santos-Durán GN, Ferreiro-Galve S, Menuet A, Quintana-Urzainqui I, Mazan S, Rodríguez-Moldes I, Candal E. The Shark Alar Hypothalamus: Molecular Characterization of Prosomeric Subdivisions and Evolutionary Trends. Front Neuroanat 2016; 10:113. [PMID: 27932958 PMCID: PMC5121248 DOI: 10.3389/fnana.2016.00113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022] Open
Abstract
The hypothalamus is an important physiologic center of the vertebrate brain involved in the elaboration of individual and species survival responses. To better understand the ancestral organization of the alar hypothalamus we revisit previous data on ScOtp, ScDlx2/5, ScTbr1, ScNkx2.1 expression and Pax6 immunoreactivity jointly with new data on ScNeurog2, ScLhx9, ScLhx5, and ScNkx2.8 expression, in addition to immunoreactivity to serotonin (5-HT) and doublecortin (DCX) in the catshark Scyliorhinus canicula, a key species for this purpose since cartilaginous fishes are basal representatives of gnathostomes (jawed vertebrates). Our study revealed a complex genoarchitecture for the chondrichthyan alar hypothalamus. We identified terminal (rostral) and peduncular (caudal) subdivisions in the prosomeric paraventricular and subparaventricular areas (TPa/PPa and TSPa/PSPa, respectively) evidenced by the expression pattern of developmental genes like ScLhx5 (TPa) and immunoreactivity against Pax6 (PSPa) and 5-HT (PPa and PSPa). Dorso-ventral subdivisions were only evidenced in the SPa (SPaD, SPaV; respectively) by means of Pax6 and ScNkx2.8 (respectively). Interestingly, ScNkx2.8 expression overlaps over the alar-basal boundary, as Nkx2.2 does in other vertebrates. Our results reveal evidences for the existence of different groups of tangentially migrated cells expressing ScOtp, Pax6, and ScDlx2. The genoarchitectonic comparative analysis suggests alternative interpretations of the rostral-most alar plate in prosomeric terms and reveals a conserved molecular background for the vertebrate alar hypothalamus likely acquired before/during the agnathan-gnathostome transition, on which Otp, Pax6, Lhx5, and Neurog2 are expressed in the Pa while Dlx and Nkx2.2/Nkx2.8 are expressed in the SPa.
Collapse
Affiliation(s)
- Gabriel N Santos-Durán
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Susana Ferreiro-Galve
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Arnaud Menuet
- CNRS, UMR 7355, University of Orleans Orleans, France
| | - Idoia Quintana-Urzainqui
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de CompostelaSantiago de Compostela, Spain; Centre for Integrative Physiology, University of EdinburghEdinburgh, UK
| | - Sylvie Mazan
- Sorbonne Universités, UPMC, CNRS UMR7232 Biologie Intégrative des Organismes Marins, Observatoire Océanologique Banyuls sur Mer, France
| | - Isabel Rodríguez-Moldes
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Eva Candal
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| |
Collapse
|
27
|
Vicario A, Mendoza E, Abellán A, Scharff C, Medina L. Genoarchitecture of the extended amygdala in zebra finch, and expression of FoxP2 in cell corridors of different genetic profile. Brain Struct Funct 2016; 222:481-514. [PMID: 27160258 PMCID: PMC5225162 DOI: 10.1007/s00429-016-1229-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 04/21/2016] [Indexed: 02/01/2023]
Abstract
We used a battery of genes encoding transcription factors (Pax6, Islet1, Nkx2.1, Lhx6, Lhx5, Lhx9, FoxP2) and neuropeptides to study the extended amygdala in developing zebra finches. We identified different components of the central extended amygdala comparable to those found in mice and chickens, including the intercalated amygdalar cells, the central amygdala, and the lateral bed nucleus of the stria terminalis. Many cells likely originate in the dorsal striatal domain, ventral striatal domain, or the pallidal domain, as is the case in mice and chickens. Moreover, a cell subpopulation of the central extended amygdala appears to originate in the prethalamic eminence. As a general principle, these different cells with specific genetic profiles and embryonic origin form separate or partially intermingled cell corridors along the extended amygdala, which may be involved in different functional pathways. In addition, we identified the medial amygdala of the zebra finch. Like in the chickens and mice, it is located in the subpallium and is rich in cells of pallido-preoptic origin, containing minor subpopulations of immigrant cells from the ventral pallium, alar hypothalamus and prethalamic eminence. We also proposed that the medial bed nucleus of the stria terminalis is composed of several parallel cell corridors with different genetic profile and embryonic origin: preoptic, pallidal, hypothalamic, and prethalamic. Several of these cell corridors with distinct origin express FoxP2, a transcription factor implicated in synaptic plasticity. Our results pave the way for studies using zebra finches to understand the neural basis of social behavior, in which the extended amygdala is involved.
Collapse
Affiliation(s)
- Alba Vicario
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain
| | | | - Antonio Abellán
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain
| | | | - Loreta Medina
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain.
| |
Collapse
|
28
|
Turner KJ, Hawkins TA, Yáñez J, Anadón R, Wilson SW, Folgueira M. Afferent Connectivity of the Zebrafish Habenulae. Front Neural Circuits 2016; 10:30. [PMID: 27199671 PMCID: PMC4844923 DOI: 10.3389/fncir.2016.00030] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus "proper" in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014).
