1
|
Featherstone RE, Shimada T, Crown LM, Melnychenko O, Yi J, Matsumoto M, Tajinda K, Mihara T, Adachi M, Siegel SJ. Calcium/calmodulin-dependent protein kinase IIα heterozygous knockout mice show electroencephalogram and behavioral changes characteristic of a subpopulation of schizophrenia and intellectual impairment. Neuroscience 2022; 499:104-117. [PMID: 35901933 DOI: 10.1016/j.neuroscience.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022]
Abstract
Cognitive deficit remains an intractable symptom of schizophrenia, accounting for substantial disability. Despite this, little is known about the cause of cognitive dysfunction in schizophrenia. Recent studies suggest that schizophrenia patients show several changes in dentate gyrus structure and functional characteristic of immaturity. The immature dentate gyrus (iDG) has been replicated in several mouse models, most notably the αCaMKII heterozygous mouse (CaMKIIa-hKO). The current study characterizes behavioral phenotypes of CaMKIIa-hKO mice and determines their neurophysiological profile using electroencephalogram (EEG) recording from hippocampus. CaMKIIa-hKO mice were hypoactive in home-cage environment; however, they displayed less anxiety-like phenotype, suggestive of impulsivity-like behavior. In addition, severe cognitive dysfunction was evident in CaMKIIa-hKO mice as examined by novel object recognition and contextual fear conditioning. Several EEG phenomena established in both patients and relevant animal models indicate key pathological changes associated with the disease, include auditory event-related potentials and time-frequency EEG oscillations. CaMKIIa-hKO mice showed altered event-related potentials characterized by an increase in amplitude of the N40 and P80, as well as increased P80 latency. These mice also showed increased power in theta range time-frequency measures. Additionally, CaMKIIa-hKO mice showed spontaneous bursts of spike wave activity, possibly indicating absence seizures. The GABAB agonist baclofen increased, while the GABAB antagonist CGP35348 and the T-Type Ca2+ channel blocker Ethosuximide decreased spike wave burst frequency. None of these changes in event-related potentials or EEG oscillations are characteristic of those observed in general population of patients with schizophrenia; yet, CaMKIIa-hKO mice likely model a subpopulation of patients with schizophrenia.
Collapse
Affiliation(s)
- Robert E Featherstone
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | - Takeshi Shimada
- Drug Discovery Research, Astellas Pharma, Inc, Tsukuba, Japan
| | - Lindsey M Crown
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | - Olya Melnychenko
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | - Janice Yi
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | | | | | - Takuma Mihara
- Drug Discovery Research, Astellas Pharma, Inc, Tsukuba, Japan
| | - Megumi Adachi
- Astellas Research Institute of America, San Diego, CA, USA.
| | - Steven J Siegel
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA.
| |
Collapse
|
2
|
Helios modulates the maturation of a CA1 neuronal subpopulation required for spatial memory formation. Exp Neurol 2019; 323:113095. [PMID: 31712124 DOI: 10.1016/j.expneurol.2019.113095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 01/05/2023]
Abstract
Currently, molecular, electrophysiological and structural studies delineate several neural subtypes in the hippocampus. However, the precise developmental mechanisms that lead to this diversity are still unknown. Here we show that alterations in a concrete hippocampal neuronal subpopulation during development specifically affect hippocampal-dependent spatial memory. We observed that the genetic deletion of the transcription factor Helios in mice, which is specifically expressed in developing hippocampal calbindin-positive CA1 pyramidal neurons (CB-CA1-PNs), induces adult alterations affecting spatial memory. In the same mice, CA3-CA1 synaptic plasticity and spine density and morphology in adult CB-CA1-PNs were severely compromised. RNAseq experiments in developing hippocampus identified an aberrant increase on the Visinin-like protein 1 (VSNL1) expression in the hippocampi devoid of Helios. This aberrant increase on VSNL1 levels was localized in the CB-CA1-PNs. Normalization of VSNL1 levels in CB-CA1-PNs devoid of Helios rescued their spine loss in vitro. Our study identifies a novel and specific developmental molecular pathway involved in the maturation and function of a CA1 pyramidal neuronal subtype.