Collapse
Affiliation(s)
- Katherine J. Turner
- Department of Cell and Developmental Biology, University College London (UCL)London, UK
| | - Thomas A. Hawkins
- Department of Cell and Developmental Biology, University College London (UCL)London, UK
| | - Julián Yáñez
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Cell and Molecular Biology, University of A Coruña (UDC)A Coruña, Spain
| | - Ramón Anadón
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de CompostelaSantiago de Compostela, Spain
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London (UCL)London, UK
| | - Mónica Folgueira
- Department of Cell and Developmental Biology, University College London (UCL)London, UK
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Cell and Molecular Biology, University of A Coruña (UDC)A Coruña, Spain
| |
Collapse
|
29
|
Barber M, Pierani A. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells. Dev Neurobiol 2015; 76:847-81. [PMID: 26581033 DOI: 10.1002/dneu.22363] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Tangential migration is a mode of cell movement, which in the developing cerebral cortex, is defined by displacement parallel to the ventricular surface and orthogonal to the radial glial fibers. This mode of long-range migration is a strategy by which distinct neuronal classes generated from spatially and molecularly distinct origins can integrate to form appropriate neural circuits within the cortical plate. While it was previously believed that only GABAergic cortical interneurons migrate tangentially from their origins in the subpallial ganglionic eminences to integrate in the cortical plate, it is now known that transient populations of glutamatergic neurons also adopt this mode of migration. These include Cajal-Retzius cells (CRs), subplate neurons (SPs), and cortical plate transient neurons (CPTs), which have crucial roles in orchestrating the radial and tangential development of the embryonic cerebral cortex in a noncell-autonomous manner. While CRs have been extensively studied, it is only in the last decade that the molecular mechanisms governing their tangential migration have begun to be elucidated. To date, the mechanisms of SPs and CPTs tangential migration remain unknown. We therefore review the known signaling pathways, which regulate parameters of CRs migration including their motility, contact-redistribution and adhesion to the pial surface, and discuss this in the context of how CR migration may regulate their signaling activity in a spatial and temporal manner. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 847-881, 2016.
Collapse
Affiliation(s)
- Melissa Barber
- Institut Jacques-Monod, CNRS, Université Paris Diderot, Sorbonne Cité, Paris, France.,Department of Cell and Developmental Biology, University College London, WC1E 6BT, United Kingdom
| | - Alessandra Pierani
- Institut Jacques-Monod, CNRS, Université Paris Diderot, Sorbonne Cité, Paris, France
| |
Collapse
|
30
|
Adutwum-Ofosu KK, Magnani D, Theil T, Price DJ, Fotaki V. The molecular and cellular signatures of the mouse eminentia thalami support its role as a signalling centre in the developing forebrain. Brain Struct Funct 2015; 221:3709-27. [PMID: 26459142 PMCID: PMC5009181 DOI: 10.1007/s00429-015-1127-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022]
Abstract
The mammalian eminentia thalami (EmT) (or thalamic eminence) is an embryonic forebrain structure of unknown function. Here, we examined the molecular and cellular properties of the mouse EmT. We first studied mRNA expression of signalling molecules and found that the EmT is a structure, rich in expression of secreted factors, with Wnts being the most abundantly detected. We then examined whether EmT tissue could induce cell fate changes when grafted ectopically. For this, we transplanted EmT tissue from a tau-GFP mouse to the ventral telencephalon of a wild type host, a telencephalic region where Wnt signalling is not normally active but which we showed in culture experiments is competent to respond to Wnts. We observed that the EmT was able to induce in adjacent ventral telencephalic cells ectopic expression of Lef1, a transcriptional activator and a target gene of the Wnt/β-catenin pathway. These Lef1-positive;GFP-negative cells expressed the telencephalic marker Foxg1 but not Ascl1, which is normally expressed by ventral telencephalic cells. These results suggest that the EmT has the capacity to activate Wnt/β-catenin signalling in the ventral telencephalon and to suppress ventral telencephalic gene expression. Altogether, our data support a role of the EmT as a signalling centre in the developing mouse forebrain.
Collapse
Affiliation(s)
- Kevin Kofi Adutwum-Ofosu
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,Department of Anatomy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Dario Magnani
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Thomas Theil
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - David J Price
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Vassiliki Fotaki
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
31
|
Vicario A, Abellán A, Medina L. Embryonic Origin of the Islet1 and Pax6 Neurons of the Chicken Central Extended Amygdala Using Cell Migration Assays and Relation to Different Neuropeptide-Containing Cells. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:139-69. [DOI: 10.1159/000381004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022]
Abstract
In a recent study, we tentatively identified different subdivisions of the central extended amygdala (EAce) in chicken based on the expression of region-specific transcription factors (including Pax6 and Islet1) and several phenotypic markers during embryonic development. Such a proposal was partially based on the suggestion that, similarly to the subdivisions of the EAce of mammals, the Pax6 and Islet1 neurons of the comparable chicken subdivisions derive from the dorsal (Std) or ventral striatal embryonic domains (Stv), respectively. To investigate whether this is true, in the present study, we carried out cell migration assays from chicken Std or Stv combined with immunofluorescence for Pax6 or Islet1. Our results showed that the cells of the proposed chicken EAce truly originate in either Std (expressing Pax6) or Stv (expressing Islet1). This includes lateral subdivisions previously compared to the intercalated amygdalar cells and the central amygdala of mammals, also rich in Std-derived Pax6 cells and/or Stv-derived Islet1 cells. In the medial region of the chicken EAce, the dorsal part of the lateral bed nucleus of the stria terminalis (BSTL) contains numerous cells expressing Nkx2.1 (mostly derived from the pallidal domain), but our migration assays showed that it also contains neuron subpopulations from the Stv (expressing Islet1) and Std (expressing Pax6), resembling the mouse BSTL. These findings, together with those previously published in different species of mammals, birds and reptiles, support the homology of the chicken EAce to that of other vertebrates, and reinforce the existence of several cell subcorridors inside the EAce. In addition, together with previously published data on neuropeptidergic cells, these results led us to propose the existence of at least seventeen neuron subtypes in the EAce in rodents and/or some birds (chicken and pigeon). The functional significance and the evolutionary origin of each subtype needs to be analyzed separately, and such studies are mandatory in order to understand the multifaceted modulation by the EAce of fear responses, ingestion, motivation and pain in different vertebrates.
Collapse
|
32
|
Expression of a novel serine/threonine kinase gene, Ulk4, in neural progenitors during Xenopus laevis forebrain development. Neuroscience 2015; 290:61-79. [DOI: 10.1016/j.neuroscience.2014.12.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 01/11/2023]
|
33
|
Domínguez L, González A, Moreno N. Patterns of hypothalamic regionalization in amphibians and reptiles: common traits revealed by a genoarchitectonic approach. Front Neuroanat 2015; 9:3. [PMID: 25691860 PMCID: PMC4315040 DOI: 10.3389/fnana.2015.00003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/09/2015] [Indexed: 01/05/2023] Open
Abstract
Most studies in mammals and birds have demonstrated common patterns of hypothalamic development highlighted by the combination of developmental regulatory genes (genoarchitecture), supporting the notion of the hypothalamus as a component of the secondary prosencephalon, topologically rostral to the diencephalon. In our comparative analysis we have summarized the data on the expression patterns of different transcription factors and neuroactive substances, used as anatomical markers, in the developing hypothalamus of the amphibian Xenopus laevis and the juvenile turtle Pseudemys scripta. This analysis served to highlight the organization of the hypothalamus in the anamniote/amniotic transition. We have identified supraoptoparaventricular and the suprachiasmatic regions (SCs) in the alar part of the hypothalamus, and tuberal and mammillary regions in the basal hypothalamus. Shared features in the two species are: (1) The supraoptoparaventricular region (SPV) is defined by the expression of Otp and the lack of Nkx2.1/Isl1. It is subdivided into rostral, rich in Otp and Nkx2.2, and caudal, only Otp-positive, portions. (2) The suprachiasmatic area contains catecholaminergic cell groups and lacks Otp, and can be further divided into rostral (rich in Nkx2.1 and Nkx2.2) and a caudal (rich in Isl1 and devoid of Nkx2.1) portions. (3) Expression of Nkx2.1 and Isl1 define the tuberal hypothalamus and only the rostral portion expresses Otp. (4) Its caudal boundary is evident by the lack of Isl1 in the adjacent mammillary region, which expresses Nkx2.1 and Otp. Differences in the anamnio-amniote transition were noted since in the turtle, like in other amniotes, the boundary between the alar hypothalamus and the telencephalic preoptic area shows distinct Nkx2.2 and Otp expressions but not in the amphibian (anamniote), and the alar SPV is defined by the expression of Otp/Pax6, whereas in Xenopus only Otp is expressed.
Collapse
Affiliation(s)
- Laura Domínguez
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid Madrid, Spain
| | - Agustín González
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid Madrid, Spain
| | - Nerea Moreno
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid Madrid, Spain
| |
Collapse
|
34
|
Ganz J, Kroehne V, Freudenreich D, Machate A, Geffarth M, Braasch I, Kaslin J, Brand M. Subdivisions of the adult zebrafish pallium based on molecular marker analysis. F1000Res 2014; 3:308. [PMID: 25713698 PMCID: PMC4335597 DOI: 10.12688/f1000research.5595.2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 12/21/2022] Open
Abstract
Background: The telencephalon shows a remarkable structural diversity among vertebrates. In particular, the everted telencephalon of ray-finned fishes has a markedly different morphology compared to the evaginated telencephalon of all other vertebrates. This difference in development has hampered the comparison between different areas of the pallium of ray-finned fishes and the pallial nuclei of all other vertebrates. Various models of homology between pallial subdivisions in ray-finned fishes and the pallial nuclei in tetrapods have been proposed based on connectional, neurochemical, gene expression and functional data. However, no consensus has been reached so far. In recent years, the analysis of conserved developmental marker genes has assisted the identification of homologies for different parts of the telencephalon among several tetrapod species. Results: We have investigated the gene expression pattern of conserved marker genes in the adult zebrafish (
Danio rerio) pallium to identify pallial subdivisions and their homology to pallial nuclei in tetrapods. Combinatorial expression analysis of
ascl1a,
eomesa,
emx1,
emx2,
emx3, and Prox1 identifies four main divisions in the adult zebrafish pallium. Within these subdivisions, we propose that Dm is homologous to the pallial amygdala in tetrapods and that the dorsal subdivision of Dl is homologous to part of the hippocampal formation in mouse. We have complemented this analysis be examining the gene expression of
emx1,
emx2 and
emx3 in the zebrafish larval brain. Conclusions: Based on our gene expression data, we propose a new model of subdivisions in the adult zebrafish pallium and their putative homologies to pallial nuclei in tetrapods. Pallial nuclei control sensory, motor, and cognitive functions, like memory, learning and emotion. The identification of pallial subdivisions in the adult zebrafish and their homologies to pallial nuclei in tetrapods will contribute to the use of the zebrafish system as a model for neurobiological research and human neurodegenerative diseases.