Collapse
|
3
|
Harris EP, Abel JM, Tejada LD, Rissman EF. Calbindin Knockout Alters Sex-Specific Regulation of Behavior and Gene Expression in Amygdala and Prefrontal Cortex. Endocrinology 2016; 157:1967-79. [PMID: 27010449 PMCID: PMC4870870 DOI: 10.1210/en.2016-1055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calbindin-D(28K) (Calb1), a high-affinity calcium buffer/sensor, shows abundant expression in neurons and has been associated with a number of neurobehavioral diseases, many of which are sexually dimorphic in incidence. Behavioral and physiological end points are affected by experimental manipulations of calbindin levels, including disruption of spatial learning, hippocampal long-term potentiation, and circadian rhythms. In this study, we investigated novel aspects of calbindin function on social behavior, anxiety-like behavior, and fear conditioning in adult mice of both sexes by comparing wild-type to littermate Calb1 KO mice. Because Calb1 mRNA and protein are sexually dimorphic in some areas of the brain, we hypothesized that sex differences in behavioral responses of these behaviors would be eliminated or revealed in Calb1 KO mice. We also examined gene expression in the amygdala and prefrontal cortex, two areas of the brain intimately connected with limbic system control of the behaviors tested, in response to sex and genotype. Our results demonstrate that fear memory and social behavior are altered in male knockout mice, and Calb1 KO mice of both sexes show less anxiety. Moreover, gene expression studies of the amygdala and prefrontal cortex revealed several significant genotype and sex effects in genes related to brain-derived neurotrophic factor signaling, hormone receptors, histone deacetylases, and γ-aminobutyric acid signaling. Our findings are the first to directly link calbindin with affective and social behaviors in rodents; moreover, the results suggest that sex differences in calbindin protein influence behavior.
Collapse
Affiliation(s)
- Erin P Harris
- Neuroscience Graduate Program (E.P.H., L.D.T.) and Department of Biochemistry and Molecular Genetics (J.M.A., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Jean M Abel
- Neuroscience Graduate Program (E.P.H., L.D.T.) and Department of Biochemistry and Molecular Genetics (J.M.A., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Lucia D Tejada
- Neuroscience Graduate Program (E.P.H., L.D.T.) and Department of Biochemistry and Molecular Genetics (J.M.A., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Emilie F Rissman
- Neuroscience Graduate Program (E.P.H., L.D.T.) and Department of Biochemistry and Molecular Genetics (J.M.A., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
4
|
Ruby K, Falvey K, Kulesza R. Abnormal neuronal morphology and neurochemistry in the auditory brainstem of Fmr1 knockout rats. Neuroscience 2015; 303:285-98. [DOI: 10.1016/j.neuroscience.2015.06.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/10/2015] [Accepted: 06/27/2015] [Indexed: 01/19/2023]
|
5
|
Cea-Del Rio CA, Huntsman MM. The contribution of inhibitory interneurons to circuit dysfunction in Fragile X Syndrome. Front Cell Neurosci 2014; 8:245. [PMID: 25202236 PMCID: PMC4142705 DOI: 10.3389/fncel.2014.00245] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/04/2014] [Indexed: 12/24/2022] Open
Abstract
Many neurological disorders, including neurodevelopmental disorders, report hypersynchrony of neuronal networks. These alterations in neuronal synchronization suggest a link to the function of inhibitory interneurons. In Fragile X Syndrome (FXS), it has been reported that altered synchronization may underlie hyperexcitability, cognitive dysfunction and provide a link to the increased incidence of epileptic seizures. Therefore, understanding the roles of inhibitory interneurons and how they control neuronal networks is of great importance in studying neurodevelopmental disorders such as FXS. Here, we present a review of how interneuron populations and inhibition are important contributors to the loss of excitatory/inhibitory balance seen in hypersynchronous and hyperexcitable networks from neurodevelopmental disorders, and specifically in FXS.
Collapse
Affiliation(s)
- Christian A Cea-Del Rio
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus Aurora, CO, USA
| | - Molly M Huntsman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus Aurora, CO, USA ; Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus Aurora, CO, USA
| |
Collapse
|
6
|
Slomianka L, Drenth T, Cavegn N, Menges D, Lazic SE, Phalanndwa M, Chimimba CT, Amrein I. The hippocampus of the eastern rock sengi: cytoarchitecture, markers of neuronal function, principal cell numbers, and adult neurogenesis. Front Neuroanat 2013; 7:34. [PMID: 24194702 PMCID: PMC3810719 DOI: 10.3389/fnana.2013.00034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/26/2013] [Indexed: 12/04/2022] Open
Abstract
The brains of sengis (elephant shrews, order Macroscelidae) have long been known to contain a hippocampus that in terms of allometric progression indices is larger than that of most primates and equal in size to that of humans. In this report, we provide descriptions of hippocampal cytoarchitecture in the eastern rock sengi (Elephantulus myurus), of the distributions of hippocampal calretinin, calbindin, parvalbumin, and somatostatin, of principal neuron numbers, and of cell numbers related to proliferation and neuronal differentiation in adult hippocampal neurogenesis. Sengi hippocampal cytoarchitecture is an amalgamation of characters that are found in CA1 of, e.g., guinea pig and rabbits and in CA3 and dentate gyrus of primates. Correspondence analysis of total cell numbers and quantitative relations between principal cell populations relate this sengi to macaque monkeys and domestic pigs, and distinguish the sengi from distinct patterns of relations found in humans, dogs, and murine rodents. Calretinin and calbindin are present in some cell populations that also express these proteins in other species, e.g., interneurons at the stratum oriens/alveus border or temporal hilar mossy cells, but neurons expressing these markers are often scarce or absent in other layers. The distributions of parvalbumin and somatostatin resemble those in other species. Normalized numbers of PCNA+ proliferating cells and doublecortin-positive (DCX+) differentiating cells of neuronal lineage fall within the overall ranges of murid rodents, but differed from three murid species captured in the same habitat in that fewer DCX+ cells relative to PCNA+ were observed. The large and well-differentiated sengi hippocampus is not accompanied by correspondingly sized cortical and subcortical limbic areas that are the main hippocampal sources of afferents and targets of efferents. This points to intrinsic hippocampal information processing as the selective advantage of the large sengi hippocampus.
Collapse
Affiliation(s)
- Lutz Slomianka
- Institute of Anatomy, University of ZürichZürich, Switzerland
| | - Tanja Drenth
- Institute of Anatomy, University of ZürichZürich, Switzerland
| | - Nicole Cavegn
- Institute of Anatomy, University of ZürichZürich, Switzerland
| | - Dominik Menges
- Institute of Anatomy, University of ZürichZürich, Switzerland
| | - Stanley E. Lazic
- In Silico Lead Discovery, Novartis Institutes for Biomedical ResearchBasel, Switzerland
| | - Mashudu Phalanndwa
- Mammal Research Institute, Department of Zoology and Entomology, University of PretoriaHatfield, South Africa
- Western Cape Nature Conservation Board (CapeNature)Cape Town, South Africa
| | - Christian T. Chimimba
- Mammal Research Institute, Department of Zoology and Entomology, University of PretoriaHatfield, South Africa
- Department of Science and Technology-National Research Foundation Centre of Excellence for Invasion Biology, Department of Zoology and Entomology University of PretoriaHatfield, South Africa
| | - Irmgard Amrein
- Institute of Anatomy, University of ZürichZürich, Switzerland
| |
Collapse
|
7
|
Giráldez-Pérez RM, Avila MN, Feijóo-Cuaresma M, Heredia R, De Diego-Otero Y, Real MÁ, Guirado S. Males but not females show differences in calbindin immunoreactivity in the dorsal thalamus of the mouse model of fragile X syndrome. J Comp Neurol 2013; 521:894-911. [PMID: 22886886 DOI: 10.1002/cne.23209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 06/04/2012] [Accepted: 08/03/2012] [Indexed: 12/18/2022]
Abstract
Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of the Fmr1 gene product, fragile X mental retardation protein. Here we analyze the immunohistochemical expression of calcium-binding proteins in the dorsal thalamus of Fmr1 knockout mice of both sexes and compare it with that of wildtype littermates. The spatial distribution pattern of calbindin-immunoreactive cells in the dorsal thalamus was similar in wildtype and knockout mice but there was a notable reduction in calbindin-immunoreactive cells in midline/intralaminar/posterior dorsal thalamic nuclei of male Fmr1 knockout mice. We counted the number of calbindin-immunoreactive cells in 18 distinct nuclei of the dorsal thalamus. Knockout male mice showed a significant reduction in calbindin-immunoreactive cells (range: 36-67% lower), whereas female knockout mice did not show significant differences (in any dorsal thalamic nucleus) when compared with their wildtype littermates. No variation in the calretinin expression pattern was observed throughout the dorsal thalamus. The number of calretinin-immunoreactive cells was similar for all experimental groups as well. Parvalbumin immunoreactivity was restricted to fibers and neuropil in the analyzed dorsal thalamic nuclei, and presented no differences between genotypes. Midline/intralaminar/posterior dorsal thalamic nuclei are involved in forebrain circuits related to memory, nociception, social fear, and auditory sensory integration; therefore, we suggest that downregulation of calbindin protein expression in the dorsal thalamus of male knockout mice should be taken into account when analyzing behavioral studies in the mouse model of FXS.