Collapse
Affiliation(s)
- Julia Ganz
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany ; Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Volker Kroehne
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
| | - Dorian Freudenreich
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
| | - Anja Machate
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
| | - Michaela Geffarth
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
| | - Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Jan Kaslin
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany ; Present address: Faculty of Medicine, Nursing Health Sciences Monash University, Clayton, Victoria, 3800, Australia
| | - Michael Brand
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
| |
Collapse
|
35
|
Ganz J, Kroehne V, Freudenreich D, Machate A, Geffarth M, Braasch I, Kaslin J, Brand M. Subdivisions of the adult zebrafish pallium based on molecular marker analysis. F1000Res 2014; 3:308. [PMID: 25713698 PMCID: PMC4335597 DOI: 10.12688/f1000research.5595.1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The telencephalon shows a remarkable structural diversity among vertebrates. In particular, the everted telencephalon of ray-finned fishes has a markedly different morphology compared to the evaginated telencephalon of all other vertebrates. This difference in development has hampered the comparison between different areas of the pallium of ray-finned fishes and the pallial nuclei of all other vertebrates. Various models of homology between pallial subdivisions in ray-finned fishes and the pallial nuclei in tetrapods have been proposed based on connectional, neurochemical, gene expression and functional data. However, no consensus has been reached so far. In recent years, the analysis of conserved developmental marker genes has assisted the identification of homologies for different parts of the telencephalon among several tetrapod species. RESULTS We have investigated the gene expression pattern of conserved marker genes in the adult zebrafish ( Danio rerio) pallium to identify pallial subdivisions and their homology to pallial nuclei in tetrapods. Combinatorial expression analysis of ascl1a, eomesa, emx1, emx2, emx3, and Prox1 identifies four main divisions in the adult zebrafish pallium. Within these subdivisions, we propose that Dm is homologous to the pallial amygdala in tetrapods and that the dorsal subdivision of Dl is homologous to part of the hippocampal formation in mouse. We have complemented this analysis be examining the gene expression of emx1, emx2 and emx3 in the zebrafish larval brain. CONCLUSIONS Based on our gene expression data, we propose a new model of subdivisions in the adult zebrafish pallium and their putative homologies to pallial nuclei in tetrapods. Pallial nuclei control sensory, motor, and cognitive functions, like memory, learning and emotion. The identification of pallial subdivisions in the adult zebrafish and their homologies to pallial nuclei in tetrapods will contribute to the use of the zebrafish system as a model for neurobiological research and human neurodegenerative diseases.
Collapse
Affiliation(s)
- Julia Ganz
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Volker Kroehne
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
| | - Dorian Freudenreich
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
| | - Anja Machate
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
| | - Michaela Geffarth
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
| | - Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Jan Kaslin
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
- Present address: Faculty of Medicine, Nursing Health Sciences Monash University, Clayton, Victoria, 3800, Australia
| | - Michael Brand
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
| |
Collapse
|
36
|
Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee. Proc Natl Acad Sci U S A 2014; 111:17929-34. [PMID: 25453090 DOI: 10.1073/pnas.1420369111] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.
Collapse
|
37
|
Vicario A, Abellán A, Desfilis E, Medina L. Genetic identification of the central nucleus and other components of the central extended amygdala in chicken during development. Front Neuroanat 2014; 8:90. [PMID: 25309337 PMCID: PMC4159986 DOI: 10.3389/fnana.2014.00090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/19/2014] [Indexed: 01/11/2023] Open
Abstract
In mammals, the central extended amygdala shows a highly complex organization, and is essential for animal survival due to its implication in fear responses. However, many aspects of its evolution are still unknown, and this structure is especially poorly understood in birds. The aim of this study was to define the central extended amygdala in chicken, by means of a battery of region-specific transcription factors (Pax6, Islet1, Nkx2.1) and phenotypic markers that characterize these different subdivisions in mammals. Our results allowed the identification of at least six distinct subdivisions in the lateral part of the avian central extended amygdala: (1) capsular central subdivision; (2) a group of intercalated-like cell patches; (3) oval central nucleus; (4) peri-intrapeduncular (peri-INP) island field; (5) perioval zone; and (6) a rostral part of the subpallial extended amygdala. In addition, we identified three subdivisions of the laterodorsal bed nucleus of the stria terminalis (BSTLd) belonging to the medial region of the chicken central extended amygdala complex. Based on their genetic profile, cellular composition and apparent embryonic origin of the cells, we discuss the similarity of these different subdivisions of chicken with different parts of the mouse central amygdala and surrounding cell masses, including the intercalated amygdalar masses and the sublenticular part of the central extended amygdala. Most of the subdivisions include various subpopulations of cells that apparently originate in the dorsal striatal, ventral striatal, pallidal, and preoptic embryonic domains, reaching their final location by either radial or tangential migrations. Similarly to mammals, the central amygdala and BSTLd of chicken project to the hypothalamus, and include different neurons expressing proenkephalin, corticotropin-releasing factor, somatostatin or tyrosine hydroxylase, which may be involved in the control of different aspects of fear/anxiety-related behavior.
Collapse
Affiliation(s)
- Alba Vicario
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| |
Collapse
|
38
|
Abellán A, Desfilis E, Medina L. Combinatorial expression of Lef1, Lhx2, Lhx5, Lhx9, Lmo3, Lmo4, and Prox1 helps to identify comparable subdivisions in the developing hippocampal formation of mouse and chicken. Front Neuroanat 2014; 8:59. [PMID: 25071464 PMCID: PMC4082316 DOI: 10.3389/fnana.2014.00059] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/12/2014] [Indexed: 11/23/2022] Open
Abstract
We carried out a study of the expression patterns of seven developmental regulatory genes (Lef1, Lhx2, Lhx9, Lhx5, Lmo3, Lmo4, and Prox1), in combination with topological position, to identify the medial pallial derivatives, define its major subdivisions, and compare them between mouse and chicken. In both species, the medial pallium is defined as a pallial sector adjacent to the cortical hem and roof plate/choroid tela, showing moderate to strong ventricular zone expression of Lef1, Lhx2, and Lhx9, but not Lhx5. Based on this, the hippocampal formation (indusium griseum, dentate gyrus, Ammon's horn fields, and subiculum), the medial entorhinal cortex, and part of the amygdalo-hippocampal transition area of mouse appeared to derive from the medial pallium. In the chicken, based on the same position and gene expression profile, we propose that the hippocampus (including the V-shaped area), the parahippocampal area (including its caudolateral part), the entorhinal cortex, and the amygdalo-hippocampal transition area are medial pallial derivatives. Moreover, the combinatorial expression of Lef1, Prox1, Lmo4, and Lmo3 allowed the identification of dentate gyrus/CA3-like, CA1/subicular-like, and medial entorhinal-like comparable sectors in mouse and chicken, and point to the existence of mostly conserved molecular networks involved in hippocampal complex development. Notably, while the mouse medial entorhinal cortex derives from the medial pallium (similarly to the hippocampal formation, both being involved in spatial navigation and spatial memory), the lateral entorhinal cortex (involved in processing non-spatial, contextual information) appears to derive from a distinct dorsolateral caudal pallial sector.
Collapse
Affiliation(s)
| | | | - Loreta Medina
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Institute of Biomedical Research of Lleida, University of LleidaLleida, Spain
| |
Collapse
|
39
|
Arai Y, Pierani A. Development and evolution of cortical fields. Neurosci Res 2014; 86:66-76. [PMID: 24983875 DOI: 10.1016/j.neures.2014.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 11/17/2022]
Abstract
The neocortex is the brain structure that has been subjected to a major size expansion, in its relative size, during mammalian evolution. It arises from the cortical primordium through coordinated growth of neural progenitor cells along both the tangential and radial axes and their patterning providing spatial coordinates. Functional neocortical areas are ultimately consolidated by environmental influences such as peripheral sensory inputs. Throughout neocortical evolution, cortical areas have become more sophisticated and numerous. This increase in number is possibly involved in the complexification of neocortical function in primates. Whereas extensive divergence of functional cortical fields is observed during evolution, the fundamental mechanisms supporting the allocation of cortical areas and their wiring are conserved, suggesting the presence of core genetic mechanisms operating in different species. We will discuss some of the basic molecular mechanisms including morphogen-dependent ones involved in the precise orchestration of neurogenesis in different cortical areas, elucidated from studies in rodents. Attention will be paid to the role of Cajal-Retzius neurons, which were recently proposed to be migrating signaling units also involved in arealization, will be addressed. We will further review recent works on molecular mechanisms of cortical patterning resulting from comparative analyses between different species during evolution.
Collapse
Affiliation(s)
- Yoko Arai
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France.
| | - Alessandra Pierani
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| |
Collapse
|
40
|
Domínguez L, Morona R, González A, Moreno N. Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions. J Comp Neurol 2013; 521:725-59. [PMID: 22965483 DOI: 10.1002/cne.23222] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/19/2012] [Accepted: 08/21/2012] [Indexed: 12/19/2022]
Abstract
The patterns of expression of a set of conserved developmental regulatory transcription factors and neuronal markers were analyzed in the alar hypothalamus of Xenopus laevis throughout development. Combined immunohistochemical and in situ hybridization techniques were used for the identification of subdivisions and their boundaries. The alar hypothalamus was located rostral to the diencephalon in the secondary prosencephalon and represents the rostral continuation of the alar territories of the diencephalon and brainstem, according to the prosomeric model. It is composed of the supraoptoparaventricular (dorsal) and the suprachiasmatic (ventral) regions, and limits dorsally with the preoptic region, caudally with the prethalamic eminence and the prethalamus, and ventrally with the basal hypothalamus. The supraoptoparaventricular area is defined by the orthopedia (Otp) expression and is subdivided into rostral and caudal portions, on the basis of the Nkx2.2 expression only in the rostral portion. This region is the source of many neuroendocrine cells, primarily located in the rostral subdivision. The suprachiasmatic region is characterized by Dll4/Isl1 expression, and was also subdivided into rostral and caudal portions, based on the expression of Nkx2.1/Nkx2.2 and Lhx1/7 exclusively in the rostral portion. Both alar regions are mainly connected with subpallial areas strongly implicated in the limbic system and show robust intrahypothalamic connections. Caudally, both regions project to brainstem centers and spinal cord. All these data support that in terms of topology, molecular specification, and connectivity the subdivisions of the anuran alar hypothalamus possess many features shared with their counterparts in amniotes, likely controlling similar reflexes, responses, and behaviors.