Collapse
Affiliation(s)
- Rosa M Giráldez-Pérez
- University of Málaga, Department of Cell Biology, Genetics, and Physiology, Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Karádi K, Janszky J, Gyimesi C, Horváth Z, Lucza T, Dóczi T, Kállai J, Abrahám H. Correlation between calbindin expression in granule cells of the resected hippocampal dentate gyrus and verbal memory in temporal lobe epilepsy. Epilepsy Behav 2012; 25:110-9. [PMID: 22796338 DOI: 10.1016/j.yebeh.2012.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 01/06/2023]
Abstract
Calbindin expression of granule cells of the dentate gyrus is decreased in temporal lobe epilepsy (TLE) regardless of its etiology. In this study, we examined the relation between reduction of calbindin immunoreactivity and the verbal and visuo-spatial memory function of patients with TLE of different etiologies. Significant linear correlation was shown between calbindin expression and short-term and long-term percent retention and retroactive interference in auditory verbal learning test (AVLT) of patients including those with hippocampal sclerosis. In addition, we found significant linear regression between calbindin expression and short-term and long-term percent retention of AVLT in patients whose epilepsy was caused by malformation of cortical development or tumor and when no hippocampal sclerosis and substantial neuronal loss were detected. Together with the role of calbindin in memory established in previous studies on calbindin knock-out mice, our results suggest that reduction of calbindin expression may contribute to memory impairments of patients with TLE, particularly, when neuronal loss is not significant.
Collapse
Affiliation(s)
- Kázmér Karádi
- Department of Behavioral Sciences, Faculty of Medicine, University of Pécs, Szigeti u. 12., Pécs 7624, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abnormal presynaptic short-term plasticity and information processing in a mouse model of fragile X syndrome. J Neurosci 2011; 31:10971-82. [PMID: 21795546 DOI: 10.1523/jneurosci.2021-11.2011] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading genetic cause of autism. It is associated with the lack of fragile X mental retardation protein (FMRP), a regulator of protein synthesis in axons and dendrites. Studies on FXS have extensively focused on the postsynaptic changes underlying dysfunctions in long-term plasticity. In contrast, the presynaptic mechanisms of FXS have garnered relatively little attention and are poorly understood. Activity-dependent presynaptic processes give rise to several forms of short-term plasticity (STP), which is believed to control some of essential neural functions, including information processing, working memory, and decision making. The extent of STP defects and their contributions to the pathophysiology of FXS remain essentially unknown, however. Here we report marked presynaptic abnormalities at excitatory hippocampal synapses in Fmr1 knock-out (KO) mice leading to defects in STP and information processing. Loss of FMRP led to enhanced responses to high-frequency stimulation. Fmr1 KO mice also exhibited abnormal synaptic processing of natural stimulus trains, specifically excessive enhancement during the high-frequency spike discharges associated with hippocampal place fields. Analysis of individual STP components revealed strongly increased augmentation and reduced short-term depression attributable to loss of FMRP. These changes were associated with exaggerated calcium influx in presynaptic neurons during high-frequency stimulation, enhanced synaptic vesicle recycling, and enlarged readily-releasable and reserved vesicle pools. These data suggest that loss of FMRP causes abnormal STP and information processing, which may represent a novel mechanism contributing to cognitive impairments in FXS.
Collapse
|