Collapse
Affiliation(s)
- Laura Domínguez
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
41
|
Pabba M. Evolutionary development of the amygdaloid complex. Front Neuroanat 2013; 7:27. [PMID: 24009561 PMCID: PMC3755265 DOI: 10.3389/fnana.2013.00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/06/2013] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mohan Pabba
- Neurosciences Unit, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
42
|
Lauter G, Söll I, Hauptmann G. Molecular characterization of prosomeric and intraprosomeric subdivisions of the embryonic zebrafish diencephalon. J Comp Neurol 2013; 521:1093-118. [PMID: 22949352 DOI: 10.1002/cne.23221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 03/04/2012] [Accepted: 08/14/2012] [Indexed: 02/05/2023]
Abstract
During development of the early neural tube, positional information provided by signaling gradients is translated into a grid of transverse and longitudinal transcription factor expression domains. Transcription factor specification codes defining distinct histogenetic domains within this grid are evolutionarily conserved across vertebrates and may reflect an underlying common vertebrate bauplan. When compared to the rich body of comparative gene expression studies of tetrapods, there is considerably less comparative data available for teleost fish. We used sensitive multicolor fluorescent in situ hybridization to generate a detailed map of regulatory gene expression domains in the embryonic zebrafish diencephalon. The high resolution of this technique allowed us to resolve abutting and overlapping gene expression of different transcripts. We found that the relative topography of gene expression patterns in zebrafish was highly similar to those of orthologous genes in tetrapods and consistent with a three-prosomere organization of the alar and basal diencephalon. Our analysis further demonstrated a conservation of intraprosomeric subdivisions within prosomeres 1, 2, and 3 (p1, p2, and p3). A tripartition of zebrafish p1 was identified reminiscent of precommissural (PcP), juxtacommissural (JcP), and commissural (CoP) pretectal domains of tetrapods. The constructed detailed diencephalic transcription factor gene expression map further identified molecularly distinct thalamic and prethalamic rostral and caudal domains and a prethalamic eminence histogenetic domain in zebrafish. Our comparative gene expression analysis conformed with the idea of a common bauplan for the diencephalon of anamniote and amniote vertebrates from fish to mammals.
Collapse
Affiliation(s)
- Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | | | | |
Collapse
|
43
|
Abellán A, Desfilis E, Medina L. The olfactory amygdala in amniotes: an evo-devo approach. Anat Rec (Hoboken) 2013; 296:1317-32. [PMID: 23904411 DOI: 10.1002/ar.22744] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/18/2013] [Indexed: 11/11/2022]
Abstract
In tetrapods, the medial amygdala is a forebrain center that integrates olfactory and/or vomeronasal signals with the endocrine and autonomic systems, playing a key role in different social behaviors. The vomeronasal system has undergone important changes during evolution, which may be behind some interspecies differences in chemosensory-mediated social behavior. These evolutionary changes are associated with variations in vomeronasal-recipient brain structures, including the medial amygdala. Herein, we employed an evolutionary developmental biology approach for trying to understand the function and evolution of the medial amygdala. For that purpose, we reviewed published data on fate mapping in mouse, and the expression of orthologous developmental regulatory genes (Nkx2.1, Lhx6, Shh, Tbr1, Lhx9, Lhx5, Otp, and Pax6) in embryos of mouse, chicken, emydid turtles, and a pipid frog. We also analyzed novel data on Lhx9 and Otp in a lacertid lizard. Based on distinct embryonic origin and genetic profile, at least five neuronal subpopulations exist in the medial amygdala of rodents, expressing either Nkx2.1/Lhx6, Shh, Lhx9, Otp/Lhx5, or Pax6. Each neuronal subpopulation appears involved in different functional pathways. For example, Lhx6 cells are specifically activated by sex pheromones and project to preoptic and hypothalamic centers involved in reproduction. Based on data in nonmammals, at least three of these neuronal subtypes might have been present in the medial amygdala of the amniote common ancestor. During mammalian evolution, the downregulation of Nkx2.1 in the alar hypothalamus may have been a driving force for an increment of the Otp/Lhx5 subpopulation.
Collapse
Affiliation(s)
- Antonio Abellán
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida, Lleida, Spain
| | | | | |
Collapse
|
44
|
LHX2 is necessary for the maintenance of optic identity and for the progression of optic morphogenesis. J Neurosci 2013; 33:6877-84. [PMID: 23595746 DOI: 10.1523/jneurosci.4216-12.2013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Eye formation is regulated by a complex network of eye field transcription factors (EFTFs), including LIM-homeodomain gene LHX2. We disrupted LHX2 function at different stages during this process using a conditional knock-out strategy in mice. We find that LHX2 function is required in an ongoing fashion to maintain optic identity across multiple stages, from the formation of the optic vesicle to the differentiation of the neuroretina. At each stage, loss of Lhx2 led to upregulation of a set of molecular markers that are normally expressed in the thalamic eminence and in the anterodorsal hypothalamus in a portion of the optic vesicle or retina. Furthermore, the longer LHX2 function was maintained, the further optic morphogenesis progressed. Early loss of function caused profound mispatterning of the entire telencephalic-optic-hypothalamic field, such that the optic vesicle became mispositioned and appeared to arise from the diencephalic-telencephalic boundary. At subsequent stages, loss of Lhx2 did not affect optic vesicle position but caused arrest of optic cup formation. If Lhx2 was selectively disrupted in the neuroretina from E11.5, the neuroretina showed gross dysmorphology along with aberrant expression of markers specific to the thalamic eminence and anterodorsal hypothalamus. Our findings indicate a continual requirement for LHX2 throughout the early stages of optic development, not only to maintain optic identity by suppressing alternative fates but also to mediate multiple steps of optic morphogenesis. These findings provide new insight into the anophthalmic phenotype of the Lhx2 mutant and reveal novel roles for this transcription factor in eye development.
Collapse
|
45
|
Hertel N, Redies C, Medina L. Cadherin expression delineates the divisions of the postnatal and adult mouse amygdala. J Comp Neurol 2013; 520:3982-4012. [PMID: 22592879 DOI: 10.1002/cne.23140] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The amygdaloid complex represents a group of telencephalic nuclei and cortical areas that control emotional and social behavior. Amygdalar development is poorly understood. It is generally accepted that the structures of the amygdala originate from the neuroepithelium at both sides of the pallial-subpallial boundary. In the present study, we mapped the expression of 13 members of the cadherin superfamily of cell adhesion molecules, which provide an adhesive code for the development and maintenance of functional structures in the central nervous system (CNS). Five classic cadherins (Cdh4, Cdh6, Cdh7, Cdh8, Cdh11) and eight delta-protocadherins (Pcdh1, Pcdh7, Pcdh8, Pcdh9, Pcdh10, Pcdh11, PCdh17, PCdh19) were studied by in situ hybridization in the postnatal (P5) and adult mouse amygdala. In the different parts of the amygdala, each of these (proto-) cadherins shows a distinct and spatially restricted expression pattern that is highly similar at postnatal and adult stages. The combinatorial expression of (proto-) cadherins allows the distinction of multiple molecular subdivisions within the amygdala that partially coincide with previously described morphological divisions. Beyond these expected results, a number of novel molecular subdivisions and subpopulations of cells were identified; for example, additional molecular subdomains, patches, or cell aggregates with distinct (proto-) cadherin expression in several nuclei/areas of the amygdala. We also show that several cadherins are molecular markers for particular functional subsystems within the amygdala, such as in the olfactory projections. In summary, (proto-) cadherins provide a code of potentially adhesive cues that can aid the understanding of functional organization in the amygdala.
Collapse
Affiliation(s)
- Nicole Hertel
- Institute of Anatomy I, Friedrich Schiller University School of Medicine, Jena University Hospital, 07743 Jena, Germany
| | | | | |
Collapse
|
46
|
Dynamic expression of tyrosine hydroxylase mRNA and protein in neurons of the striatum and amygdala of mice, and experimental evidence of their multiple embryonic origin. Brain Struct Funct 2013; 219:751-76. [PMID: 23479178 PMCID: PMC4023077 DOI: 10.1007/s00429-013-0533-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 02/21/2013] [Indexed: 12/22/2022]
Abstract
Emotional and motivational dysfunctions observed in Parkinson's disease, schizophrenia, and drug addiction are associated to an alteration of the mesocortical and mesolimbic dopaminergic pathways, which include axons projecting to the prefrontal cortex, the ventral striatum, and the amygdala. Subpopulations of catecholaminergic neurons have been described in the cortex and striatum of several mammals, but the presence of such cells in the adult amygdala is unclear in murine rodents, and in other rodents appears to show variations depending on the species. Moreover, the embryonic origin of telencephalic tyrosine hydroxylase (TH) cells is unknown, which is essential for trying to understand aspects of their evolution, distribution and function. Herein we investigated the expression of TH mRNA and protein in cells of the striatum and amygdala of developing and adult mice, and analyzed the embryonic origin of such cells using in vitro migration assays. Our results showed the presence of TH mRNA and protein expressing cells in the striatum (including nucleus accumbens), central and medial extended amygdala during development, which are persistent in adulthood although they are less numerous, generally show weak mRNA expression, and some appear to lack the protein. Fate mapping analysis showed that these cells include at least two subpopulations with different embryonic origin in either the commissural preoptic area of the subpallium or the supraopto-paraventricular domain of the alar hypothalamus. These data are important for future studies trying to understand the role of catecholamines in modulation of emotion, motivation, and reward.
Collapse
|
47
|
Maximino C, Lima MG, Oliveira KRM, Batista EDJO, Herculano AM. “Limbic associative” and “autonomic” amygdala in teleosts: A review of the evidence. J Chem Neuroanat 2013; 48-49:1-13. [DOI: 10.1016/j.jchemneu.2012.10.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/31/2022]
|
48
|
Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream. Nat Neurosci 2013; 16:157-65. [PMID: 23292680 DOI: 10.1038/nn.3297] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/05/2012] [Indexed: 11/09/2022]
Abstract
The accessory olfactory bulb (AOB) is a critical olfactory structure that has been implicated in mediating social behavior. It receives input from the vomeronasal organ and projects to targets in the amygdaloid complex. Its anterior and posterior components (aAOB and pAOB) display molecular, connectional and functional segregation in processing reproductive and defensive and aggressive behaviors, respectively. We observed a dichotomy in the development of the projection neurons of the aAOB and pAOB in mice. We found that they had distinct sites of origin and that different regulatory molecules were required for their specification and migration. aAOB neurons arose locally in the rostral telencephalon, similar to main olfactory bulb neurons. In contrast, pAOB neurons arose caudally, from the neuroepithelium of the diencephalic-telencephalic boundary, from which they migrated rostrally to reach their destination. This unusual origin and migration is conserved in Xenopus, providing an insight into the origin of a key component of this system in evolution.
Collapse
|
49
|
Ganz J, Kaslin J, Freudenreich D, Machate A, Geffarth M, Brand M. Subdivisions of the adult zebrafish subpallium by molecular marker analysis. J Comp Neurol 2012; 520:633-55. [PMID: 21858823 DOI: 10.1002/cne.22757] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The morphology of the telencephalon displays great diversity among different vertebrate lineages. Particularly the everted telencephalon of ray-finned fishes shows a noticeably different morphology from the evaginated telencephalon of nonray-finned fishes and other vertebrates. This makes the comparison between the different parts of the telencephalon of ray-finned fishes and other vertebrates difficult. Based on neuroanatomical, neurochemical, and connectional data no consensus on the subdivisions of the adult telencephalon of ray-finned fishes and their relation to nuclei in the telencephalon of other vertebrates has been reached yet. For tetrapods, comparative expression pattern analysis of homologous developmental genes has been a successful approach to clarify homologies between different parts of the telencephalon. In the larval zebrafish, subdivisions of the subpallium have been proposed using conserved developmental gene expression. In this study, we investigate the subdivisions of the adult zebrafish telencephalon by analyzing the expression pattern of conserved molecular marker genes. We identify the boundary between the pallium and subpallium based on the complementary expression of dlx2a, dlx5a in the subpallium and tbr1, neurod in the pallium. Furthermore, combinatorial expression of Isl, nkx2.1b, lhx1b, tbr1, eomesa, emx1, emx2, and emx3 identifies striatal-like, pallidal-like, and septal-like subdivisions within the subpallium. In contrast to previous models, we propose that the striatum and pallidum are stretched along the rostrocaudal axis of the telencephalon. Further, the septal nuclei derive from both the pallium and subpallium. On this basis, we present a new model for the subdivisions of the subpallium in teleost fish.
Collapse
Affiliation(s)
- Julia Ganz
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Pardo-Bellver C, Cádiz-Moretti B, Novejarque A, Martínez-García F, Lanuza E. Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Front Neuroanat 2012; 6:33. [PMID: 22933993 PMCID: PMC3423790 DOI: 10.3389/fnana.2012.00033] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/27/2012] [Indexed: 11/29/2022] Open
Abstract
The medial amygdaloid nucleus (Me) is a key structure in the control of sociosexual behavior in mice. It receives direct projections from the main and accessory olfactory bulbs (AOB), as well as an important hormonal input. To better understand its behavioral role, in this work we investigate the structures receiving information from the Me, by analysing the efferent projections from its anterior (MeA), posterodorsal (MePD) and posteroventral (MePV) subdivisions, using anterograde neuronal tracing with biotinylated and tetrametylrhodamine-conjugated dextranamines. The Me is strongly interconnected with the rest of the chemosensory amygdala, but shows only moderate projections to the central nucleus and light projections to the associative nuclei of the basolateral amygdaloid complex. In addition, the MeA originates a strong feedback projection to the deep mitral cell layer of the AOB, whereas the MePV projects to its granule cell layer. The Me (especially the MeA) has also moderate projections to different olfactory structures, including the piriform cortex (Pir). The densest outputs of the Me target the bed nucleus of the stria terminalis (BST) and the hypothalamus. The MeA and MePV project to key structures of the circuit involved in the defensive response against predators (medial posterointermediate BST, anterior hypothalamic area, dorsomedial aspect of the ventromedial hypothalamic nucleus), although less dense projections also innervate reproductive-related nuclei. In contrast, the MePD projects mainly to structures that control reproductive behaviors [medial posteromedial BST, medial preoptic nucleus, and ventrolateral aspect of the ventromedial hypothalamic nucleus], although less dense projections to defensive-related nuclei also exist. These results confirm and extend previous results in other rodents and suggest that the medial amygdala is anatomically and functionally compartmentalized.
Collapse
Affiliation(s)
- Cecília Pardo-Bellver
- Facultat de Ciències Biològiques, Laboratory of Functional and Comparative Neuroanatomy, Departament de Biologia Cel·lular, Universitat de València València, Spain
| | | | | | | | | |
Collapse
|